热力学第一定律及重要公式
热力学第一定律总结

298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
高中物理中的热学中的重要公式

高中物理中的热学中的重要公式热学是物理学的一个重要分支,研究热量和能量转换的规律。
在学习热学的过程中,经常会用到一些重要的公式,这些公式具有很强的实用性和指导意义。
本文将介绍高中物理中热学中的几个重要公式。
一、热量Q计算公式热量是物体与外界交换能量的形式,可以通过温度变化来计算。
根据热力学的基本原理,热量的计算公式为:Q = mcΔT其中,Q表示热量,单位是焦耳(J);m表示物体的质量,单位是千克(kg);c表示物体的比热容,单位是焦耳/千克·摄氏度(J/(kg·°C));ΔT表示温度的变化量,单位是摄氏度(°C)。
这个公式可以用于计算材料在温度变化过程中的热量变化,比如热传导、热辐射等。
二、热传导的热流量计算公式热传导是热能在固体、液体或气体中通过分子间的传递而引起的热平衡现象。
热传导的热流量可以通过以下的公式来计算:Q = kAΔT/Δx其中,Q表示热流量,单位是焦耳/秒(J/s);k表示物体的导热系数,单位是焦耳/(米·秒·摄氏度)(J/(m·s·°C));A表示传热面积,单位是平方米(m^2);ΔT表示温度差,单位是摄氏度(°C);Δx表示热传导的长度,单位是米(m)。
这个公式可以用于计算热传导过程中的热流量,比如导热管、导热材料等。
三、热辐射能量计算公式热辐射是物体由于内部热运动而释放能量的过程,主要通过电磁辐射方式传递。
热辐射的能量可以通过以下的公式计算:P = εσAT^4其中,P表示辐射功率,单位是瓦特(W);ε表示物体的发射率,取值范围在0和1之间,无单位;σ表示斯特藩-玻尔兹曼常数,约为5.67×10^-8W/(m^2·K^4);A表示物体的表面积,单位是平方米(m^2);T表示物体的绝对温度,单位是开尔文(K)。
这个公式可以用于计算热电设备、辐射热传输等,也可以用于估计天体的表面温度。
热力学第一定律的内容及公式

热力学第一定律的内容及公式热力学第一定律是物理学家在研究热力学时发现的一个基本定律,又称一阶热力学,它主要是指热力学里的“能量守恒定律”,也就是所谓的“热力学第一定律”。
热力学里有两个重要概念,一个是“热量”,一个是“动能”,它们都是热量的形式,而热力学第一定律宣称:“系统在每一次进行的任何物理或化学变化中,热量的总量是保持不变的”,也就是说:“热量守恒定律”,或“热力学第一定律”。
其公式如下:ΔU = Q - W (热量守恒定律)其中,ΔU:系统内部能量的变化量,U”代表“内能”;Q:进入系统的热量量,Q”代表“热量”;W:系统外的动摩擦的功,“W”代表功。
热力学第一定律的推导是基于“能量守恒原理”,也就是基于“能量守恒定律”,即“能量在发生物理和化学变化的过程中是守恒的”,其具体原理可以这样理解:在任何物理或化学变化的过程中,能量只会由一种形式转化为另一种形式,而不会消失或增多,因此可以将它作为守恒量。
这就是“能量守恒定律”所说的“能量不会消失,而只能由一种形式转化为另一种形式”。
热力学第一定律的实际应用非常广泛,它不仅被广泛应用于电力,热动力学,机械学,天然气等,而且它也是热动力机制的基础,比如火的燃烧,爆炸,发动机的工作,热能的转化等等,都离不开热力学第一定律的应用。
热力学第一定律的推导实际上是由能量守恒定律的原理推出来的,其中,Q一般表示进入系统的热量,W表示系统外的动摩擦功,ΔU表示系统内部能量的变化量,因此,Q-W=ΔU,也就是说,热量守恒定律是指热量的总量在发生变化的过程中是保持不变的。
热力学第一定律也有其局限性,它不适用于非平衡态的物理过程,也不适用于外部力的作用下的重力运动,而是适用于系统在收敛过程中的热运动,这也是其它热力学定律如热力学第二定律等作用于平衡态中才能发挥最好作用的原因。
总之,热力学第一定律是由能量守恒定律推导出来的,其公式为Q-W=ΔU,它简单而实用,极大地推动了某些物理过程的进程,发挥了极其重要的作用,并且它也有自己的局限性,不适用于非平衡态的物理过程以及外部力的作用下的重力运动。
物理化学笔记公式c超强

热力学第一定律功:δW =δW e +δW f(1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2) 非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q +W =Q —W e =Q —p 外dV (δW f =0) 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1) 等压热容:C p =δQ p /dT = (∂H/∂T )p (2) 等容热容:C v =δQ v /dT = (∂U/∂T )v理想气体ΔU,ΔH 的计算: 对理想气体的简单状态变化过程:定温过程:Δ U =0; Δ H =0变温过程:对理想气体, 状态变化时 dH=dU+d(PV) 若理想气体的摩尔热容没有给出,常温下有:理想气体绝热可逆过程方程式:标准态:气体的标准态:在任一温度T 、标准压力 P 下的纯理想气体状态;液体(或固体)的标准态:在任一温度T 、标准压力下的纯液体或纯固体状态。
标准态不规定温度,每个温度都有一个标准态。
摩尔反应焓:单位反应进度(ξ=1mol)的反应焓变Δr H m 。
标准摩尔生成焓:一定温度下由热力学稳定单质生成化学计量数 νB=1的物质B 的标准摩尔反应焓,称为物质B 在该温度下的标准摩尔生成焓。
用 表示 (没有规定温度,一般298.15 K 时的数据有表可查)标准摩尔燃烧焓:一定温度下, 1mol 物质 B 与氧气进行完全燃烧反应,生成规定的燃烧产物时的标准摩尔反应焓,称为B 在该温度下的标准摩尔燃烧焓。
用 表示.单位:J mol-1为可逆过程中体积功的基本计算公式,只能适用于可逆过程。
计算可逆过程的体积功时,须先求出体系的 p~V 关系式,然后代入积分。
⎰-=21d V V V p W 2112ln ln p pnRT V V nRT W -=-=适用于理想气体定温可逆过程。
热力学第一定律公式及使用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。
系统得功为正,对环境作功为负。
式中 p amb 为环境的压力,W ’为非体积功。
上式适用于封闭体系的一切过程。
2. 焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -=此式只适用于理想气体。
(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。
(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
热力学第一定律主要公式

热力学第一定律主要公式1.U 与H得计算对封闭系统得任何过程U=Q+W(1) 简单状态变化过程1) 理想气体等温过程任意变温过程等容变温过程 ()等压变温过程绝热过程2)实际气体van derWa als 气体等温过程222111211()H U pV n a p V pV V V ⎛⎫ ⎪ ⎪⎝⎭∆=∆+∆=-+-(2) 相变过程等温等压相变过程(3)无其她功得化学变化过程绝热等容反应绝热等压反应等温等压反应等温等压凝聚相反应等温等压理想气体相反应或由生成焓计算反应热效应由燃烧焓计算反应热效应由键焓估算反应热效应,,()(,(i m i i m i i i H T n H T n H ∆=∆∆∑∑反应物)-生成物)式中:为种键得个数;为种键得键焓。
不同温度下反应热效应计算2、体积功W得计算任意变化过程任意可逆过程自由膨胀与恒容过程 W=0恒外压过程等温等压相变过程(设蒸气为理想气体)等温等压化学变化 (理想气体反应)(凝聚相反应)理想气体等温可逆过程理想气体绝热过程,212122111()()()11V m nR W U nC T T T T p V pV γγ=∆=-=-=--- 理想气体多方可逆过程van der W aal s 气体等温可逆过程3、Q 得计算(1)简单状态变化过程等压变温过程等压变温过程(2) 等温等压相变过程Joule-Thomson 系数表示节流膨胀后温度升高。
表示节流膨胀后温度不变(理想气体得),时得温度成为倒转温度; 表示节流膨胀后温度降低(常用于气体得液化);表示节流膨胀后温度升高。
热学三大公式

热学三大公式
热学是物理学中的一个重要分支,涉及到热量、热力学能量、热传递等方面的知识。
在热学中,有三个非常重要的公式,分别是:
1. 热力学第一定律公式:Q = U + W
这个公式表示热量 Q 等于内能 U 加上摩擦功 W。
它表明了热量和内能之间的关系,说明了热传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
2. 热力学第二定律公式:N = Q - W
这个公式表示净热量 N 等于热量传递 W 减去摩擦功 N。
它表明了热量传递的方向和热量传递的多少取决于内能差异的大小,而与摩擦功无关。
这个公式在解释热传递的规律和计算热量传递的效率时非常有用。
3. 热力学第三定律公式:热量不可能自发地从低温物体传到高
温物体
这个公式表示热量传递是一种自发的过程,也就是说,热量传递是从高温物体向低温物体传递的。
这个公式表明了热传递是一种不可避免的自然现象,同时也说明了热量传递的根本原因是物体之间的内能差异。
这个公式在解释热传递现象和计算热传递的热量时非常有用。
这三个公式是热学中最基本的公式,对于理解热学概念和应用具有非常重要的意义。
此外,热学还有很多其他的公式和规律,例如热力学第二定律的另一种表述方式——熵增定律,以及热力学第三定律的应用,等等,这些都需要深入学习才能掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、功
➢定义: ➢种类:
除温差以外的其它不平衡势差所引起的系 统与外界传递的能量.
1.膨胀功W: 在力差作用下,通过系统容积变化与外界传递的能量。
膨胀功是热变功的源泉 单位:l J=l Nm
规定: 系统对外作功为正,外界对系统作功为负。
2 轴功WS: 通过轴系统与外界传递的机械功
注意: 刚性闭口系统轴功不可能为正,轴功来源于能量转换
t2
t1
h
cpdt
cpdt
cpdt
cpm
t2 0
t2
cpm
t1 0
t1
t1
0
0
• 1、工质的质量为m,流速为c,离基准面的高度 为z,请写出该质量的能量E的表达式。当这部分 质量跨越边界后,随质量交换面交换的能量是多 少?请写出该质量流的能量Ef的表达式。
• 2、一个门窗开着的房间,若室内空气的压力不变 而温度升高了,则室内空气的总热力学能发生了 怎样的变化?室内空气的比热力学能随温度升高发 生了怎样的变化?空气为理想气体,定容比热为 常数。
热量
外界热源
系
功
外界功源
统 随物质传递的能量
外界质源
与外界热源,功源,质源之间进行的能量传递
一、热量
➢定义:
在温差作用下,系统与外界通过界面传递的能量。
➢规定:
系统吸热热量为正,系统放热热量为负 ➢单位:
kJ 或 kcal 且l kcal=4.1868kJ ➢特点:
是传递过程中能量的一种形式,与热力过程有关
理想气体内能变化计算
qv duv cvdT
2
u cv dT
1
适用于理想气体一切过程或者实际气体定容过程
用真实比
2
热计算: 经验公式 cv f T 代入 u cvdT 1
用 平 均 比
热计算 :
t2
t2
t1
u
cvdt
cvdt
cvdt
cvm
t2 0
t2
cvm
t1 0
t1
t1
§3-3闭口系能量方程
能量平衡关系式: 输入系统的能量-输出系统的能量=系统总储
存能量的变化
闭口系:系统与外界没有物质 交换,传递能量只有热量和功 量两种形式。在热力过程中 (如图)系统从外界热源取得 热量Q;对外界做膨胀功W;
Q W E2 E1
对于不做整体移动的闭口系,系统宏观动能和位 能均无变化,有:
本章重点
• 本章基本要求 • 本章重点
• 深刻理解热量、储存 能、功的概念,深刻 理解内能、焓的物理 意义
• 熟练应用热力学第 一定律解决具体问 题
• 理解膨胀(压缩)功、 轴功、技术功、流动 功的联系与区别
热力学第一定律的实质
• 热力学第一定律是能量转换和守恒定律在热力学 上的应用,确定了热能和机械能之间的相互转换 的数量关系。热力学第一定律:热能和机械能在 转移和转换的过程中,能量的总量必定守恒。
通常规定:系统输出轴功为正,输入轴功为负。
三、随物质传递的能量
1. 流动工质 本身具有的能量
E U 1 mc2 mgz 2
2. 流动功(或推动功)Wf:维持流体正常流动所 必须传递量,为推动流体通过控制体界面而传
递的机械功。
推动1kg工质进、 出控制体时需功
wf p2v2 p1v1
注意: 取决于控制体进出口界面工质的热力状态
由泵风机等提供
思考:与其它功区别
四、焓
❖焓的定义式: 焓=内能+流动功
对于m千克工质:H U pV
对于1千克工质: h=u+ p v
❖焓的物理意义:
1.对流动工质(开口系统),表示沿流动方向传递 的总能量中,取决于热力状态的那部分能量.
2 对不流动工质(闭口系统),焓只是一个复合 状态参数
思考:特别的对理想气体 h= f (T)
形成 。
核能
说明:
化学能
注意:
•内能是状态量 对理想气体u=f (T)
• U : 广延参数 [ kJ ] u : 比参数 [kJ/kg]
• 内能总以变化量出现,内能零点人为定
二、外储存能
系统工质与外力场的相互作用
所具有的能量 如:重力位能
组 成
Ep mgz
以外界为参考坐标的系统宏观运动 所具有的能量 如:宏观动能
Q U W
对于微元过程,有:Q dU W
对于单位质量工质,有:
q u w,q du w
各项正负号的规定:吸热和对外作功为正,
放热和外界对系统作功为负
热力系吸 收的能量
增加系统的热力学能 对外膨胀作功
热能转变为机械能 的根本途径
§3-3闭口系能量方程
• (一)、能量方程表达式
U Q W 适用于mkg质量工质 u q 适 用w1kg质量工质
0
0
理想气体组成的
nห้องสมุดไป่ตู้
n
混合气体的内能:U U1 U2 Un Ui miui
i1
i1
理想气体焓的计算
h u RT f T
2
h cpdT
1
适用于理想气体的一切热力过程或者实际气体的定压过程,
用真实比 热计算: 经验公式
cp f T
代入
2
h cpdT
1
用平均比
热计算 :
t2
Ek
1 mc2 2
三、系统总能
外部储存能
宏观动能 Ek= mc2/2 宏观位能 Ep= mgz
机械能
系统总能
E = U + Ek + Ep或
E U 1 mc2 mgz 2
e = u + ek + ep
e u 1 c2 gz
2
一般与系统同坐标,常用U, dU, u, du
3.2 系统与外界传递的能量
• 收入-支出=系统储能的变化
• 第一类永动机:不消耗任何能量而能连续不断作 功的循环发动机。
§3-1系统的储存能
一、内能U : 热力系处于宏观静止状态时系统内所有微观粒
子所具有的能量之和,单位质量工质所具有的内能,称为比内能,
简称内能。
分子动能(移动、转动、振动)
分子位能(相互作用):克服分子间的作用力所
由于反映的是热量、内能、膨胀功三者关系,因而 该方程也适用于开口系统、任何工质、任何过程.
特别的: 对可逆过程
2
u q pdv
1
功 ( w) 是广义功
闭口系与外界交换的功量
q = du + w
准静态容积变化功 拉伸功 表面张力功
pdv
w拉伸= - dl w表面张力= - dA
w = pdv - dl - dA +…...
准静态和可逆闭口系能量方程
简单可压缩系准静态过程 w = pdv q = du + pdv 热一律解析式之一
q = u + pdv 简单可压缩系可逆过程
q = Tds Tds = du + pdv 热力学恒等式 Tds = u + pdv
(二)、循环过程第一定律表达式