热力学第一定律主要公式
热力学第一定律总结

298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律总结

热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )典型例题:思考题第3题,第4题。
二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或或如恒容,ΔU = Q ,否则不一定相等。
如恒压,ΔH = Q ,否则不一定相等。
C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:思考题第2,3,4题书、三、 凝聚态物质的ΔU 和ΔH 只和温度有关或ΔU = n C V,T 2 T 1∫ΔH = nC p, T 2 T 1∫ΔU = nC V, ΔH = nC p, ΔU ≈ ΔH = n C p, m d T T 2 T1∫ ΔU ≈ ΔH = nC p,典型例题:书四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)ΔU ≈ ΔH –ΔnRT(Δn :气体摩尔数的变化量。
如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。
kPa 及其对应温度下的相变可以查表。
其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。
或典型例题:作业题第3题 五、化学反应焓的计算H 1 +Δ H m (βα αβΔ αβ可逆相变K:ΔH = Q p = n Δ α βΔH = nC p,ΔH = nC p, T 2 T1∫其他温度:状态函数法ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT (Δn :气体摩尔数的变化量。
热力学第一定律的应用

热力学第一定律的应用热力学第一定律,也称为能量守恒定律,是热力学中的一个基本定律。
它表明,在封闭系统中,能量既不能创造也不能消失,只能从一个形式转化为另一个形式。
热力学第一定律的应用非常广泛,涵盖了许多领域,包括工程、化学、生物学等。
热力学第一定律可以用公式形式表示为:∆U = Q - W其中,∆U表示系统内能的变化,Q表示系统所吸收或放出的热量,W表示由外界对系统做的功。
根据正负号的不同,∆U可以表示系统的吸热过程还是放热过程。
在工程领域,热力学第一定律的应用广泛存在于热力系统、发动机和制冷设备等方面。
例如,在热力系统中,热力学第一定律用于分析系统的能源转化和效率。
通过对热力系统中各个组件的热损失和能量传递进行分析,可以评估系统的能量利用效率,并提出改进方案,实现能源的高效利用。
在发动机领域,热力学第一定律被用于分析内燃机的工作原理和能量转化过程。
发动机的工作过程可以看作是燃料能量转化为机械能的过程,而热力学第一定律可用于衡量这一能量转化的效率。
通过对燃烧过程、热量传递和功的关系进行分析,可以评估发动机的燃烧效率和功率输出,并提出改进方案,提高发动机的性能。
在制冷设备领域,热力学第一定律被用于分析冷凝器和蒸发器等组件的能量转化过程。
制冷设备的工作原理可以简单地描述为从低温区域吸热,然后将热量释放到高温区域。
热力学第一定律可用于分析这一过程中热量的传递和功的消耗,并评估制冷系统的制冷效果和能量消耗。
通过优化制冷设备的设计和运行参数,可以提高系统的制冷效率和节能性能。
此外,热力学第一定律还可应用于化学领域,如在燃烧反应和化学热力学中。
通过热化学方程式的平衡,可以利用热力学第一定律计算反应的焓变和反应热,从而了解化学反应的能量变化和方向。
这对于工业生产和环境保护都具有重要意义。
总之,热力学第一定律的应用非常广泛,几乎遍及各个领域。
通过对能量的转化和转移进行分析,这一定律使我们能够更好地理解和优化能量系统,并实现能源的高效利用。
热力学第一定律公式及使用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
热力学第一定律主要公式

热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
工程热力学的公式大全

工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统所吸收的热量,W表示系统所做的功。
2.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质的分子数,R表示气体常数,T表示气体的温度。
3.等温过程:Q=W在等温过程中,系统所吸收的热量等于所做的功。
4.绝热过程:P1V1^γ=P2V2^γ在绝热过程中,气体的压强与体积之积的γ次方是一个常数,γ为气体的绝热指数。
5.等容过程:ΔU=Qv在等容过程中,系统内能的变化等于吸收的热量。
6.等压过程:Q=ΔH在等压过程中,系统所吸收的热量等于焓的变化。
7.等焓过程:ΔH=Qp在等焓过程中,焓的变化等于吸收的热量。
8.热机效率:η=1-,Qc,/,Qh热机效率表示热机从高温热源吸收的热量减去放出的低温热量占高温热量的比例。
9.士温定理:η=1-(Tc/Th)士温定理是热力学第二定律的一种表述,表示热机效率与高温热源温度和低温热源温度的比值有关。
10.开尔文恒等式:η=1-(Tc/Th)=1-(,Qc,/,Qh,)开尔文恒等式是士温定理的另一种形式,表示任何热机的效率都不可能达到100%。
11.准静态过程:ΔS=∫(dQ/T)准静态过程中,系统的熵变等于系统吸收的微小热量除以系统的温度积分得到。
12.绝热可逆过程:ΔS=0在绝热可逆过程中,系统的熵不发生变化。
13.熵的增加原理:ΔS总=ΔS系统+ΔS环境≥0根据熵的增加原理,系统与环境的熵的变化之和大于等于0。
14.卡诺循环效率:η=1-(Tc/Th)卡诺循环是理想热机,其效率由高温热源温度和低温热源温度决定。
15.等温膨胀系数:β=(1/V)*(∂V/∂T)p等温膨胀系数表示单位温度升高时体积的变化与体积的比值。
16.等压热容量:Cp=(∂Q/∂T)p等压热容量表示在等压条件下单位温度升高吸收的热量与温度的比值。
17.等容热容量:Cv=(∂Q/∂T)v等容热容量表示在等容条件下单位温度升高吸收的热量与温度的比值。
热力学第一定律主要公式

热力学第一定律主要公式1.∆U 和∆H 的计算 对封闭系统的任何过程 ∆U=Q+W2111()H U p V pV ∆=∆--(1) 简单状态变化过程 1) 理想气体 等温过程0T U ∆= 0T H ∆=任意变温过程,21()V m U nC T T ∆=-,21()p m H nC T T ∆=-等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=绝热过程,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-2)实际气体van derWaals 气体等温过程 21211U na V V ⎛⎫⎪ ⎪⎝⎭∆=-222111211()H U pV na p V pV V V ⎛⎫⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程 p tra H Q ∆=(p Q 为相变潜热)p tra tra U Q p V ∆=-∆(3)无其他功的化学变化过程绝热等容反应 0r U ∆=绝热等压反应 0r H ∆=等温等压反应r p H Q ∆= r r U H p V ∆=∆-∆等温等压凝聚相反应r r U H ∆≈∆等温等压理想气体相反应()r r U H n RT ∆=∆-∆或 r r B BH U RT ν∆=∆-∑由生成焓计算反应热效应 f ()(,)r m m B BH T H T B θθν∆=∆∑由燃烧焓计算反应热效应 c ()(,)r m m B BH T H T B θν∆=-∆∑由键焓估算反应热效应,,()(,(i m i i m i iiH T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:i n 为i 种键的个数;n i为i 种键的键焓。
不同温度下反应热效应计算 2121()()d T r m r m r p T H T H T C T ∆=∆+∆⎰2.体积功W 的计算 任意变化过程 W= d e p V -∑任意可逆过程21W= d VV p V -⎰自由膨胀和恒容过程 W=0 恒外压过程21()e W p V V =--等温等压→l g 相变过程(设蒸气为理想气体)1()g g g W p V V pV n RT =--≈-=-等温等压化学变化 ()W p Vn RT =-∆=∆ (理想气体反应)0W ≈ (凝聚相反应)理想气体等温可逆过程2112ln ln V p W nRT nRT V p =-=-理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程2122111()()11nR W T T p V pV δδ=-=---van der Waals 气体等温可逆过程2212112ln()V nb W nRT n a V nb V V -=----的计算(1)简单状态变化过程 等压变温过程 等压变温过程(2) 等温等压相变过程 Joule-Thomson 系数-J Tμ-J T HT p μ∂⎛⎫= ⎪∂⎝⎭-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦表示节流膨胀后温度升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律主要公式
1.∆U 与∆H 的计算 对封闭系统的任何过程 ∆U=Q+W
2111()H U p V pV ∆=∆--
(1) 简单状态变化过程 1) 理想气体 等温过程
0T U ∆= 0T H ∆=
任意变温过程
,21()V m U nC T T ∆=-
,21()p m H nC T T ∆=-
等容变温过程 H U V p ∆=∆+∆ (V U Q ∆=) 等压变温过程 p U Q p V ∆=-∆ ()p H Q ∆=
绝热过程
,21()V m U W nC T T ∆==- ,21()p m H nC T T ∆=-
2)实际气体van derWaals 气体等温过程 2
1
211U n
a V V ⎛⎫
⎪ ⎪⎝⎭
∆=-
2
22111
211()H U pV n
a p V pV V V ⎛⎫
⎪ ⎪⎝⎭
∆=∆+∆=-+-
(2) 相变过程
等温等压相变过程 p tra H Q ∆= (p
Q 为相变潜热)
p tra tra U Q p V ∆=-∆
(3)无其她功的化学变化过程
绝热等容反应 0r U ∆=
绝热等压反应 0r H ∆=
等温等压反应
r p H Q ∆= r r U H p V ∆=∆-∆
等温等压凝聚相反应
r r U H ∆≈∆
等温等压理想气体相反应
()r r U H n RT ∆=∆-∆
或 r r B B
H U RT ν∆=∆-∑
由生成焓计算反应热效应 f ()(,)r m m B B
H T H T B θθν∆=∆∑
由燃烧焓计算反应热效应 c ()(,)r m m B B
H T H T B θν∆=-∆∑
由键焓估算反应热效应
,,()(,(i m i i m i i
i
H T n H T n H ∆=∆∆∑∑反应物)-生成物)
式中:i n 为i 种键的个数;n i
为i 种键的键焓。
不同温度下反应热效应计算 2
1
21()()d T r m r m r p T H T H T C T ∆=∆+∆⎰
2、体积功W 的计算 任意变化过程 W= d e p V -∑
任意可逆过程
2
1
W= d V
V p V -⎰
自由膨胀与恒容过程 W=0 恒外压过程 21()e W
p V V =--
等温等压→l g 相变过程(设蒸气为理想气体)
1()g g g W p V V pV n RT =--≈-=-
等温等压化学变化 ()W p V
n RT =-∆=∆ (理想气体反应)
0W ≈ (凝聚相反应)
理想气体等温可逆过程
21
12
ln ln V p W nRT nRT V p =-=-
理想气体绝热过程
,212122111
()()()11
V m nR W U nC T T T T p V pV γγ=∆=-=
-=--- 理想气体多方可逆过程
212211
1
()()11
nR W T T p V pV δδ=
-=---
van der Waals 气体等温可逆过程
22121
12
ln
()V nb W nRT n a V nb V V -=----
3、Q 的计算
(1)简单状态变化过程 等压变温过程 等压变温过程
(2) 等温等压相变过程 Joule-Thomson 系数-J T
μ
-J T H
T p μ∂⎛⎫
= ⎪∂⎝⎭
-11J T p p p T H V T V p T C C μ⎡⎤∂∂⎛⎫⎛⎫
=-=- ⎪⎢⎥ ⎪∂∂⎝⎭⎝⎭⎣⎦ 表示节流膨胀后温度升高。
-0J T μ=表示节流膨胀后温度不变(理想
气体的-0J T
μ=),-0J T μ=时的温度成为倒转温度;-0J T μ> 表示
节流膨胀后温度降低(常用于气体的液化);
-0
J T
μ<表示节流膨胀后温度升高。