坐标系坐标系变换
数学中的坐标系与坐标变换

数学中的坐标系与坐标变换数学是一门广泛应用于各个领域的学科,而坐标系和坐标变换则是数学中的重要概念。
本文将介绍什么是坐标系,坐标变换的概念以及它们在数学和现实生活中的应用。
一、坐标系坐标系是在某一平面或空间中确定点的位置的一种方式。
它由坐标轴和原点组成。
常见的坐标系包括二维笛卡尔坐标系和三维笛卡尔坐标系。
1. 二维笛卡尔坐标系二维笛卡尔坐标系由两条垂直的数轴组成,通常称为x轴和y轴。
原点是坐标系的交点,用(0,0)表示。
在二维笛卡尔坐标系中,每个点都可以表示为一个有序对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
2. 三维笛卡尔坐标系三维笛卡尔坐标系在二维笛卡尔坐标系的基础上增加了一条垂直于x轴和y轴的z轴。
在三维笛卡尔坐标系中,每个点都可以表示为一个有序组(x, y, z),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标,z表示点在z轴上的坐标。
二、坐标变换坐标变换是指将一个点的坐标从一个坐标系转换到另一个坐标系的过程。
坐标变换在数学和物理学中都有着广泛的应用。
1. 平移平移是一种坐标变换,通过向所有的点添加一个常量向量,从而将一个坐标系中的点转换到另一个坐标系中。
例如,将一个点的坐标由(x, y)变为(x+a, y+b),其中(a, b)表示平移的向量。
2. 旋转旋转是一种坐标变换,通过围绕一个给定的中心点将点按照一定角度旋转,从而将一个坐标系中的点转换到另一个坐标系中。
旋转可以使用旋转矩阵或旋转角度表示。
3. 缩放缩放是一种坐标变换,通过改变点的坐标的比例,从而将一个坐标系中的点转换到另一个坐标系中。
缩放可以使点的坐标变大或变小,可以根据缩放因子在x方向和y方向上进行分别缩放。
三、数学与现实生活中的应用坐标系和坐标变换在数学和现实生活中有着广泛的应用。
以下是一些常见的应用情景:1. 几何学中的图形表示:坐标系可以用来表示几何图形,例如在平面上绘制直线、圆等图形,或者在空间中绘制立方体、球体等图形。
坐标系变换的概念和方法

坐标系变换的概念和方法嘿,朋友们!今天咱来聊聊坐标系变换这个神奇的玩意儿。
你说坐标系变换像不像孙悟空的七十二变呐!它能把一个东西在不同的“世界”里变来变去,可有意思啦!比如说,咱在一个坐标系里看一个图形,普普通通的,没啥特别。
但要是给它来个坐标系变换,哇塞,一下子就变得不一样了,就好像突然给它施了魔法一样。
想象一下,你在一个平面上画了个正方形,这就是它在原本坐标系里的样子。
可要是咱把这个坐标系歪一歪,或者挪一挪,那这个正方形不就变样了嘛!它的位置、形状可能都会发生变化,多神奇呀!这就好像你原本在家里,然后你换了个房间,周围的一切看起来都不一样了。
坐标系变换在很多地方都大有用处呢!比如在物理学里,研究物体的运动。
物体在不同的参考系下运动状态可不一样哦!就像你坐在火车上,看窗外的树是往后跑,但在地面上的人看,树可没动呀。
这不就是坐标系变换在起作用嘛!在数学里那就更不用说啦,解决各种问题都可能用到它。
它能让复杂的问题变得简单,让我们能更清楚地看到问题的本质。
好比是给我们配上了一副神奇的眼镜,能看到别人看不到的东西。
咱再打个比方,坐标系变换就像是给一个故事换个角度来讲。
原本你从主角的视角看故事,觉得平平无奇。
但要是换个配角的视角,或者从反派的视角来看,哇,故事一下子就精彩起来了,有好多之前没注意到的细节都冒出来了。
你说这坐标系变换是不是特别厉害?它能让我们看到同一个事物的不同面,能让我们对世界的理解更加丰富。
它就像一把钥匙,能打开好多扇我们以前没发现的门。
所以啊,可别小看了这坐标系变换。
它不是那种高高在上、遥不可及的东西,而是就在我们身边,随时都能派上用场的好帮手。
我们要学会运用它,就像掌握了一门神奇的武功秘籍一样,能在知识的江湖里闯荡出一番天地来。
不管是解决难题,还是探索新的领域,坐标系变换都能给我们带来意想不到的惊喜呢!这不就是我们追求知识的乐趣所在嘛!。
坐标系转换方法和技巧

坐标系转换方法和技巧1.二维坐标系转换:二维坐标系转换是将平面上的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
2.三维坐标系转换:三维坐标系转换是将空间中的点从一个坐标系转换到另一个坐标系中。
常用的方法有旋转、平移和缩放。
-旋转:通过改变坐标系的旋转角度,可以将点从一个坐标系转换到另一个坐标系。
-平移:通过改变坐标系的平移量,可以将点从一个坐标系平移到另一个坐标系。
-缩放:通过改变坐标系的比例尺,可以将点从一个坐标系缩放到另一个坐标系。
3.地理坐标系转换:地理坐标系转换是将地球表面点的经纬度坐标转换为平面坐标系(如UTM坐标系)或其他地理坐标系中的点。
常用的方法有投影转换和大地坐标转换。
-投影转换:根据不同的地理投影模型,将地理坐标系中的点投影到平面上。
常用的地理投影包括墨卡托投影、兰伯特投影等。
-大地坐标转换:根据椭球模型和大地测量的理论,将地理坐标系中的点转换为具有X、Y、Z三维坐标的点。
常见的大地坐标系包括WGS84和GCJ-02等。
4.坐标系转换的技巧:-精度控制:在坐标系转换过程中,需要注意精度的控制,以确保转换后的坐标满足要求。
-参考点选择:在坐标系转换过程中,选取合适的参考点可以提高转换的准确性和稳定性。
-坐标系转换参数的确定:在进行坐标系转换时,需要确定旋转角度、平移量和比例尺等参数,可以通过多点共面条件、最小二乘法等方法进行确定。
-转换效率优化:针对大规模的坐标系转换,可以采用分块处理、并行计算等技术来提高转换效率。
在进行坐标系转换时,需要根据具体的需求选择适当的方法和技巧,并结合具体的软件工具进行实现。
同时,还需要注意坐标系转换的精度和准确性,确保转换结果符合要求。
浅析几种常用坐标系和坐标转换

浅析⼏种常⽤坐标系和坐标转换⼀般来讲,GPS直接提供的坐标(B,L,H)是1984年世界⼤地坐标系(Word Geodetic System 1984即WGS-84)的坐标,其中B为纬度,L为经度,H为⼤地⾼即是到WGS-84椭球⾯的⾼度。
⽽在实际应⽤中,我国地图采⽤的是1954北京坐标系或者1980西安坐标系下的⾼斯投影坐标(x,y,),不过也有⼀些电⼦地图采⽤1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),⾼程⼀般为海拔⾼度h。
GPS的测量结果与我国的54系或80系坐标相差⼏⼗⽶⾄⼀百多⽶,随区域不同,差别也不同,经粗落统计,我国西部相差70⽶左右,东北部140⽶左右,南部75⽶左右,中部45⽶左右。
现就上述⼏种坐标系进⾏简单介绍,供⼤家参阅,并提供各坐标系的基本参数,以便⼤家在使⽤过程中⾃定义坐标系。
1、1984世界⼤地坐标系WGS-84坐标系是美国国防部研制确定的⼤地坐标系,是⼀种协议地球坐标系。
WGS-84坐标系的定义是:原点是地球的质⼼,空间直⾓坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)⽅向,即国际协议原点CIO,它由IAU和IUGG共同推荐。
X轴指向BIH定义的零度⼦午⾯和CTP⾚道的交点,Y轴和Z,X轴构成右⼿坐标系。
WGS-84椭球采⽤国际⼤地测量与地球物理联合会第17届⼤会测量常数推荐值,采⽤的两个常⽤基本⼏何参数:长半轴a=6378137m;扁率f=1:298.2572235632、1954北京坐标系1954北京坐标系是将我国⼤地控制⽹与前苏联1942年普尔科沃⼤地坐标系相联结后建⽴的我国过渡性⼤地坐标系。
属于参⼼⼤地坐标系,采⽤了前苏联的克拉索夫斯基椭球体。
其长半轴 a=6378245,扁率 f=1/298.3。
1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。
3、1980西安坐标系1978年,我国决定建⽴新的国家⼤地坐标系统,并且在新的⼤地坐标系统中进⾏全国天⽂⼤地⽹的整体平差,这个坐标系统定名为1980年西安坐标系。
直角坐标系和坐标变换

直角坐标系和坐标变换直角坐标系是描述平面或空间中点位置的一种常用坐标系统。
它由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。
坐标轴上的数值表示了点在对应轴上的位置,从而确定了点在整个坐标系中的位置。
而坐标变换则是通过一定的规则将点在一个坐标系中的表示转变为另一个坐标系中的表示。
一、直角坐标系直角坐标系是一种二维坐标系,由水平的x轴和垂直的y轴构成。
x轴和y轴的交点称为原点,通常用O表示。
在直角坐标系中,每个点都可以用一个有序数对(x, y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴的正方向上,数值逐渐增大。
在直角坐标系中,可以通过距离和角度来描述点和图形的性质。
例如,两点之间的距离可以使用勾股定理计算,而斜率可以帮助我们理解直线的倾斜程度。
二、坐标变换坐标变换是指将点在一个坐标系中的表示转变为另一个坐标系中的表示。
常见的坐标变换包括平移、旋转、缩放和镜像等。
1. 平移平移是指将一个点在坐标系中沿着某个方向移动一定距离。
如果要将一个点P(x, y)沿着x轴方向平移a个单位,y坐标保持不变,则新坐标是P(x+a, y);如果要将点P沿着y轴方向平移b个单位,x坐标保持不变,则新坐标是P(x, y+b)。
2. 旋转旋转是指将一个点或图形绕某个中心点按一定角度进行旋转。
在二维直角坐标系中,可以使用旋转矩阵对点进行旋转。
设点P(x, y)绕原点逆时针旋转θ角度,则新坐标是P'(x', y'),其中:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ3. 缩放缩放是指将一个点或图形按照一定比例进行放大或缩小。
在二维直角坐标系中,可以使用缩放矩阵对点进行缩放。
设点P(x, y)按照比例s 进行缩放,则新坐标是P'(x', y'),其中:x' = s * xy' = s * y4. 镜像镜像是指将一个点或图形关于某个轴或面对称翻转。
坐标变换最通俗易懂的解释(推导+图解)

坐标变换的作用
在一个机器人系统中,每个测量元件测量同一物体得出的信息是不一样的,原因
实现坐标变换所需的数据
我们常用出发与坐标系原点终止于坐标系中坐标点的向量来表示坐标系中坐标点相对于坐标原点的位置(距离+方位)。
坐标系的相互转化必须以地球坐标系为媒介才可以实现,即坐标系的相互转化必须已知“任意坐标系中各个坐标轴在world坐标系中的坐标”:
位姿
坐标变换中旋转的实质
坐标变换的实质就是“投影”。
首先,我们解读一下向量是如何转化为坐标的:
其实,这个矩阵的乘法与卷积有着异曲同工之妙。
旋转矩阵的性质:
从B到A的转化:
从A到B的转化:
、都是单位正交仿真,因此
坐标变换中平移的实质
向量可以在坐标系中任意移动,只要不改变向量的方向和大小,向量的属性不会发生变化。
但是我们研究的是坐标系B中一个坐标点在坐标系A中的映射,因此
多坐标变换
首先,我们要知道世界坐标系下坐标系A/坐标系B的各个坐标轴在世界坐标系(参
如何实现坐标变换
其中O1O2是从O1指向O2的向量。
坐标系的转换

对于坐标系之间的转换,目前我们国家有以下几种:1、大地坐标(BLH)对平面直角坐标(XYZ);2、北京54全国80及WGS84坐标系的相互转换;3、任意两空间坐标系的转换。
坐标转换就是转换参数。
常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作转换基本原理描述如下:1、大地坐标(BLH)对平面直角坐标(XYZ)常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。
椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。
对于中央子午线的确定的一般方法是:平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3888888m,y=388888666m,则中央子午线的经度=38*3=114度。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。
确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2、北京54全国80及WGS84坐标系的相互转换这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。
其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。
对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。
详细方法见第三类。
3、任意两空间坐标系的转换由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。
坐标变换原理

坐标变换原理
坐标变换是一种数学操作,用来在不同的坐标系间进行转换。
它是将一个点或对象的位置从一个坐标系转换到另一个坐标系的方法。
在二维平面坐标系中,通常使用笛卡尔坐标系和极坐标系。
笛卡尔坐标系使用x和y轴来表示一个点的位置,而极坐标系使用半径和角度来表示。
坐标变换可以通过简单的公式来实现:
1. 笛卡尔坐标系转换为极坐标系:给定一个点的笛卡尔坐标(x, y),可以通过以下公式计算其极坐标(r, θ):
r = √(x² + y²)
θ = arctan(y/x)
2. 极坐标系转换为笛卡尔坐标系:给定一个点的极坐标(r, θ),可以通过以下公式计算其笛卡尔坐标(x, y):
x = r * cos(θ)
y = r * sin(θ)
这些公式将一个点在不同坐标系中的位置进行相互转换。
通过这些转换,可以在不同坐标系之间准确地描述和定位对象的位置。
除了坐标系之间的转换,还可以进行其他类型的坐标变换,如平移、缩放和旋转。
在平移中,点的位置通过添加一个固定的偏移量来改变。
在缩放中,点的位置通过乘以一个缩放因子来改变。
在旋转中,点的位置通过应用旋转矩阵来改变。
通过这些坐标变换,可以单独或组合地对对象进行不同类型的变换,使其在平面内按照所需的方式移动、缩放和旋转。
这在计算机图形学和计算机视觉中经常使用,用于实现图像转换、模型变换等应用。
坐标变换为我们提供了一种非常有用的工具,可以方便地在不同坐标系中进行准确的位置描述与处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xs VxL xw WxL VxR VxL WxR WxL ys VyB yw WyB VyT VyB WyT wyB
xs
VxR WxR
VxL WxL
(xw
WxL) VxL
5)其他变换
▪ 此外,还有数据库坐标到屏幕坐标的变换和屏幕坐标到数据库坐标 的变换。这两个变换是用来进行人机交互编辑并将编辑好的图形数 据送回数据库的。变换原理同上
空间数据的坐标变换
1)窗口区→视图区
▪ 用户可以在用户坐标系下指定任意的感兴趣的区域输出到设备上, 这个区域称为窗口区。窗口区是用户图形的一部分
相应的向量形式为:
x, y
x,
y
cos sin
sin
cos
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的齐次坐标表示
齐次坐标技术是从几何学中发展起来的,它实质上是用n+1维向 量来表示n维向量(合并矩阵乘法和加法) 。采用了齐次坐标技术 ,可把图形变换表示成图形的点集矩阵与某一变换矩阵进行矩阵 乘,从而借助计算机的高速计算得到变换后数据(采用统一的计 算形式实现平移、缩放和旋转)。
[
x
,
y
]
0
S
y
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的一般表示
旋转变换 x A cos( ) A (cos cos sin sin)
x cos y sin
y A sin( ) A(sin cos cos sin ) x sin y cos
0 0 1
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的齐次坐标表示 组合变换
多个基本变换组成的复杂变换称组合变换。组合变换矩阵,实际上 是多个简单变换矩阵的连乘。假设在数字化仪坐标中有一坐标点 ,则将其转换到直角地图坐标系中,需要先作绕O″旋转角的变
换,再作平移A0B0的变换。组合变换矩阵为:
cos sin 0 1 0 0 cos sin 0
T sin
cos
0
0
1 0 sin cos 0
0
0 1 A0 B0 1 A0
B0 1
cos sin 0
[x *,y *,1] [x ,y ,1] sin cos 0
A0
B0 1
图5-5 组合变换
空间数据的坐标变换
2)用户坐标 →数据库坐标
▪ 求出图面对称中心点的值 ▪ 求缩放系数 ▪ 将用户坐标变换为数据库坐标
3)数据库坐标→用户坐标
▪ 这个变换用于空间数据检索,它是2)的逆变换
坐标系变换
4)用户坐标 →设备坐标
▪ 这个变换用于图形显示或绘图仪绘图。用于图形显示时,只要将高 斯坐标原点平移至图幅左上角,将坐标顺时针旋转90°,并考虑两 种坐标的变换比例,即可实现由高斯坐标到屏幕坐标的变换
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的一般表示 平移变换
x x Tx y y Ty
其中: Tx ,Ty分别为 x, y方向平移量,相应的向量形式为: [x, y ] [x, y] [Tx ,Ty ]
比例变换
x x Sx
y y Sy
其中:
S
x
,
S
分别为
y
x, y方向比例系数,相应的向量形式为:
▪ 用户坐标系一般为实数,理论上是连续的,无限的; ▪ 数据库系统中,直接存贮用户坐标会带来两个问题:
存贮实数所占有空间比存贮整数所占的空间大 存贮实数不易实现规格化,也就不易实现定位处理(如定位索引)
坐标系
2. 规格化数据库坐标系
▪ 规格化数据库坐标系如图所示。把图形点的坐标用两个字节的整型 数表示,这种整形数的值域为(-32768~+32767),若把绝对值最大 的几个数如│32761│~│32767│作为信息分隔符,则用来表达规格 化的值域各为65535个单位,这个值域可存贮一幅65cm×65cm的地图, 其数值精度为图上的0.01cm,具有足够的图解精度。
2)图形的几何变换
▪ 三维图形几何变换
齐次坐标的三维图形坐标变换可用4×4变换矩阵来实现。其变换
矩阵为:
a b c p
T d
e
f
q
h i j r
l
m
n
s
该变换矩阵T可以分解成4个子矩阵,其中:
a b c
d e f 对图形进行缩放、反射、切变、旋转等基本变换;
h i j
[l m n] 对图形进行平移
通常用(x,y,1)代表齐次坐标表示法中二维平面内一个未变换点 ,用3×3矩阵表示变换矩阵。
a b p
T c
d
q
l m s
则点的坐标 变换为
a b p
X
Y 1 X
Y 1c
d
q
l m s
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的齐次坐标表示
平移变换
1 0 0
[x* y*1] [x
y
x O
-32760 -32760
坐标系
3.设备坐标系
▪ 每一种图形设备都有独特的坐标系,例如数字化仪的坐标原点在其 板面的左下角,而图形屏幕显示器的坐标原点则在其左上角,它们 使用的坐标都是设备相对坐标
坐标系变换
1)设备坐标系→用户坐标
▪ 这个变换用于图形数字化过程,它是利用点的高斯坐标(已知值) 和图角点的采集坐标建立采集坐标到高斯坐标的变换关系,并利用 这些变换参数将图幅中全部采集坐标变换为高斯坐标,一般采用相 似变换,特殊情况下即图幅中出现局部变形时,才需要采用仿射变 换,按最小二乘原理求解变换参数
▪ 二维图形几何变换的齐次坐标表示
反射变换——对称于Y轴
1 0 0
[x* y*1] [x
y
1]
0
1 0 [x
y
1]
0 0 1
反射变换——对称于X轴
1 0 0 [x* y*1] [x y 1] 0 1 0 [x y 1]
0 0 1
反射变换——对称于原点
1 0 0
[x* y*1] [x
[ p q r]T 对图形进行透视
[s] 对图形进行全比例变换
y
1]
0
1 0 [x
y
1]
0 0 1
空间数据的坐标变换
2)图形的几何变换
▪ 二维图形几何变换的齐次坐标表示 反射变换——对称于x=y
0 1 0 [x* y*1] [x y 1] 1 0 0 [ y x 1]
0 0 1
反射变换——对称于x=-y
0 1 0 [x* y*1] [x y 1] 1 0 0 [ y x 1]
第5 章 土地信息处理与分析技术
坐标系与坐标变换 图幅接边与分割 空间数据开窗处理 空间数据的编辑与管理 土地信息的空间分析 土地信息空间查询 空间内插方法
第5 章 土地信息处理与分析技术
5.1 坐标系与坐标变换
坐标系 坐标系变换 空间数据的坐标变换
坐标系
1 用户坐标系
▪ 用户坐标系是指地图采用的坐标系,如高斯平面坐标系等。用户坐 标系通常为笛卡尔直角坐标系,由用户选定,与设备无关;
y
1]
0
1 0 [x Tx
y Ty
1]
Tx Ty 1
比例变换
Sx 0 0
[x* y*1] [x
y
1]
0
Sy
0 [S x x
Sy y
1]
0 0 1
旋转变换
cos sin 0
[x* y*1] [x y 1] sin cos 0
0
0 1
空间数据的坐标变换
2)图形的几何变换
ys
VyT WyT
VyB WyB
(yw
WyB
)
V
yB
空间数据的坐标变换
2)图形的几何变换
▪ 在土地信息系统中,存在着对图形缩放、平移、旋转、投影等一系 列图形的几何变换问题。这些变换的实质是对组成图形各点进行坐 标变换,坐标变换的数学基础是矩阵运算。
▪ 图形变换是对图形的几何数据进行变换,变换后产生新的图形,但 不改变图形元素间的拓扑关系。图形的几何变换可以是在固定坐标 系中变换图形,变换后图形在坐标系中的坐标值发生变化;也可以 是图形不变而变换坐标系,变换后图形在新的坐标系中具有新的坐 标值。这两种变换在本质上是一样的,只是考虑变换参数取正值还 是负值。