热力学第一定律主要公式
热力学第一定律总结

298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
大学物理化学公式总结(傅献彩_南京大学第五版)

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律

热力学第一定律热力学是一门研究能量转换与传递规律的学科,它主要研究热现象与其他物理现象之间的相互关系。
热力学第一定律,也称作能量守恒定律,是热力学的基本原理之一。
本文将介绍热力学第一定律的基本概念和应用。
一、热力学第一定律的概念热力学第一定律是能量守恒定律在热学领域的表述。
它指出:在一个孤立系统中,总能量的变化等于系统所接受的热量与所做的功之和。
这个定律可以用以下公式表示:ΔE = Q - W其中,ΔE表示系统内能的变化,Q表示系统所接受的热量,W表示系统所做的功。
二、热力学第一定律的应用1. 热力学循环热力学循环是指一系列经历几个步骤的热能转换过程,最后回到初始状态的过程。
根据热力学第一定律,一个理想的热力学循环的净输入输出功为零,即总输入热量等于总输出功。
这一定律被广泛应用于热能转换设备的设计和研究中。
2. 热机效率热机效率是衡量热能转化的性能指标,是指输出功与输入热量之比。
根据热力学第一定律,对于一个正循环热机,其效率可以通过以下公式计算:η = 1 - Qc / Qh其中,η表示热机效率,Qc表示效率造成的能量损失,Qh表示输入的热量。
3. 热力学过程热力学过程是一个系统经历的状态变化过程,根据热力学第一定律,对于一个孤立系统来说,其内能的变化等于系统所接受的热量和所做的功之和。
这一定律不仅适用于准静态过程,也适用于非准静态过程,为热力学过程的分析提供了基础。
4. 热力学平衡热力学平衡是指在一个封闭系统中,各部分之间没有能量的净交换,即系统内外没有能量的流动。
根据热力学第一定律,当一个系统达到热力学平衡时,系统内能的变化为零,即ΔE = 0。
热力学平衡在热力学研究中起着重要的作用。
三、总结热力学第一定律是热力学的基本原理之一,它描述了系统能量转换与传递的规律。
在热力学循环、热机效率、热力学过程和热力学平衡等方面都有广泛的应用。
热力学第一定律的核心是能量守恒定律,对于热学领域的研究具有重要意义。
物化各种公式概念总结

第一章热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律 热力学第一定律:ΔU =Q +W 。
三、基本关系式1、体积功的计算 δW = -p 外d V恒外压过程:W = -p 外ΔV定温可逆过程(理想气体):W =nRT 1221ln ln p p nRT V V = 2、热效应、焓:等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; ΔH =ΔU +Δ(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容:热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂= 定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p ,m =a +bT +cT 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p 外d V等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d pC V (㏑T 2-㏑T 1)=nR(㏑V 1-㏑V 2)(T 与V 的关系)C p (㏑T 2-㏑T 1)=nR(㏑P 2-㏑P 1) (T 与P 的关系)不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p 外(V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化 可逆相变化:ΔH =Q =n ΔH ; W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、实际气体节流膨胀:焦耳-汤姆逊系数:μJ-T (理想气体在定焓过程中温度不变,故其值为0;其为正值,则随p 降低气体T 降低;反之亦然)4、热化学标准摩尔生成焓:在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热(各种稳定单质在任意温度下的生成焓值为0) 标准摩尔燃烧焓:…………,单位物质的量的某物质被氧完全氧化时的反应焓第二章 热力学第二定律一、基本概念 自发过程与非自发过程二、热力学第二定律热力学第二定律的数学表达式(克劳修斯不等式)T Q dS δ≥ “=”可逆;“>”不可逆三、熵(0k 时任何纯物质的完美结晶丧子为0)1、熵的导出:卡若循环与卡诺定理(页522、熵的定义:T Q dS r δ=3、熵的物理意义:系统混乱度的量度。
物理化学笔记公式c超强

热力学第一定律功:δW =δW e +δW f(1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2) 非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q +W =Q —W e =Q —p 外dV (δW f =0) 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1) 等压热容:C p =δQ p /dT = (∂H/∂T )p (2) 等容热容:C v =δQ v /dT = (∂U/∂T )v理想气体ΔU,ΔH 的计算: 对理想气体的简单状态变化过程:定温过程:Δ U =0; Δ H =0变温过程:对理想气体, 状态变化时 dH=dU+d(PV) 若理想气体的摩尔热容没有给出,常温下有:理想气体绝热可逆过程方程式:标准态:气体的标准态:在任一温度T 、标准压力 P 下的纯理想气体状态;液体(或固体)的标准态:在任一温度T 、标准压力下的纯液体或纯固体状态。
标准态不规定温度,每个温度都有一个标准态。
摩尔反应焓:单位反应进度(ξ=1mol)的反应焓变Δr H m 。
标准摩尔生成焓:一定温度下由热力学稳定单质生成化学计量数 νB=1的物质B 的标准摩尔反应焓,称为物质B 在该温度下的标准摩尔生成焓。
用 表示 (没有规定温度,一般298.15 K 时的数据有表可查)标准摩尔燃烧焓:一定温度下, 1mol 物质 B 与氧气进行完全燃烧反应,生成规定的燃烧产物时的标准摩尔反应焓,称为B 在该温度下的标准摩尔燃烧焓。
用 表示.单位:J mol-1为可逆过程中体积功的基本计算公式,只能适用于可逆过程。
计算可逆过程的体积功时,须先求出体系的 p~V 关系式,然后代入积分。
⎰-=21d V V V p W 2112ln ln p pnRT V V nRT W -=-=适用于理想气体定温可逆过程。
热力学第一定律公式及使用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
热力学第一定律主要公式

热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律主要公式
1.∆U 和∆H 的计算 对封闭系统的任何过程 ∆U=Q+W
2111()H U p V pV ∆=∆--
(1) 简单状态变化过程 1) 理想气体 等温过程
0T U ∆= 0T H ∆=
任意变温过程
,21()V m U nC T T ∆=-
,21()p m H nC T T ∆=-
等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=
绝热过程
,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-
2)实际气体van derWaals 气体等温过程 2
1
211U n
a V V ⎛⎫
⎪ ⎪⎝⎭
∆=-
2
22111
211()H U pV n
a p V pV V V ⎛⎫
⎪ ⎪⎝⎭
∆=∆+∆=-+-
(2) 相变过程
等温等压相变过程 p tra H Q ∆= (p
Q 为相变潜热)
p tra tra U Q p V ∆=-∆
(3)无其他功的化学变化过程
绝热等容反应 0r U ∆=
绝热等压反应 0r H ∆=
等温等压反应
r p H Q ∆= r r U H p V ∆=∆-∆
等温等压凝聚相反应
r r U H ∆≈∆
等温等压理想气体相反应
()r r U H n RT ∆=∆-∆
或 r r B B
H U RT ν∆=∆-∑
由生成焓计算反应热效应 f ()(,)r m m B B
H T H T B θθν∆=∆∑
由燃烧焓计算反应热效应 c ()(,)r m m B B
H T H T B θν∆=-∆∑
由键焓估算反应热效应
,,()(,(i m i i m i i
i
H T n H T n H ∆=∆∆∑∑反应物)-生成物)
式中:i n 为i 种键的个数;n i
为i 种键的键焓。
不同温度下反应热效应计算 2
1
21()()d T r m r m r p T H T H T C T ∆=∆+∆⎰
2.体积功W 的计算 任意变化过程 W= d e p V -∑
任意可逆过程
2
1
W= d V
V p V -⎰
自由膨胀和恒容过程 W=0 恒外压过程 21()e W
p V V =--
等温等压→l g 相变过程(设蒸气为理想气体)
1()g g g W p V V pV n RT =--≈-=-
等温等压化学变化 ()W p V
n RT =-∆=∆ (理想气体反应)
0W ≈ (凝聚相反应)
理想气体等温可逆过程
21
12
ln ln V p W nRT nRT V p =-=-
理想气体绝热过程
,212122111
()()()11
V m nR W U nC T T T T p V pV γγ=∆=-=
-=--- 理想气体多方可逆过程
212211
1
()()11
nR W T T p V pV δδ=
-=---
van der Waals 气体等温可逆过程
22121
12
ln
()V nb W nRT n a V nb V V -=----
3.Q 的计算
(1)简单状态变化过程 等压变温过程 等压变温过程
(2) 等温等压相变过程 Joule-Thomson 系数-J T
μ
-J T H
T p μ∂⎛⎫
= ⎪∂⎝⎭
-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫
=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦
表示节流膨胀后温度升高。
-0J T μ=表示节流膨胀后温度不变(理
想气体的-0J T
μ=),-0J T μ=时的温度成为倒转温度;-0J T μ> 表
示节流膨胀后温度降低(常用于气体的液化);
-0
J T
μ<表示节流膨胀后温度升高。