广角镜头设计(DOC)

广角镜头设计(DOC)
广角镜头设计(DOC)

特广角镜头的预研报告

产品所需要的监控成像的专用特广角镜头进行了预研,现将预研结果报告如下:

一、问题的提出和技术要求

根据介绍,在开发某游戏设备时,其中需要用到摄像头摄取图象以便进行后续的图象识别。根据他们的市场定位,希望摄像头安装的位置越低越好,同时保持效果不变。工作时所需要拍摄的图象如下:

提出的技术要求如下:

1、被摄物整体面范围尺寸:480x480mm;

2、图像传感器:1/4英寸(CMOS),30万像素;

3、镜头离被摄物面的位置:480×480mm面的一侧,离边缘50mm以内,高度为250mm之内;

4、图像清晰度:能分辨物面上1mm的细节;

5、图像校正畸变:无梯形失真,线性畸变小于5% 对矩形网格成像无变形;

6、景深大于5mm,离镜头近的物体与远的物体成像清晰度无差别;

7、镜片个数:3-5片,(含玻璃和塑料两种透镜)外壳为塑料,安装方式为螺纹连接;

8、成品单价:成本低廉,在大规模供货时(每月10K以上),每只镜头成品(包括所有镜

片及外壳)批发单价10元人民币以下。

二、解决问题的几种途径

1. 用普通的摄像镜头

用普通的摄像镜头拍摄画面的话,由于普通镜头视场角太小,同时由于镜头处在被摄面的边缘会产生很大的畸变,尤其是梯形畸变,如下图所示:

2 用倾斜CMOS成像面的办法消除畸变

用普通的摄像镜头对准画面中心,由于镜头光轴和被摄面不垂直,会产生很大的固有畸变,这样的畸变,可以用倾斜CMOS成像面的办法消除,如下图所示:

用这样的办法,虽然能消除畸变,但是由于整个光学系统失去了轴对称,像差校正困

难,造成像面模糊,无法识别细节。

3用传统的球面特广角镜头成像

由于非轴对称的光学系统难于校正像差,所以只有采用轴对称的光学系统的才能解决问题。

所谓特广角镜头,是指视场角超过90度的广角镜头,在设计上有很大难度。广角镜头的畸变很大,为了消除畸变,镜头往往需要十多片镜片组成(如下图),它的成本很高,无法推广。

另一种消除畸变的球面广角镜头,是对称设计的镜头,从光学理论可知结构对称的镜头可以自动消除畸变。但是由于本镜头的焦距很小( 约为1~2mm ),对称设计的结果造成后截距很短( 约在0.05mm ),装配调整困难,并且透镜的表面曲率半径很小,在1mm以下,这样小的半径在模具制造和注塑工艺上都十分困难,甚至无法加工,该方案的光学原理如下:

三、非球面特广角镜头的设计分析

按照上述分析,本系统必须是一种新型的非球面的特广角镜头。为了降低成本可以使用光学塑料非球面透镜。根据目前调查,国内这方面的技术已经成熟。

为了使所设计的光学系统的光轴能够和被摄物面垂直,必须使视场扩大一倍,并且将成像的CMOS芯片偏轴放置,如下所示:

图中O是镜头的光轴,OA 是被摄面,已知OA=480mm,Lens 到O点的距离为250mm。

由于图像传感器是1/4英寸的CMOS芯片,而该芯片的尺寸3.2x2.4mm左右,也就是说需要将480x480mm物面成像在3.2x2.4mm的CMOS面上,所以该镜头的放大率m就是:m = -2.4/480= -0.005

放大率m前的负号代表系统成倒像。

设物象共轭距为D,D=250mm,根据几何光学上焦距和放大倍率的关系:

f= -Dm/(m-1)^2

所以,镜头的焦距就是: f=250*0.005/1.005^2= 1.238mm

这样的焦距,是非常短的, 因此镜头的视场也非常大,视场角和焦距的关系是:tan w=y”/f

这里w为镜头的半视场角,f是焦距,y是成像面的对角线的一半。

Y = Sqr(2.4^2+2.4^2)=3.394

所以tan w=y”/f = 3.394/1.238=2.741 w =70°

2w =70°

总的视场角已经达到140°,这说明本系统是一个特广角的摄像光学系统。设计这样的系统有多种方案,经过预设计,作者认为:采用反远摄系统为好。

反远摄物镜也称为广角长工作距离物镜。普通的镜头,它的工作距离短于焦距,约为0.6-0.8倍焦距左右,由于本系统的焦距很短,只有1.238mm,为了增加它的工作距离,方便安装调整,只能采用反远摄系统的光学结构。

反远距系统的基本结构,采用负正透镜分离的型式,负光焦度的透镜组做为前组,正光焦度的透镜组做为后组,光线经前组发散后,被后组成像在CMOS面上,其大致的结构可表示如下:

普通的反远距系统的结构是比较复杂的,至少在5-7片,为了降低成本,需要将镜片数目控制在3-5片,这样就要采用非球面等最新技术。

非球面和球面最大的区别在于表面的形状。球面是最简单的二次曲面,标准的二次曲面的方程式为:

其中,c 为表面的曲率(半径所对应的),r 是矢径方向的坐标,k 为圆锥系数。对于双曲线k 小于–1,对于抛物线k 为–1,对于椭圆k 在–1到0之间,对于球面k 为0。Z 为光轴方向的矢高。对于z 而言,标准的二次曲面的最高次数为2。

轴对称多项式非球面可用球面(或标准的二次曲面)再附加高次的多项式来表示。偶次非球面只用径向坐标的偶次幂来描述。其表面的矢高由下式给出:

可见,高次非球面比标准的二次曲面多了α 1 、α 2 、α3、

α 4 、α 5 、α 6 、α7 、α8 八个参数,对校正像差就是多了八个自由度,从而可以消除畸变等失真。

但是非球面,尤其是高次非球面的加工是令人棘手的问题。玻璃非球面的加工成本十分昂贵,无法达到本项目的低成本的要求。可喜的是,光学塑料非球面技术目前已经比较成熟。在采用光学塑料非球面技术时,面形陡度是制造工艺成败的关键。如果表面面形很陡,模具很难加工,注塑也很困难,如下图的结构,第一片用光学塑料非球面,由于表面面形太陡,以至无法加工成形。所以在设计时必须注意面形的加工工艺性。一般而言,非球面曲线上的任何一点的切线和光轴垂直线的夹角应该小于60度。

16

8147126105846342212

22

)1(11r r r r r r r r r c k cr z αααααααα+++++++++-+=2

22

)1(11r c k cr z +-+=

为了在设计中控制面形陡度,有必要多采用几片镜片或多用几个非球面,对于本系统而言,采用3个高次非球面是必要的。

采用本方案的理由是:

1.为达到140度的特广角视场和一定的后截距,必须要采用特广角的光学结构形式;

2.为控制成本,必须在光学结构中采用塑料非球面,以减少透镜的片数;

3.在背投式电视光学镜头的设计中,本人对采用塑料非球面透镜消除畸变,已经有了成功的先例,这次通过精心设计,可以达到委托方提出的消除畸变的要求;

4.国内非球面塑料透镜的加工工艺已经成熟,为采用本方案奠定了基础。

预计结果:

采用本方案能达到预定的技术要求,并能进行大量生产,满足市场的需要。

加工单位的寻找:

国内非球面塑料透镜的加工单位很多,如杭州照相机械研究所,杭州中新光学技术公司,浙江舜宇集团,凤凰光学集团,河南中光学集团,福建厦门玉晶光学公司(台资)等等,他们的模具制造技术,镜片注塑料技术都能达到本设计所需的要求。

加工的周期及成功率:

加工的关键在于非球面的模具制造,其中的型芯需要到境外加工,费用较大,因为具体单位的收费情况不同,每个型芯的加工价格在几千元左右。总的模具费用在2-3万元左右。模具的加工周期在两个月左右,试模和出样时间在一个月左右。按照常规出样以后,得修模1-2次,以达到要求。只要设计和工艺合理,成功的把握在90%以上。

设计步骤:

1.确定前后组元的光焦度分配;

2.确定前后组元的光学结构和所用的材料;

3.优化各个透镜的结构参数;

4.工艺审查;

5.交甲方审核。

zemax变焦设计操作

各位网友:你们好! 前面发的关于“数码镜头设计原理”中的前两贴想已见过了,那里介绍的是最基础的东西。现在光电产品千变万化,但万变不离其宗,其基本原理,基本理论确不象外表那样善变,使人迷糊。如果我们建立了扎实的光学与数学的理论基础,那么在接触新产品后,就能快的多的消化吸收,由被动的感性认识,提升为主动的理性认识,,从而在设计上游刃有余。 现在光电产品出现了许多新的特征,利用基础理论去探讨其内在的规律、推演公式去精确的把握它。在“数码镜头设计原理_变焦篇”中,是基础篇、高级篇基本理论的引深。变焦设计是个很复杂的过程,有很多是凭着感觉走的。感觉就是灵感,它能快速引导设计人员在迷宫中及时调整方向,免除了在局部问题上纠缠不休,向更具创造性的思维迈进。感觉是我们以基本理论作基石,实践经验为引导,在设计领域产生的奇思妙想。例如:我们在引用专利时,往往是将一个专利改进成合于我们产品性能要求就行了。大家想过没有,专利也可东拼西凑?如果能这样做,就能使专例可利用的价值大大提升,同时也免除了专利侵权的尴尬场面发生。另外想过没有,虚拟玻璃在光学设计中不太好控制。我们可否用特定的方法有效的控制它:我们将玻璃改成虚拟玻璃,然后控制优化步长为单步,或五步。这样不断观查那些玻璃超出范围,超出的退回前步(每一步存盘一次,退回操作就可用调前次文件来实现),将其固定(不设为变量)。由于虚拟玻璃比实际玻璃敏感的多,会使色差得到极有效的控制。在变焦设计中由变焦引入的约束很多,它们干扰了象质的优化,这成为了变焦系统是否设计成功的关键。如何使这些约束条件的违背在自动设计中越变越小,从而使系统校正能力转移到象差设计中来,框架原理指明了方向。没有任何这方面的系统论述,要花精力去探讨这个问题,这就是灵感的引导,使我及早找到了变焦设计深入下去的钥匙...。 真诚的希望各位朋友,通过学习,把握灵感产生的瞬间,去享受它给你代来的惊喜! 我在“Zemax的超级应用”一贴中,指出了将它作为计算器应用的重大意义。在“数码镜头设计原理”变焦篇中,将Zemax的这一功能用到光学设计的各个环节中,从中可以体会出它的强大功能,至于提高计算功能的效率和自动化程度,将有赖于ZPL (Zemax程序编辑语言)的介入。我正在学习,待有了深入了解后,将在“数码镜设计原理”的语言篇中介绍。 各位网友,下面是“数码镜头设计原理”变焦篇(1),这是入门教材,是根据 “ZEMAX_Tutorial(指导手册)”中关于变焦设计操作整理的,对用Zemax进行变焦设计还不熟习的同行有帮助。下面就是操作步骤与要点:

基于51单片机的数字频率计_毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

镜头设计

变焦镜头设计案例 本案例的公开已征得客户的同意,但关键参数无法公开,且约为90%的设计进程。 一、设计应用 单透镜反射式照相机,全画幅(像面对角线为43mm)。 二、设计要求 适用波长:可见光 EFL:75~150mm 镜片数量:不超过12片 镜片面型:全部球面 镜片材料:光学玻璃 总长度:小于254mm 最大光圈:2 后截距:大于40mm 分辨率:大于80lp/mm@0.3 调焦方式:内调焦

可加入可变光圈 三、设计特点 采用机械补偿的变焦方式,这样做与光学补偿相比,可以使系统长度更短。而且,像面可以保持不变。然而,机械补偿方式的弊端就是给机械设计带来更多难度,因每个变焦组的移动量不成线性关系,必须加入空间凸轮。 四、设计结果

上海荧沃光电科技有限公司依托北京航天大学和杭州电子科技大学,设计团队由光学工程,电子专业硕、博士和教授组成,有近十年的多领域的光学设计经验,可根据客户订制要求设计各种镜头设计,激光光路设计,望远系统,扫描光路设计和LED透镜,手电筒反光碗,路灯透镜设计加工等。我们主要运用ZEMAX、Code V 、TracePro、Lighttool等国外优秀光学设计软计,为客户提供精准、高效、低成本的光学及机械设计方案和技术支持。 照明光学业务: 订制远、近红外透镜,玻璃透镜,安防透镜,车灯透镜,LED透镜光学设计,透镜LED,直下式LED背光透镜光学设计,LED透镜设计,LED透镜光学设计, COB透镜,LED透镜,凹面透镜,凸面透镜,菲尼尔透镜光学设计与加工;路灯透镜, PMMA透镜, PC透镜, 鼠标透镜,非球面透镜设计及加工生产;透光率极高,光效极度好,无黄斑。 成像光学设计:手机镜头,照相镜头,PDA镜头设计,望远镜头,扫描仪镜头,显微镜头,投影镜头,工业镜头等镜头的设计、加工。

计算机毕业论文_基于FPGA的等精度频率计的设计与实现

目录 前言...............................................................1 第一章 FPGA及Verilog HDL..........................................2 1.1 FPGA简介.....................................................2 1.2 Verilog HDL 概述.............................................2 第二章数字频率计的设计原理........................................3 2.1 设计要求.....................................................3 2.2 频率测量.....................................................3 2.3.系统的硬件框架设计..............................................4 2.4系统设计与方案论证............................................5 第三章数字频率计的设计............................................8 3.1系统设计顶层电路原理图........................................8 3.2频率计的VHDL设计.............................................9 第四章软件的测试...............................................15 4.1测试的环境——MAX+plusII.....................................15 4.2调试和器件编程...............................................15 4.3频率测试.....................................................16

一种微型变焦系统的设计

第7卷 第10期 2007年5月1671 1819(2007)010 2343 04科 学 技 术 与 工 程 Sc i ence T echno logy and Eng i neer i ng V o l 7 N o 10 M ay 2007 2007 Sci T ech Engng. 机电技术 一种微型变焦系统的设计 谢洪波 张春慧 李保安 郁道银 王向军 (天津大学精仪学院,光电信息技术科学教育部重点实验室,天津300072) 摘 要 为适应某些特殊领域对微型化和简单化的需要,运用光学设计软件CODE V,在传统机械补偿式变焦镜头的基础上,结合非球面透镜理论,设计了一个可见光波段的只有一个移动镜的4片式微型变焦系统。此系统具有结构简单、精度高、成本低、体积小等特点,可满足在变焦范围内连续清晰成像的要求。 关键词 变焦系统 非球面 超小型 中图分类号 TH74; 文献标识码 A 变焦距光学系统原理是焦距在一定范围内连续改变,其物面、像面保持不动。应用变焦距系统时,应满足均匀地改变焦距,且在此过程中像面保持稳定,相对孔径基本保持不变等基本要求。变焦距光学系统通常都是由前固定组、变焦组和固定组三个部分组成。变焦组移动改变放大倍率的同时,成像位置也会随之变化;因此,在变焦组透镜移动的过程中,必须有其他的透镜组作像差补偿,以保证在所有变焦位置连续清晰成像。正因如此,目前的变焦系统都较为复杂,透镜数目多,长度和体积也较大。然而,有些特殊领域,需要产品简单化、小型化,甚至微型化,这就使传统的变焦镜头难以胜任。现设计了一个接收器为贫点阵CCD的微型变焦系统,与常用的变焦系统不同,此系统只含有一片移动透镜,没有补偿组,是一个微型化的、可连续清晰成像的变焦系统。 1 原理分析 变焦距光学系统原理是根据 物像交换原则,使焦距在一定范围内连续改变时,其像面基本保持不动。虽然传统的变焦理论已比较成熟,但它并不是可以通用于所有变焦系统的设计,而且传统理论 2006年12月6日收到 第一作者简介:谢洪波(1969!),男,湖南常德人,副教授,博士生,研究方向:成像技术和显示技术。相对繁琐,设计结果也比较复杂。要想做到结构简单并且能连续清晰成像,运用传统变焦理论就显得比较困难了。只有充分研究透镜形状、玻璃材料和它们的光学特性,改进传统设计方法,才可能实现系统的简化和微型化。在像质允许的情况下,尽量降低对像差的要求,从而达到用4至5片透镜起到一个复杂变焦系统所能实现的功能。由于现设计系统的接收器是贫点阵CCD,其像差要求相对较低;因此,尝试固定或删除机械补偿式系统的补偿组透镜,通过合理地优化改进,使得像面的微位移小于焦深,从而达到既结构简单,又能实现在两个视场连续清晰成像的目标。 另一方面,球面透镜对远轴光成像会出现较大的散焦和像差。经过特定设计的非球面透镜则可使远轴光同近轴光一样有良好的聚焦能力,使得成像像质得到极大改善[1]。因为单透镜的球差与透镜两个面的曲率半径分配有关,而非球面各点的曲率值在不同方向上是不同的;所以,可改变镜面曲率来降低系统的球差[2]。换言之,选择可变参数比球面镜多的非球面镜可更好地校正像差。现在的设计正是运用非球面的性质,简化系统的组成。 2 设计过程和结果 2 1 系统设计的总体目标 物镜外形尺寸: 7mm?21mm或更小,物镜分

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计2012.03.13 评论关闭 4,757 views 目录 [隐藏] , 1引言 , 2, 感光器件的选取 , 3, 设计指标 , 4, 设计思路 , 4.1,(, 材料选取 , 4.2,(, 初始结构选取 , 4.3,(, 优化过程 , 5, 设计结果 , 5.1,(, 光学调制传递函数 , 5.2,(, 点列图 , 5.3,(, 场曲和畸变 , 5.4,(, 色差和球差 , 5.5,(, 相对照度 , 6, 公差分析 , 7, 结论 随着手机市场对高像素手机镜头的需求增大,利用,,,,,光学设计软件设计一款大相对孔径,,,万像素的广角镜头。该镜头由,片非球面玻璃镜片,,片非球面塑料镜片,,片滤光镜片和,片保护玻璃构成。镜头光圈值,为,(,,,视场角,ω为,,?,焦距为,(,,,,,后工作距离为,(,,,。采用,,,,,, 公司的,,,,,,,型号,,,

万像素传感器,最大分辨率为,,,,×,,,,,最小像素为,(,μ,。设计结果显示:各视场的均方根差(,,,)半径小于,(,μ,,在奈奎斯特频率,,,处大多数视场的,,,值均大于,(,,畸变小于, ,,,, 畸变小于,(, ,。关键词:手机镜头;光学设计;,,,万像素;,,,,, 引言 手机镜头的研发工作始于,,世纪,,年代,世界上第一款照相手机是由夏普,,,,,,(现在的日本沃达丰)在,,,,年推出的,,,,,手机,它只搭载了一个,,万像素的,,,,数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。,,,,年,月,,日夏普制造了,,,万素的,,,,,,目前照相手机的市场占有率几乎是,,,,,特别是带有高像素,,、,,、,,、,, 的镜头就成为镜头研发的热点,,,。目前,,,万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,,,,万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款,,,万像素的手机镜头。 , 感光器件的选取 感光器件有,,,(电荷耦合器件)和,,,,(互补金属氧化物半导体)两种。,,,,器 件产生的图像质量相比于,,,来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用,,,作为感光元件;,,,,感应器则作为低端产品 应用于一些摄像镜头上,目前随着,,,,技术的日益成熟,也有一些高端数码产品使用,,,,器件。,,,,相对于,,,有很多优点,比如价格低、集成化程度高、体积小、质量轻、功耗低、无光晕、高读出速率等,,,。所以很多手机生产商都采用,,,,器件作为手机镜头的图像传感器。目前,,,,芯片的尺寸越做越小,相应的像素尺寸也越来越小,分辨率反而越来越高。 现在国际上,,,,生产厂家主要有,,,,,,、,,,,,,,,,,、,,,,;,,、,,,,,,,等,本文采用,,,,,,公司的 ,,,,,,, 型号 ,(,,,,(,,,(,,,;,),该款传感器采用超低

基于51单片机的数字频率计毕业论文

基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概述 (2) 1.2频率测量仪的设计思路与频率的计算 (2) 1.3基本设计原理 (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明 (5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示 (12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15)

基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量围从1Hz—10kHz的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms。用单片机实现自动测量功能。 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。 1.2频率测量仪的设计思路与频率的计算 频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图1所示。 1 图可知: T=NT o 为标准信号的周期,所以T为分频后信号的周期,则可以算出被测量信(注:T o

红外连续变焦镜头的结构设计

万方数据

第1期李永刚.等:红外连续变焦镜头的结构设计61 统,共有14片透镜,包括变焦物镜系统和二次成像系统。镜片数日的增加,有利于校正像差,可提高像质;二次成像系统的作用是为了减小物镜的直径同时保证100%的冷屏效率。 1.2变倍组导向机构选型 连续变焦镜头在连续变焦的过程中,光轴随着变倍和补偿镜组的位移始终在跳动,而光轴跳动量的大小直接影响系统的性能指标。所以变倍、补偿镜组的导向机构设计是此红外变焦距镜头结构设计的核心。变焦距镜头导向机构的种类很多,按接触摩擦性质可分成两大类:滑动摩擦机构和滚动摩擦机构。滑动摩擦机构是导轨与移动镜组之间采用滑动接触方式,滚动机构是导轨与移动镜组之间采用滚动方式…。常用的变倍机构有以下几种形式¨】:1.圆柱导轨滑动机构。这种结构变倍精度高,径向结构尺寸小,适用于变倍和补偿组光学通光口径较小的结构。 2.两根圆柱导轨滑动机构。由于滑动部件为两根圆柱导轨,这种结构变倍精度高,承载的负荷也比第一种大。但是由于是超定位结构,光学通光口径太大,容易产生机构卡死现象,机构的径向尺寸也较大。一般适用通光口径30—80mm的结构。 3.三根圆柱导轨滑动机构。这种结构的优点是运动舒适、平稳,不容易产生卡死现象,可以带动通光口径较大的光学组件。缺点是运动精度较前两种低,一般适用通光口径50—120mm的结构。 滚动摩擦机构就是在上述滑动摩擦机构的基础上,加上精密轴承或者精密钢球等,来减小摩擦力矩,提高系统总体性能。 根据以上经验,本文选用两根圆柱导轨形式,并且在变倍、补偿镜组与圆柱导轨之间采用精密直线轴承配合,使该机构由滑动摩擦变为滚动摩擦。1.3调焦机构选型 调焦组的作用是通过调焦机构,使调焦镜组沿光轴方向移动,以保证在远近不同距离上的物体,都能清晰地成像在像面上。因此,它的机构优劣直接影响到变焦距镜头的成像质量。 光学系统调焦机构大体有三种方式,一种是凸轮调焦¨1,一种是采用直线电机调焦…,另一种是丝杠丝母调焦。考虑到调焦系统行程短,通光口径比较大,如果采用丝杠丝母调焦或者直线推进调焦机构,对加工装配要求就很严格,而且很容易出现卡滞现象。而采用简单的凸轮机构实现调焦过程,可以避免上述的缺点。 2主要机械结构设计 2.1凸轮机构设计 由于补偿组作非线性移动,直接的直线驱动很难控制其与变倍组线性同步,而采用圆柱凸轮,由凸轮的旋转同时带动变倍、补偿镜组实现直线移动,可使得驱动控制简单易行。 凸轮机构是实现由电机旋转运动转化为变倍、补偿镜组沿光轴方向平移运动的执行机构,凸轮机构主要由带齿轮的凸轮、轴承环、导轨、导钉、导环等组成,结构简图如图1所示。当电机带动带齿轮的凸轮转动时,通过导环、导钉将运动传递给变倍、补偿镜组,通过导轨的导向作用,将凸轮的旋转运动转化为变倍、补偿镜组光轴方向的平行移动。 图1变倍、补偿镜组凸轮机构简图 Fig.1Camguidemechanismsketchof varifocusingandcompensating 图2凸轮结构图 Fig.2Sketchofcamconfiguration 凸轮圆周上开有两条空间曲线槽,通过这样的曲线轨迹实现确定的轨迹。其中一条为变倍用,一 条为补偿用。使变倍镜组移动时,补偿镜组做相应  万方数据

800 万像素手机镜头的zemax设计

800 万像素手机镜头的zemax设计 2012.03.13 评论关闭4,757 views 目录 [隐藏] ?1引言 ?21感光器件的选取 ?32设计指标 ?43设计思路 ? 4.13.1材料选取 ? 4.23.2初始结构选取 ? 4.33.3优化过程 ?54设计结果 ? 5.14.1光学调制传递函数 ? 5.24.2点列图 ? 5.34.3场曲和畸变 ? 5.44.4色差和球差 ? 5.54.5相对照度 ?65公差分析 ?76结论 随着手机市场对高像素手机镜头的需求增大,利用Zemax光学设计软件设计一款大相对孔径800万像素的广角镜头。该镜头由1片非球面玻璃镜片,3片非球面塑料镜片,1片滤光镜片和1片保护玻璃构成。镜头光圈值F为2.45,视场角2ω为68°,焦距为4.25mm,后工作距离为0.5mm。采用APTINA公司的MT9E013型号800万像素传感器,最大分辨率为3264×2448,最小像素为1.4μm。设计结果显示:各视场的均方根差(RMS)半径小于1.4μm,在奈奎斯特频率1/2处大多数视场的MTF值均大于0.5,畸变小于2%,TV畸变小于0.3%。 关键词:手机镜头;光学设计;800万像素;Zemax 引言 手机镜头的研发工作始于20世纪90年代,世界上第一款照相手机是由夏普JPHONE(现在的日本沃达丰)在2001年推出的JSH04手机,它只搭载了一个11万像素的COMS数码相机镜头。随后各大手机知名制造厂商纷纷开始研发手机摄像功能。2003年5月22日夏普制造了100万素的JSH53,目前照相手机的市场占有率几乎是100%,特别是带有高像素2M、3M、5M、8M的镜头就成为镜头研发的热点[1]。目前800万像素的手机市场占有率还不是太多,但随着人们对高端手机的需求量越来越大,800万像素手机肯定是主流趋势。鉴于此,在选用合理初始结构的基础上,优化出了一款800万像素的手机镜头。 1感光器件的选取 感光器件有CCD(电荷耦合器件)和CMOS(互补金属氧化物半导体)两种。CMOS器件产生的图像质量相比于CCD来说要低一些,到目前为止,大多数消费级别以及高端数码相机都使用CCD作为感光元件;CMOS感应器则作为低端产品

数字频率计毕业设计论文摘要

数字频率计毕业设计论文 摘要 在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。在计算机及各种数字仪表中,都得到了广泛的应用。在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此,频率的测量就显得更为重要。 本课题主要选择以集成芯片作为核心器件,设计了一个简易数字频率计,以触发器和计数器为核心,由信号输入、隔直,触发、计数、数据处理和数据显示等功能模块组成。放大整型电路:对被测信号进行预处理;闸门电路:由NE556构成一个秒信号,攫取单位时间内进入计数器的脉冲个数;时基信号:产生一个秒信号;计数器译码电路:计数译码集成在一块芯片上,计单位时间内脉冲个数,把十进制计数器计数结果译成BCD码;显示:把BCD 码译码在数码管显示出来。设计中采用了模块化设计方法,采用适当的放大和整形,提高了测量频率的范围。 关键词:频率,集成电路,译码电路,计数电路,双稳态触发器 Digital frequency meter design Student: Teacher:

Abstract: In the digital circuit, the digital cymometer is the circuit of time sequence, it is mainly formed by trigger with memory function. In the computer and various digital instruments, it is widely used . Among CMOS circuit serial products, cymometer consumption most heavy, variety a lot of product. The digital cymometer is a measuring instrument in scientific research such as computer , communication apparatus , audio and video with indispensable production field, and the measurement scheme with a lot of electric parameters , result of measuring all have a very close relation, so, the measurement of frequency seems even more important. This subject has mainly explained that chooses integrated circuit as the key device, has designed a simple and easy digital cymometer, regard trigger and counter as core , input , separate by signal frank , touch off , count circuit , data processing , data reveal module of function make up. Enlarge the circuit of integrated type: To be carried on the preconditioning by the signal of examining; The circuit of the gate : Formed a second signal by NE556, seize the pulse number of entering the counter in unit time; The base signal of hour: Produce the signal for one second; The decipher circuit of the counter : Count deciphers and integrate on the chip together, count the pulse number in unit time, count the result of the decimal counter to translate into BCD yard; Reveal : In charge of revealing BCD one yard of deciphers in the number . Design adopt module design method, adopt appropriate enlarge and whole, have improved frequency of designing. Keywords: frequency,Integrated circuit,Translate the coding electric circuit,Count the electric circuit,Dual Schmitt Trigger. 目录 摘要 I Abstract..................................................................II 1 绪论 (1) 1.1 数字频率计的发展现状及研究概况 (1) 1.2 本课题研究背景及主要研究意义 (1) 1.3 本课题主要研究内容 (2)

长变焦镜头的设计

分类号密级 U D C 大孔径长变焦镜头的设计 董春艳 导师姓名(职称) 李林(教授)答辩委员会主席安连生 申请学科门类工学申请学位专业 论文答辩日期 2007.07.05 测试计量技术及仪器 2007年06月28日

大孔径长变焦镜头的设计 北京理工大学

研究成果声明 本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行的研究工作获得的研究成果。尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京理工大学或其它教育机构的学位或证书所使用过的材料。与我一同工作的合作者对此研究工作所做的任何贡献均已在学位论文中作了明确的 说明并表示了谢意。 特此申明。 签名:日期: 关于学位论文使用权的说明 本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:①学校 有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印 或其它复制手段复制并保存学位论文;③学校可允许学位论文被查阅或借阅;④学校 可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或 部分内容(保密学位论文在解密后遵守此规定)。 签名:日期: 导师签名:日期:

摘要 近年来,随着计算机技术的飞速发展和变焦距镜头光学设计理论的不断完善以及加工工艺的成熟,变焦距光学系统的种类日益丰富,成像质量逐渐提高,可与定焦系统相媲美,因此广泛的应用到各种工作领域中。这种情况下,研究变焦距镜头的设计无疑具有重要的意义。 本论文首先对变焦距镜头系统的发展历史进行了回顾,介绍了变焦距镜头的结构型式,变焦方法等的发展过程;第二章分析了变焦距镜头的高斯光学,总结出了变焦距镜头的高斯光学基本表达式,分别对机械补偿法、全动型变焦距镜头的高斯光学建立了数学模型,并对系统各组元的运动情况做了详细的分析,另外还讨论了关于变焦距镜头小型化的一些问题;第三章主要介绍了编制的机械补偿和全动型变焦距镜头计算机辅助设计软件,并利用实例进行了计算分析,在第四章中,利用所得结果,尝试设计了两种不同用途的变焦距镜头,像质良好,达到使用要求,结果表明软件功能基本达到预期目的,同时验证了前面推导的理论公式的正确性。 关键词:变焦距镜头;高斯光学;凸轮曲线

ZEMAX光学设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它 是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data, 键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第 二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength 主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形 成的effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture 就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源, STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO列中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。 Zemax的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为 负值。再令第2面镜的thickness为100。

毕业设计数字频率计的设计论文

数字频率计的设计 摘要:本论文是一种直接用十进制数字来显示被测信号频率的测量装置。它不仅可以测量正弦波、方波、三角波的频率,而且还可以测量其它各种单位时间内变化的物理量的频率。该频率计是首先将被测信号变成脉冲信号,其重复频率等于被测频率。时钟电路提供标准的时间脉冲信号。闸门电路由标准秒信号进行控制,当闸门信号为高电平时,闸门开通,被测信号的脉冲通过闸门送入计数显示电路进行显示;当闸门信号为低电平时,闸门关断,计数器没有时钟脉冲输出,计数器停止计数。 关键词:频率显示闸门秒信号 引言 随着无线电技术的发展与普及,“频率”已成为广大群众所熟悉的物理量。调节收音机上的频率刻度盘可以使我们选听到自己所喜欢的电台节目;调节电视机上的微调旋钮可使电视机对准电视台的广播频率,获得图像清晰的收看效果,这些已成为人们的生活常识。 人们在日常生活、工作中更离不开计时。学校何时上、下课?工厂几时上、下班等这些都涉及到计时。频率、时间的应用,在当代高科技中显得尤为重要。例如,邮电通讯,大地测量,地震预报等等,都与频率、时间密切相关,只是其精密度和准确度比人们日常生活中的要求高得多罢了。 本次设计主要采用计数法制成一个测量范围在0~9999Hz的频率计。该频率计闸门信号的采样时间为1s,并采用4位数码管显示。它不仅可以测量正弦波、方波、三角波的频率,而且还可以测量其它各种单位时间内变化的物理量的频率。 一、数字频率计的组成 数字频率计电路主要由串联型稳压电源、整形电路、10分频电路、时钟电路、闸门形成及控制电路、计数显示电路等组成。

电路组成框图1-1如下: 待测信号整形电路10分频电路闸门形成及控制电路 串联型稳压电源时钟电路计数显示电路 电路组成框图1-1 二、设计所用集成电路简介 1.集成电路NE555概述 NE555是一种集模拟、数字于一体的中规模集成电路,它常应用于信号的产生与变化、电路的检测与控制。芯片采用双列直插式封装,有八个管脚。NE555引脚图2-1和功能如下 图2-1 引出端功能符号: TR: 置位控置制端,也称电平触发端 RD: 复位端,低电平有效 Q: 电路的输出端 CO: 电压控制端 TH: 复位控制端 DIS: 放电端 Vcc: 电源端 GND: 接地脚 2.集成电路CD4518概述 集成电路CD4518是一个双BCD码加法计数器。它有两个时钟输

现代光学设计作业

现代光学设计——结课总结 光学工程一班陈江坤 学号2120100556

一、掌握采用常用评价指标评价光学系统成像质量的方法,对几何像差和垂轴像差进行分类和总结。 像质评价方法 一、几何像差曲线 1、球差曲线: 球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球 差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单 根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。 2、轴外细光束像差曲线 这一般是由两个曲线图构成。图中左边的是像散场曲曲线,右边的是畸变,不同颜色 表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,左图横坐标是场曲,右图是畸变的百分比值,左图中几种不同色曲线间距 是放大色差值。

3、横向特性曲线(子午垂轴像差曲线): 不同视场的子午垂轴像差曲线,纵坐标EY代表像差大小,横坐标PY代表入瞳大小,每一条曲线代表一个视场的子午光束在像面上的聚交情况。理想的成像效果应当是曲线和横轴重合,所有孔径的光线对都在一点成像。纵坐标上对应的区间就是子午光束在理想像面上的最大弥散斑范围。这个数值和点列图中的GEO尺寸一致,GEO尺寸就是横向特性曲线中该视场三个光波中弥散最大的那个半径。其中主光线用于描述单色像差情况;三个波长曲线用于描述垂轴色差情况。横向像差特性曲线图表示了视场角由小到大时垂轴像差曲线的变化,从中可以看出子午垂轴像差随视场变化规律。子午垂轴像差曲线的形状当然是子午像差:细光束子午场曲、子午球差和子午彗差决定的,因此曲线形状和像差数量的对应关系经常在像差校正中用到。根据像差曲线可以判断出要改善系统的成像质量,就必须改变曲线的形状和位置,即改变三种子午像差的数量。 将子午光线对a、b作连线,该连线的斜率m = (Ya-Yb)/2h 与宽光束子午场曲X’T 成正比。口径改变时,连线斜率变化表示宽光束子午场曲也随着变化。当口径减小趋于0时,连线成了坐标原点(对应主光线)的切线,切线的斜率和细光束子午场曲x’t相对应。子午光线对连线的斜率与原点切线斜率之间的差和子午球差(X’T –x’t)成正比,两个斜率夹角越大,子午球差越大。即:宽光束子午场曲与细光束子午场曲的差和子午球差成正比。当宽光束子午场曲与细光束子午场曲的符号由同号变成异号时表明子午球差加大。子午光线对连线和纵坐标交点的高度等于(Ya +Yb)/2,是子午彗差K’T。不同波长子午光线对连线和纵坐标交点之差表示两种不同波长光之间的“色彗差”。彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 至于色差情况,三个波长的横向特性曲线差值就反映了轴外点垂轴色差的情况。横向特性曲线充分反映了轴外像点的成像质量和随入瞳孔径、视场大小的变化规律。在光学设计过程中,我们需要仔细的分析这些像差中那一个占据主要地位以及采取相应的措施,达到像差校正和像差平衡的目的。 弧矢像差的分析方法与子午像差分析方法相同。 对应轴上点,只有两种像差需要分析,即:轴向球差和轴向色差。“轴上点像差特性曲线(longitudinal aberration)”,通过对于轴上点球差、轴向色差的描述,综合的反映了轴上点成像质量;“场曲和畸变特性曲线”,描述了系统的子午场曲、弧矢场曲、色散、畸变等像差参数;“横向色差特性曲线”,描述了系统垂轴色差随着视场变化的规律。 二、点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。,点列图是在现代光学设计中最常用的评价方法之一。

电子数字频率计测量方法毕业论文

电子数字频率计测量方法毕业论文 1绪论 1.1研究背景及主要研究意义 频率是电子技术领域永恒的话题,电子技术领域离不开频率,一旦离开频率,电子技术的发展是不可想象的,为了得到性能更好的电子系统,科研人员在不断的研究频率,CPU就是用频率的高低来评价性能的好坏,可见,频率在电子系统中的重要性。 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,其最基本的工作原理为:当被测信号在特定的时间段T的周期个数N时,则被测信号的频率f=N/T.电子计数器是一种基础测量仪器,到目前为止已有三十多年的发展历史。早期,设计师们追求的目标主要是扩展测量围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算机的技术水平,决定电子技术器价格高低的主要依据。目前这些技术日臻完善,成熟。应用现代技术可以轻松地将电子计数器的频率扩展到微波频段。 1.2数字频率计的发展现状 随着科学技术的发展,用户对电子计数器也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对中高档产品,则要求有较高的分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正地实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 由于微电子技术和计算机技术的发展,频率计都在不断地进步着,灵敏度不断提高,频率围不断扩大,功能不断增加。在测试通讯、微波器件或产品时,通常都市较复杂的信号,如含有复杂频率成分、调制的含有未知频率分量的、频率固定的变化的、纯净的或叠加有干扰的等等。为了能正确的测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。微波技术器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。虽然所有的微波计数器都是用来完成技术任务的,但各自厂家都有各自的一套复

相关文档
最新文档