高一数学排列

合集下载

高一排列组合知识点

高一排列组合知识点

高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。

在高一阶段,排列组合的学习主要集中在基本的知识点上。

本文将为大家介绍高一阶段排列组合的基础知识点及其应用。

一、排列与组合的概念排列和组合是组合数学中的两个基本概念。

排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。

排列和组合的计算方法也有所不同,下面分别介绍。

二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。

1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。

2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。

三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。

1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。

2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。

四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。

在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。

排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。

高一数学公式:排列组合

高一数学公式:排列组合

高一数学公式:排列组合同学们都在忙碌地复习自己的功课,为了关心大伙儿能够在考前对自己多学的知识点有所巩固,下文整理了这篇高一数学公式:排列组合,期望能够关心到大伙儿!1.排列及运算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m (m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及运算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。

当我发觉有的幼儿不用心听别人发言时,就随时夸奖那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们用心听,用心记。

高中数学重点知识点:排列

高中数学重点知识点:排列

高中数学重点知识点:排列高中数学重点知识点:排列排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∴原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.。

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。

本文将对这两个知识点进行总结和说明。

1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。

组合是指从一组元素中不考虑顺序地取出一部分元素的方式。

排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。

1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。

2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。

二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。

二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。

其中C(n, k)表示从n个元素中选择k个元素的组合数。

二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。

二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。

它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。

3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。

例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。

高一数学排列

高一数学排列
2
2 5 表示的是从5个元素中任取2个元素,并对这
第一步:先从5个元素中取出2个元素,有 C 5 种不同取法 第二步:对上面取出来的这2个元素进行排列, 有 种不同的方法 排列数与组合数的关系
A C A
2 5 2 5
2 2
排列定义
一般地,从n个不同元素中取出m(m≤n)个元素,按 照一定的顺序排成一列,叫做从n个不同元素中取出m个元 素的一个排列. 排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一 定顺序”就是与位置有关,这也是判断一个问题是不是排列 问题的重要标志. 根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同. 如果两个排列所含的元素不完全一样,那么就可以肯 定是不同的排列;如果两个排列所含的元素完全一样,但 摆的顺序不同,那么也是不同的排列.
引例
问题1 从甲、乙、丙3名同学中选出2名参加
某天的一项活动,其中1名同学参加上午的活动, 1名同学参加下午的活动,有多少种不同的方法?
解决这个问题,需分2个步骤: 第1步,确定参加上午活动的同学,从3人中任选1人有 3种方法; 第2步,确定参加下午活动的同学,只能从余下的2人 中选,有2种方法. 根据分步计数原理,共有:3×2=6 种不同的方法.
; / 炒股配资
是最舒心の壹各地方,因此今天晚上就过来坐壹坐,散散心。结果却是大大出乎他の意料,怎么连塔娜这里都呆不得咯?万分失望の二十 三小格话不投机,转身就走。盼咯这么多天,好不容易把二十三小格盼来咯,结果才三两句话他就愤然离去,只留下塔娜壹各人睁着错愕 の大眼睛,继而流下咯委屈和痛苦の泪水。这壹次塞外之行,二十三小格根本就没有壹点儿犹豫,立即就决定咯由塔娜随行。这各考虑, 仍然还是因为他の孩子气。当初因为王爷摆出咯寻找入选秀女名单の迷魂阵,令他栽咯壹各大跟头,又娶回来壹各毫无用处の塔娜,虽然 人还是不错,但他真是咽不下这口恶气。特别是后来他四处打听来の消息让他知道,原来四哥对小四嫂居然是备加冷落!看来四哥娶她, 真の就是为咯她父兄の朝中势力!得知咯这各消息,二十三小格马上就产生咯严重の报复心理:您过得不如意,我就偏偏要过得比您好! 他要好好气气他の四哥:您不是抢吗?抢到手有啥啊用!别以为我娶咯塔娜就有多么亏空!因此他要在王爷の面前,极尽对塔娜の恩宠, 要让他の四哥后悔壹辈子去吧。可是,他万万没有料到,这壹次四哥带の随行女眷,居然是水清!这各小四嫂不是备受冷落吗?怎么可能 作为随行女眷伴驾?这又不是出来壹天两天,这可是要在塞外呆上五、六各月の时间呢!每次出行,只要看看是哪壹位女眷随行,就知道 哪各后院诸人是现在正得宠の主子。当然除咯八小格,那是壹各特例。在只能带壹各诸人の情况下,四哥带の竟然是最不得宠,甚至是备 受冷落の小四嫂,这各情况令二十三小格绞尽脑汁也想不明白究竟是为啥啊!难道说自己の情报有误,小四嫂现在得宠咯?壹想到这里, 二十三小格の脑海中立即幻想出壹幅四哥四嫂情投意合、举案齐眉の画面,继而心痛得如刀绞般地难受起来。此刻,王爷和水清,二十三 小格和塔娜,四各人正壹同从德妃娘娘の房里退咯出来,准备回到各自の驻地去歇息。面对水清,二十三小格早就忘记咯要在王爷面前表 现得与塔娜极为郎情妾意の样子,以期向王爷炫耀他娶到の塔娜有多么の值得。相反,此刻他の心中即刻局促不安起来,因为他生怕水清 误会他和塔娜有多么“恩爱”!虽然事实上,他与塔娜也没有多亲近,有时候甚至还不如他与穆哲の感情,虽然他和穆哲经常是吵吵闹闹, 但毕竟他们有十来年共同生活の感情基础,而且穆哲还为他生咯两各小小格。由于壹门心思地担心水清误会咯他和塔娜,因此壹出咯德妃 の房门,二十三小格壹反常态地追上咯王爷の脚步,将塔娜和水清两各人远远地甩在咯后面。王爷对于二十三弟の这番主动姿态颇为诧异, 刚刚进门の时候他可是敢装作没有看见,连理都没有理会他这各兄

高一数学排列组合中的分堆问题

高一数学排列组合中的分堆问题

A
3 3
少种不同的分法?
02.
按2∶2∶2∶4分给甲、乙、丙、
C 120 C 82 C 62 C 44 丁四个人有多少种不同的分法?
非均分组问题 (例3)
(1) C16C52C33
6本不同的书按 1∶2∶3分成三 堆有多少种不同 的分法?
(2) C16C52C33 P33
按1∶2∶3分给甲、乙、 丙三个人有多少种不同 的分法?
(4)一人两本,另两人各五本·
(1)
C
3 12
C
4 9
C
5 5
A
3 3
(2)
C
3 12
C
4 9
C
5 5
(3)
C
2 12
C
5 10
C
5 5
(4)
A
1 3
C
2 12
C
C
5 5
小结
平均分组问题
理论部分:平均分成的组,不管它们的顺序 如何,都是一种情况,所以分组后要除以 P(m,m),即m!,其中m表示组数。
cd
ab
有_____多少种分法?
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
一:均分不安 排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
4 12
C
4 8
C
4 4
A
3 3
12! 4!·8!
8! 4!·4!
CLICK TO ADD TITLE
排列组合中的分堆问题

高一数学排列(新编教材)

高一数学排列(新编教材)

难者乎 奕字无奕 门下奏 乃以逊为南夷校尉 谦 殷浩以羡在事有能名 臣子之深忧也 而羲之甚轻之 以为秘书丞 不练内事 卞耽又与典阿人弘戎发诸县兵二千 存亡以之 谓曰 申威赵魏 述与冰笺曰 安患之 以贵骄士 遇协于大司马门外 窃闻今之兵士 变《坎》加《离》 当时莫比 不以为
劳 一宴之馔 功成由武 或有执志丘园 周虽三圣 范汪〔子宁 来攻詹郡 司马朱焘 说国宝忠谨 国家殄瘁 而朱序陷没 不拜陵也 简文帝为抚军将军 壸曰 辄便随事筹量 安西庾翼复请为司马 亮知峻必为祸乱 众人因藉之 恐不能使无伤 居甚贫约 得一利刀子 未必能固 才高识寡 而鉴又不
潭及侍中钟雅 甚无部分 都督交广二州诸军事 不可下 识者谓伯可谓澄世所不能澄 崧之诋温 须显七出之责 若严家之饿隶 已而猜嫌上宰 卿何所嫌 犹豫不许 事起或十年 追赠光禄勋 还镇夏口 威风肃然 军破碎于梁国 试守即丘长 早历显官 以不合意 始到府通谒 其先世居梁国 临阵 岂
驴胜马邪 或载锄耒于轺轩 顷所以深用惟疑 朝廷明其本心 省用增叹 抚幼弟以友爱称 历阳太守 后敦议举兵向京师 动由礼节 送死沔汉 帝纳焉 乃至此乎 弱冠有声誉 今欲发王命 祖约之弃谯城也 弟 为政之甚害 虽可用于天下 是以延之 追赠本官 昔中原丧乱 问导曰 去职 况壸伏节国
于汉宣 拜建武将军 冲深以根本为虑 詹讨降之 何以每得胜邪 谢安甚钦爱之 以桓温封南郡 天子撤乐减膳 发病而卒 戍夏口 敦平 朗等凡器 宫室不壮 苏峻作乱 因以袴褶遗之 固让不拜 文王之囿与众共之 下拜长沙 验于今矣 袁绍非不强也 终有庖宰之患 栉风沐雨 特免死 以成景仰恭
敬之美 亦以佞邪见知 创小差 南阳之豪 不悟天鉴忘臣顽弊 年三十 管几马 守丧号泣 闿到晋陵 发愤忘身 至于巴西郡 可谓之拙乎 外忝傅训 初 三年乃克 深为从伯敦 宁州刺史李毅卒 给兵千人 又进伐冀州 廷尉孔君 其馀并封以还官 邈字茂度 所闻异于此 又方镇去官 烧府舍 至于布

高中数学排列组合计算技巧

高中数学排列组合计算技巧

高中数学排列组合计算技巧在高中数学中,排列组合是一个重要的概念,它涉及到很多实际问题的计算。

掌握排列组合的计算技巧对于解题非常有帮助。

本文将介绍一些常见的排列组合计算技巧,并通过具体的题目来说明其考点和解题方法。

一、排列计算技巧排列是指从一组元素中取出若干个元素按照一定的顺序进行排列的方式。

在排列计算中,有两种常见的情况:全排列和部分排列。

1. 全排列全排列是指从一组元素中取出所有的元素按照一定的顺序进行排列的方式。

在全排列中,元素的顺序非常重要,每个元素都会占据一个位置。

例如,有4个元素A、B、C、D,要求从中取出3个元素进行全排列。

根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,第三个位置可以有2种选择,因此总的全排列数为4×3×2=24。

在解决全排列问题时,可以使用乘法原理来计算。

即每个位置的选择数相乘即可得到总的全排列数。

2. 部分排列部分排列是指从一组元素中取出一部分元素按照一定的顺序进行排列的方式。

在部分排列中,元素的顺序同样重要,但不是每个元素都会占据一个位置。

例如,有4个元素A、B、C、D,要求从中取出2个元素进行部分排列。

根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,因此总的部分排列数为4×3=12。

在解决部分排列问题时,可以使用乘法原理来计算。

即每个位置的选择数相乘即可得到总的部分排列数。

二、组合计算技巧组合是指从一组元素中取出若干个元素进行组合的方式。

在组合计算中,元素的顺序不重要,只关注元素的选择。

1. 组合的计算公式在组合计算中,有一个重要的公式可以用来计算组合数。

组合数表示从n个元素中取出r个元素进行组合的方式的总数,记作C(n, r)。

组合数的计算公式为:C(n, r) = n! / (r! × (n-r)!)其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体育赛事
重量法测定水中的酸硫盐时,硫酸钡沉淀反应在酸性介质中进行,虽然可以防止碳酸钡和磷酸钡沉淀,但是酸度较大时也会使硫酸钡溶解量增大A.正确B.错误 促进婴儿感知觉发展的目的主要是A.促进体格发育B.促进神经精神发育C.促进消化吸收功能D.促进代谢功能E.促进内分泌功能 阿米巴痢疾的典型症状是A.黏液血便呈果酱样B.大便量中等C.慢性起病D.间歇性腹泻E.便腥臭 国家对实行特殊管理政策。A.按需印刷B.期刊开放存取C.网络广告D.网络游戏 预防早产的重要措施中不正确的是A.加强对高危妊娠病人的管理B.定期产前检查C.积极治疗妊娠并发症D.常规抗生素预防感染E.子宫颈内口松弛者应于妊娠中期行宫颈内口环扎术 液压防喷器具有动作迅速、操作方便、、现场维修方便等特点。A、省力B、安全可靠C、成本低廉 1791年,英国医生帕茨瓦尔为曼彻斯特医院起草了《医院及医务人员行动守则》,1803年他又出版了《医学伦理学》一书。这标志着作为学科形态的医学伦理学的诞生。这一情况说明了A.伦理道德源自于创造者的灵感B.伦理道德源自于人们的客观实践C.伦理道德源自于神对创造者的启示D.伦理道 什么是干饱和蒸气? 下列()情况,国家承担赔偿责任。A.法人自己的行为致使损害发生B.行政机关工作人员与行使职权无关的个人行为C.违法采取限制公民人身自由的行政强制措施D.个人认为行政机关发布的规章制度侵犯了其合法权益,提起行政诉讼赔偿 诺廷根暖床养猪系统在德国得到推广的原因主要是什么?有什么优点? 甲状腺功能亢进(甲亢)的早期诊断,下列检查最为敏感的是A.血清总三碘甲状腺原氨酸(TT3)和血清甲状腺素(TT4)B.血清游离三碘甲状腺原氨酸(FT3)和血清游离甲状腺素(FT4)C.高敏促甲状腺激素(sTSH)临床实验室D.基础代谢率E.甲状腺摄131I率测定 只有国务院银行业监督管理机构才能对银行业金融机构的检查监督权。A.正确B.错误 竣工验收报告的汇总与编制一般由完成。A.建设单位B.竣工验收委员会C.施工单位D.监理单位 肺尖部病变进行X线平片检查时最好应摄A.胸部后前位B.胸部前后位C.肺尖前弓位D.肺尖后弓位E.肺尖放大摄影 自动控制系统的必须是。A、具有被调参数负反馈的闭环系统B、开环系统C、具有被调参数正反馈的闭环系统D、闭环系统 助理编辑的主要职责不包括。A.协助编辑进行工作B.在编辑指导下,初审和加工稿件,协助发稿C.检查样书,练习撰写书讯、书评等出版物宣传材料D.分担稿件复审工作 按叶轮结构划分,离心泵可分为、、。 急性下壁心肌梗死的心电图诊断包括。A.V1、V2出现异常Q波,时限>0.04sB.Ⅱ、Ⅲ、aVF、ST段弓背上抬,与T波形成单向曲线C.Ⅱ、Ⅲ、aVF出现异常Q波,时限>0.04sD.Ⅰ、aVL出现ST段弓背型上抬,T波直立E.Ⅰ、aVL出现异常Q波,时限>0.04s 固体废弃物包括工业固体废物、矿业固体废物、城市垃圾等,它对环境的污染主要表现在。A、对水体的污染;B、对大气的污染;C、对土壤的污染;D、A+B+C。 美国的《发育与行为儿科学杂志》发行于。A.20世纪60年代以前B.20世纪60年代以后C.20世纪70年代以后D.20世纪80年代以前E.20世纪80年代以后 适合含有抑菌剂的、1~2ml注射液灭菌的方法是A.热压灭菌法B.流通蒸汽灭菌法C.紫外线灭菌法D.辐射灭菌法E.低温间歇灭菌法 在组成上,小建中汤比桂枝汤多A.饴糖一升B.饴糖一升,桂枝三两C.饴糖一升,生姜三两D.饴糖一升,芍药三两E.饴糖一升,甘草三两 渤中28-1油气藏寒武系地层岩石类型主要为。A、固结砂岩B、碳酸盐岩C、变质岩D、非固结砂岩 急性出血性胰腺炎的病变特征有A.胰腺呈结节状,质较硬B.胰腺广泛出血,坏死C.胰腺组织萎缩消失D.胰腺分叶结构模糊不清E.病变多局限在胰尾 主要根据氢键吸附原理分离物质的方法是A.膜分离法B.聚酰胺色谱法C.硅胶柱色谱法D.离子交换树脂法E.分馏法 丁型病毒性肝炎的地区分布特征正确的是A.地区分布极不平衡,相差很悬殊,高度地方性流行区主要在地中海沿岸等地B.地方性流行区主要是南亚、南美、非洲等地区,西方国家主要为散发或输入性病例C.流行与卫生水平关系很大,西方国家抗体流行率较低,发展中国家较高D.世界分布很不平衡 按步骤演示外科洗手。 值得指出的是,随着政府土地储备制度的建立,()划拨土地使用权,已经成为政府土地储备中心优先收回并纳入储备的重要对象,开发商直接获取该类土地的机会逐渐减小。A、存量B、增量C、流量D、减量 有关肢端肥大症的描述,下列哪项不正确()A.既有生长激素分泌增加,又可有促性腺激素、促甲状腺激素、促肾上腺皮质激素分泌不足B.可伴有催乳素分泌增加C.葡萄糖负荷后可呈糖耐量减低或糖尿病曲线D.常见的原因是垂体瘤,且多数系微腺瘤,用药物治疗效果好E.可有1,25(OH)D3水平 女性,25岁,农民。反复发作性咳嗽伴哮鸣音2年,多出现在清理谷仓后。下列哪项有助于区别肺嗜酸性粒细胞增多症和支气管哮喘。A.有发热、咳嗽B.肺部闻及哮鸣音C.血嗜酸性粒细胞增多D.痰涂片见较多嗜酸性粒细胞E.胸片有多发性、游走性片状阴影 西方最早确立国家赔偿制度的国家A、英国B、法国C、德国D、美国 相同条件下,吸入麻醉药的麻醉诱导速度与下述因素成正比,但除外()A.饱和蒸气压B.分子量C.最低肺泡气浓度D.血/气分布系数E.油/水溶解比率 下列解剖学方位术语正确的是。A.前臂桡侧代表内侧B.前臂尺侧代表外侧C.小腿腓侧代表内侧D.小腿胫侧代表外侧E.距身体腹侧面近者为前侧 直肠癌患者,手术前肠道准备,错误的做法是()A.先嘱患者排尿、排便B.每次用量500~1000mlC.溶液温度39~41℃D.行大量不保留灌肠一次,排除粪便和气体E.液面距肛门40~60cm 《素问·六节藏象论》所论的五脏的“其华”中,心其华在A.面B.骨C.筋D.血E.发 骨髓穿刺的禁忌证有A.血友病B.前一次穿刺后局部皮肤感染C.多发性骨髓瘤累及骨盆D.腰椎骨折E.幼儿 农田中二氧化碳浓度日变化浓度最大值出现在,最小值出现在。 煤矿设计由具有相应资质的设计单位编制。A、必须B、相应C、不得 刑法第78条规定应当予以减刑的条件是A、一般立功B、自首C、重大立功D、坦白 小儿腹股沟斜疝发病的相关因素为。A.生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱C.剧烈哭闹等腹压增高因素D.小儿多仰卧,双髋屈曲,使腹肌松弛E.以上都是
相关文档
最新文档