电磁场知识点总结

合集下载

物理电磁场初中知识点整理

物理电磁场初中知识点整理

物理电磁场初中知识点整理电磁场是物理学中非常重要的概念之一,也是电磁学的基础。

初中阶段,学生接触到了一些基本的电磁场知识,本文将对电磁场的相关知识点进行整理。

一、电场的基本概念和性质1. 电场定义:电场是指电荷周围的一种物理量,是描述电荷间相互作用的场。

单位是N/C(牛/库仑)。

2. 电场的性质:电场具有方向性,由正电荷指向负电荷;电场线是用来表示电场分布的曲线,其方向与电场的方向相同;电场强度随着距离的增加而减小。

二、电磁感应和磁场1. 电磁感应现象:当导体中的磁通量发生变化时,会在导体中产生感应电流。

这就是电磁感应现象。

2. 法拉第电磁感应定律:法拉第电磁感应定律描述了感应电动势和磁通量变化之间的关系,表达式为e= -N(dФ/dt),其中e表示感应电动势,N表示线圈匝数,dФ/dt表示磁通量的变化率。

3. 磁场的定义:磁场是指产生磁力的区域。

磁场可以通过磁场线进行表示,磁场线从北极(N极)指向南极(S极)。

4. 右手定则:利用右手定则可以确定通过导线产生的磁场的方向。

将右手握住导线,大拇指指向电流的方向,其他四指所张成的方向就是磁场的方向。

三、电磁感应和发电机的原理1. 电磁感应产生感应电流:当导体中的磁通量发生变化时,会在导体中产生感应电流。

在发电机中,通过旋转导体的方式,利用电磁感应的原理产生电能。

2. 感应电动势的大小与导体的运动速度、导体长度和磁感应强度有关。

3. 发电机的工作原理:发电机由导体、磁场和收集电流的环形导线等部件组成。

通过旋转导体,感应电动势产生,从而产生电流。

四、静电场和电场力1. 静电场的特点:在静电场中,电荷不随时间变化,电场力为库仑力。

2. 库仑定律:库仑定律描述了静电场中电场力的大小和方向。

两个电荷之间的电场力与两电荷之间的距离成反比,与两电荷的电荷量的乘积成正比。

3. 电势能:两个电荷之间存在电场时,电场力会对电荷做功,这时电荷具有了电势能。

电势能的大小与电荷的电量、电势差有关。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点

物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。

本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。

一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。

电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。

二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。

2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。

电场线的密度反映了电场强度的大小。

3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。

它描述了磁场对磁性物质产生的作用力。

2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。

磁场线呈环状,从北极经南极形成闭合曲线。

3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。

它说明了磁场变化对电荷运动的影响。

四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。

麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。

2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。

3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。

4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。

电场和磁场之间存在着相互转化的关系。

电磁场理论知识点总结

电磁场理论知识点总结

电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。

高三物理知识点总结电磁场

高三物理知识点总结电磁场

高三物理知识点总结电磁场电磁场是高三物理课程中一个重要的知识点,在学习电磁场的过程中,我们需要了解电场和磁场的基本概念、计算电磁场的数学方法以及电磁感应等相关内容。

本文将对高三物理学习中的电磁场知识点进行总结和归纳。

1、电场和磁场的基本概念电场和磁场是物质固有的性质,它们是相互联系、相互转化的。

电场是指电荷周围的区域,具有电场的物体能够对其他带电物体产生力的作用。

磁场是指有磁性的物质周围的区域,具有磁场的物体能够对其他具有磁性的物体产生力的作用。

2、电磁场的数学描述在电磁场的研究中,我们使用电场强度和磁感应强度这两个物理量来描述电场和磁场。

电场强度是指单位正电荷受到电场力的大小,通常用E表示,单位是牛顿/库仑。

磁感应强度是指单位面积内通过的磁通量的大小,通常用B表示,单位是特斯拉。

3、电场和磁场的数学计算方法在计算电磁场的过程中,我们需要掌握库仑定律和安培定律。

库仑定律描述了点电荷间的电场力的计算方法,安培定律描述了电流元间的磁场力的计算方法。

4、电磁感应现象电磁感应是指导体中的电动势和感应电流的产生。

当磁场与导体相互作用时,导体中会产生感应电动势,同时在导体中会产生感应电流。

电磁感应现象是电磁场的重要应用之一,广泛应用于发电机、电动机等电器设备中。

5、电磁波的传播和特性电磁波是由变化的电场和磁场相互作用产生的。

电磁波具有传播性、反射性和折射性等特点。

电磁波的传播速度是光速,它们可以分为多个频率范围,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

总结:通过对高三物理中电磁场的学习,我们了解了电场和磁场的基本概念,学习了电磁场的数学描述和计算方法,并了解了电磁感应现象和电磁波的传播特性。

电磁场是物理学中一个重要的研究领域,它不仅有着重要的理论意义,也有着广泛的应用价值。

深入理解和掌握电磁场的知识,对于我们进一步学习和应用物理学都具有重要意义。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。

电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。

电荷是产生电场的源。

正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。

电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。

电流是产生磁场的源。

电流产生的磁场方向可以通过右手螺旋定则来确定。

磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。

法拉第电磁感应定律表明,变化的磁场会产生电场。

麦克斯韦进一步提出,变化的电场也会产生磁场。

这两个定律共同揭示了电磁场的相互联系和相互转化。

二、电磁波的产生电磁波是电磁场的一种运动形态。

当电荷加速运动或者电流发生变化时,就会产生电磁波。

例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。

这种振荡电路是产生电磁波的一种简单方式。

电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。

不同频率的电磁波具有不同的特性和应用。

例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。

三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。

电磁波在传播过程中遵循反射、折射和衍射等规律。

当电磁波遇到障碍物时,会发生反射。

如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。

衍射则是指电磁波绕过障碍物传播的现象。

当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。

电磁波的极化是指电场矢量的方向在传播过程中的变化。

常见的极化方式有线极化、圆极化和椭圆极化。

四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。

2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。

3、电磁波的传播速度是恒定的,在真空中为光速。

物理电磁场的相关知识点

物理电磁场的相关知识点

物理电磁场的相关知识点物理学中的电磁场是指包括电场与磁场的一个统一体系,这个体系可以用电场的电磁力、磁场的洛仑兹力、法拉第电磁感应定律等公式描述,是物理学中一个非常重要的分支。

本文将就电磁场的相关知识点做一个简要的介绍。

一、电磁场的基本概念电磁场是指由电场和磁场组成的一种物理场,其存在的方式为电磁波,电磁波是由振荡的电场和磁场相互作用而产生的,其波动特性主要表现为频率、波长、速度和能量等。

二、电场和电势电场是指任何一点上感受到的力的大小和方向均相同的特定区域,它可以用电势差描述,电场随着距离的增加而逐渐减小。

电势差是指在两点间移动一个带电粒子所需要的能量差,它可以用公式V = W/Q来描述,其中V表示电势差,W表示电做功,Q表示电荷量。

三、磁场和磁通量磁场是指由磁极或电流所产生的物理场,其大小和方向是由磁极或电流决定的,磁场的单位是特斯拉。

磁通量是指磁场通过某个面积的总量,它可以用公式φ = B*S来表示,其中φ表示磁通量,B表示磁感应强度,S表示被穿过的面积。

四、电磁感应定律和洛仑兹力电磁感应定律是指当一个导体在磁场中运动或磁场的强度发生改变时,导体中自由电子将受到力的作用,产生电动势。

洛仑兹力是指电流在磁场中会受到一个向垂直于电流方向的力的作用,其大小和方向由洛仑兹力定律决定。

五、电动势和交流电电动势是指由导体在磁场中的运动或磁场发生变化而产生的电势差。

交流电是指电源端的电压在正负值之间不断变换的一种电流,它与直流电不同的是它的电流方向不断改变,频率通常以赫兹为单位来衡量。

六、微观世界的电磁场量子力学中的电磁场是指由电子与电磁波相互作用而形成的电场与磁场,其存在方式为粒子与波动的统一体系,主要表现为光子所具有的特性,如波粒二象性、色散、干涉与衍射等。

总之,电磁场是物理学中一个非常重要的分支,它在理论和实践中都有非常广泛的应用,如电力、通信、电子、生物医学等领域,每个人都可以在日常生活中感受到它的作用,例如手机通讯、电视、电灯等。

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理

人教版高二物理必修第三册第九章电磁场及其应用全章知识点梳理1. 电磁场的概念和性质- 电磁场是由电荷静电场和电流产生的磁场相互作用形成的。

- 电磁场有电场强度、电场线、磁感应强度、磁感线等性质。

2. 静电场的描述和计算- 静电场的描述需要用到电势、电位能、电场强度等概念。

- 静电场的计算可以利用库仑定律、电场强度叠加原理等方法。

3. 静电场中电势的性质和计算方法- 静电场中的电势随距离的变化遵循电势线的分布。

- 计算静电场中的电势可以利用电势差和电势公式进行。

4. 静电场中的带电粒子的运动规律- 静电场中带电粒子会受到电场力的作用而产生运动。

- 带电粒子在静电场中的运动规律可以描述为受力分析和加速度公式。

5. 磁场的概念和性质- 磁场是由电流产生的磁感应强度和磁感线组成的。

- 磁场有磁感应强度、磁场线、磁感应力等性质。

6. 磁场中带电粒子的运动规律- 磁场中带电粒子会受到磁场力的作用而产生运动。

- 带电粒子在磁场中的运动规律可以描述为洛伦兹力和离心力。

7. 电磁感应现象和法拉第电磁感应定律- 电磁感应是指磁场变化或电流变化产生感应电动势的现象。

- 法拉第电磁感应定律描述了感应电动势与磁通量变化的关系。

8. 自感和互感- 自感是导体中电流自身的感应现象。

- 互感是导体中电流与相邻导体之间的感应现象。

9. 变压器的原理和应用- 变压器利用电磁感应原理实现输入输出电压的变化。

- 变压器广泛应用于电力传输和家用电器。

10. 电磁波的性质和产生- 电磁波是由变化的电场和磁场相互作用产生的。

- 电磁波有频率、波长、速度等性质。

11. 光的干涉和衍射现象- 光的干涉是指两个或多个光波相遇产生的共振和抵消现象。

- 光的衍射是指光通过物体边缘或孔隙产生的偏折现象。

12. 光的偏振现象- 光的偏振是指光波振动方向通过偏振器限制后变得单一方向的现象。

- 光的偏振有线偏振和圆偏振两种形式。

13. 光的多普勒效应- 光的多普勒效应是指光源或观察者相对运动时光的频率发生变化的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场知识点总结
电磁场知识点总结
电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结
一、电磁场
麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场
*均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场
*电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立
的部分,有机的统一为一个整体,并成功预言了电磁波的存在)
二、电磁波
1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)
2、性质:*电磁波的传播不需要介质,在真空中也可以传播
*电磁波是横波
*电磁波在真空中的传播速度为光速
*电磁波的波长=波速*周期
3、电磁振荡
LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化
振荡周期:T =2πsqrt[LC]4、电磁波的发射
*条件:足够高的振荡频率;电磁场必须分散到尽可能大的空间
*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频
#调幅:使高频电磁波的振幅随低频信号的改变而改变
#调频:使高频电磁波的频率随低频信号的改变而改变
(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)
5、电磁波的接收
*电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

*调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程
*解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波。

相关文档
最新文档