2016中考数学真题

合集下载

中考2016数学试题及答案

中考2016数学试题及答案

中考2016数学试题及答案第一部分选择题1. 当x=3时,下列各式中必然成立的是()A. 2x + 1 = 8B. x - 5 = 2xC. 3x + 2 = 2x + 3D. 4x - 3 = 3 - x答案: B2. 下列各点坐标中,纵坐标是负数的点是()A. (3, 4)B. (-2, -5)C. (-1, 3)D. (0, 1)答案: B3. 如果a:b = 4:5, b:c = 3:2,那么a:c的值为()A. 12:10B. 20:27C. 8:15D. 16:9答案: C4. 在矩形ABCD中,AB = 3cm, BC = 4cm,如图所示。

若点A沿着矩形与圆心重合的圆弧BC移动,点A所走过的弧长为()(图略)A. 4π cmB. 6π cmC. 8π cmD. 12π cm答案: C5. 若图中所示的“AxB”表示包含x个正方形的正方形,那么当x=3时,共有的小正方形数量是()A. 64B. 63C. 57D. 56答案: C第二部分解答题1. 完整准确地用两个自然数的乘法结果表示小写字母“a”的值。

答案: "a"的值为ab或ba,其中a, b为两个自然数。

2. 设数a, b满足2a + b = 10,a - 2b = 1,求a和b的值。

答案: 将第一个等式的a用第二个等式表示出来,得到a = 2b + 1;将该式代入第一个等式,得到2(2b + 1) + b = 10,解得b = 2,代入第二个等式得到a = 5。

因此,a = 5,b = 2。

3. 在数轴上,点A表示数a, B表示数b,若a < b,则点A与B的位置关系是()A. A在B的左边B. A在B的右边C. A、B在同一点上D. 无法确定答案: A4. 如图,正方形ABCD的边长为6cm,点P, Q分别在AB, CD边上,且AP : PB = DQ : QC = 1:3,那么线段PQ的长度是多少?(图略)答案: 可以设AP的长度为x,因此PB的长度为6 - x。

(精品word版)2016年山东省潍坊市中考真题数学

(精品word版)2016年山东省潍坊市中考真题数学

2016年山东省潍坊市中考真题数学一、选择题:本大题共12小题,每小题3分1.计算:20·2-3=( )A.1 8 -B.1 8C.0D.8解析:直接利用负整数指数幂的性质结合零指数幂的性质分析得出答案.031122188-=⨯=.答案:B.2.下列科学计算器的按键中,其上面标注的符号是轴对称图形但不是中心对称图形的是( )A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,又是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.答案:D.3.如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是( )A.B.C.D.解析:根据俯视图的概念和看得到的边都应用实线表现在三视图中、看不到,又实际存在的,又没有被其他边挡住的边用虚线表现在三视图中解答即可.图中几何体的俯视图是C选项中的图形.答案:C.4.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)( )A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将1256.77亿用科学记数法可表示为1.3×1011.答案:B.5.实数a,b在数轴上对应点的位置如图所示,化简a+( )A.-2a+bB.2a-bC.-bD.b解析:如图所示:a <0,a-b <0,则a =-a-(a-b) =-2a+b. 答案:A.6.关于x 的一元二次方程20x sin α+=有两个相等的实数根,则锐角α等于( ) A.15° B.30° C.45° D.60°解析:∵关于x 的一元二次方程20x sin α+=有两个相等的实数根,∴(24240sin sin αα∆=-=-=, 解得:12sin α=, ∵α为锐角, ∴α=30°. 答案:B.7.木杆AB 斜靠在墙壁上,当木杆的上端A 沿墙壁NO 竖直下滑时,木杆的底端B 也随之沿着射线OM 方向滑动.下列图中用虚线画出木杆中点P 随之下落的路线,其中正确的是( )A.B.C.D.解析:如图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.答案:D.8.将下列多项式因式分解,结果中不含有因式a+1的是( )A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+1解析:先把各个多项式分解因式,即可得出结果.∵a2-1=(a+1)(a-1),a2+a=a(a+1),a2+a-2=(a+2)(a-1),(a+2)2-2(a+2)+1=(a+2-1)2=(a+1)2.∴结果中不含有因式a+1的是选项C.答案:C.9.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是( )A.10解析:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===答案:D.10.若关于x的方程3333x m mx x++=--的解为正数,则m的取值范围是( )A.92 m<B.92m<且32m≠C.94 m->D.94m->且34m≠-解析:去分母得:x+m-3m=3x-9,整理得:2x=-2m+9,解得:292mx-+ =,∵关于x的方程3333x m mx x++=--的解为正数,∴-2m+9>0,级的:92m<,当x=3时,29=32mx-+=,解得:32 m=,故m的取值范围是:92m<且32m≠.答案:B.11.如图,在Rt△ABC中,∠A=30°,AC为直径作⊙O交AB于点D,则图中阴影部分的面积是( )A.43 2π-B.232π-6π6π 解析:如图连接OD 、CD.∵AC 是直径, ∴∠ADC=90°, ∵∠A=30°,∴∠ACD=90°-∠A=60°, ∵OC=OD ,∴△OCD 是等边三角形, ∵BC 是切线.∴∠ACB=90°,∵∴AC=6,∴S 阴=S △ABC -S △ACD -(S 扇形OCD -S △OCD)221136036()2243333602ππ=⨯⨯⨯⨯-⨯=答案:A.12.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A.x ≥11B.11≤x <23C.11<x ≤23D.x ≤23解析:由题意得,()()21952219522211195x x x ⎧+≤⎪⎪+≤⎨⎪+⎡++⎤⎣⎦⎪⎩①②>③,解不等式①得,x ≤47,解不等式②得,x ≤23, 解不等式③得,x >11,所以,x 的取值范围是11<x ≤23. 答案:C.二、填空题:本大题共6小题,每小题3分13.= .. 原式(333312=+==.答案:12.14.若3x 2n y m 与x 4-n y n-1是同类项,则m+n= .解析:∵3x 2n y m 与x 4-n y n-1是同类项,∴241n n m n -⎧⎨-⎩==,解得:1343n m ⎧⎪⎪⎨⎪⎪⎩==则453313m n +=+=. 答案:53.15.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.解析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.该应聘者的总成绩是:532 70809277.4101010⨯+⨯+⨯=(分).答案:77.4.16.已知反比例函数kyx=(k≠0)的图象经过(3,-1),则当1<y<3时,自变量x的取值范围是 .解析:∵反比例函数kyx=(k≠0)的图象经过(3,-1),∴k=3×(-1)=-3,∴反比例函数的解析式为3yx-=.∵反比例函数3yx-=中k=-3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,331x-==-;当y=3时,313x-==-.∴1<y<3时,自变量x的取值范围是-3<x<-1.答案:-3<x<-1.17.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是 .解析:过M作MN′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM·sin60°∴点P到点M与到边OA的距离之和的最小值为答案:23.18.在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n-1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是 .解析:如图,∵y=x-1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,∴B n坐标(2n-1,2n-1).答案:(2n-1,2n-1).三、解答题:本大题共7小题,共66分19.关于x的方程3x2+mx-8=0有一个根是23,求另一个根及m的值.解析:由于x=23是方程的一个根,直接把它代入方程即可求出m的值,然后由根与系数的关系来求方程的另一根.答案:设方程的另一根为t.依题意得:2382233m⎛⎫⎪+⎭-⎝⨯=,解得m=10.又2383 t=-,所以t=-4.综上所述,另一个根是-4,m的值为10.20.今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.根据以上信息解答下列问题:(1)求m的值.解析:(1)由C等级频数为15,占60%,即可求得m的值.答案:(1)∵C等级频数为15,占60%,∴m=15÷60%=25.(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示). 解析:(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小.答案:(2)∵B等级频数为:25-2-15-6=2,∴B等级所在扇形的圆心角的大小为:225×360°=28.8°=28°48′.(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.解析:(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.答案:(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,∴其中至少有一家是A等级的概率为:101256.21.正方形ABCD内接于⊙O,如图所示,在劣弧AB上取一点E,连接DE、BE,过点D作DF ∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形.解析:(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,进而得出答案.答案:(1)∵正方形ABCD内接于⊙O,∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,又∵DF∥BE,∴∠EDF+∠BED=180°,∴∠EDF=90°,∴四边形EBFD是矩形.(2)DG=BE.解析:(2)直接利用正方形的性质AD的度数是90°,进而得出BE=DF,则BE=DG.答案:(2)∵正方形ABCD内接于⊙O,∴AD的度数是90°,∴∠AFD=45°,又∵∠GDF=90°,∴∠DGF=∠DFC=45°,∴DG=DF,又∵在矩形EBFD中,BE=DF,∴BE=DG.22.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)解析:延长AD交BC的延长线于E,作DF⊥BE于F,根据直角三角形的性质和勾股定理求出DF、CF的长,根据正切的定义求出EF,得到BE的长,根据正切的定义解答即可.答案:延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF = 由题意得∠E=30°,∴DFEF tanE==∴∴(()64AB BE tanE =⨯=+=米,答:电线杆的高度为(4)米.23.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)解析:(1)观光车全部租出每天的净收入=出租自行车的总收入-管理费,根据不等关系:净收入为正,列出不等式求解即可.答案:(1)由题意知,若观光车能全部租出,则0<x ≤100, 由50x-1100>0, 解得x >22,又∵x 是5的倍数,∴每辆车的日租金至少应为25元.(2)当每辆车的日租金为多少元时,每天的净收入最多?解析:(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 答案:(2)设每辆车的净收入为y 元, 当0<x ≤100时,y 1=50x-1100, ∵y 1随x 的增大而增大,∴当x=100时,y 1的最大值为50×100-1100=3900; 当x >100时,()222100115011007011001755025555x y x x x x ⎛⎫ ⎪⎝⎭-=--=-+-=--+, 当x=175时,y 2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.24.如图,在菱形ABCD 中,AB=2,∠BAD=60°,过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F.(1)如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:MN=13AC.解析:(1)连接BD ,证明△ABD 为等边三角形,根据等腰三角形的三线合一得到AE=EB ,根据相似三角形的性质解答即可.答案:(1)如图1,连接BD ,交AC 于O ,在菱形ABCD 中,∠BAD=60°,AD=AB , ∴△ABD 为等边三角形, ∵DE ⊥AB , ∴AE=EB , ∵AB ∥DC , ∴12AM AE MC DC ==, 同理,12CN AN =,∴13MN AC =.(2)如图2,将△EDF 以点D 为旋转中心旋转,其两边DE ′、DF ′分别与直线AB 、BC 相交于点G 、P ,连接GP ,当△DGP 的面积等于. 解析:(2)分∠EDF 顺时针旋转和逆时针旋转两种情况,根据旋转变换的性质解答即可. 答案:(2)∵AB ∥DC ,∠BAD=60°, ∴∠ADC=120°,又∠ADE=∠CDF=30°, ∴∠EDF=60°,当∠EDF 顺时针旋转时,由旋转的性质可知,∠EDG=∠FDP ,∠GDP=∠EDF=60°,DEG=∠DFP=90°, 在△DEG 和△DFP 中,GDE PDF DEG DFP DE DF ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△DEG ≌△DFP , ∴DG=DP ,∴△DGP 为等边三角形, ∴△DGP的面积2DG ==解得,DG = 则12DE cos EDG DG ∠==, ∴∠EDG=60°,∴当顺时针旋转60°时,△DGP 的面积等于同理可得,当逆时针旋转60°时,△DGP 的面积也等于综上所述,将△EDF 以点D 为旋转中心,顺时针或逆时针旋转60°时,△DGP 的面积等于25.如图,已知抛物线213y x bx c =++经过△ABC 的三个顶点,其中点A(0,1),点B(-9,10),AC ∥x 轴,点P 时直线AC 下方抛物线上的动点.(1)求抛物线的解析式.解析:(1)用待定系数法求出抛物线解析式即可. 答案:(1)∵点A(0,1).B(-9,10)在抛物线上,∴13181910c b c ⎧⎪⎨⨯-+⎪⎩==,∴21b c ⎧⎨⎩==, ∴抛物线的解析式为21132y x x =++.(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标.解析:(2)设点P(m ,21321m m ++),表示出2133PE m m =--,再用S 四边形AECP =S △AEC +S △APC =12AC ×PE ,建立函数关系式,求出极值即可. 答案:(2)∵AC ∥x 轴,A(0,1) ∴221311x x ++=, ∴x 1=6,x 2=0,∴点C 的坐标(-6,1), ∵点A(0,1).B(-9,10), ∴直线AB 的解析式为y=-x+1, 设点P(m ,21321m m ++) ∴E(m ,-m+1)∴2212133113PE m m m m m ⎛⎫ ⎪⎝=⎭-+-++=--, ∵AC ⊥EP ,AC=6, ∴S 四边形AECP =S △AEC +S △APC()22263998111221212224113AC EF AC PF AC EF PF AC PE m m m m m =⨯+⨯=⨯+=⨯=⨯⨯-⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝-=--=-+⎭+ ∵-6<m <0 ∴当92m =-时,四边形AECP 的面积的最大值是814, 此时点P(92-,54-).(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由. 解析:(3)先判断出PF=CF ,再得到∠PCF=∠EAF ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可. 答案:(3)∵()2221113332y x x x =++=+-, ∴P(-3,-2),∴PF=y F -y P =3,CF=x F -x C =3, ∴PF=CF , ∴∠PCF=45°同理可得:∠EAF=45°, ∴∠PCF=∠EAF ,∴在直线AC 上存在满足条件的Q , 设Q(t ,1)且AC=6,∵以C 、P 、Q 为顶点的三角形与△ABC 相似,①△CPQ ∽△ABC 时, ∴CQ CPAC AB=,∴66t +, ∴t=-4, ∴Q(-4,1)②当△CQP ∽△ABC 时, ∴CQ CPAB AC=, ∴226369t +=, ∴t=3,∴Q(3,1).。

2016年中考数学真题试题及答案(word版)

2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )

2016年河南省中考数学试卷-答案

2016年河南省中考数学试卷-答案

、、、,画树状图如图:【解析】设四个小组分别记作A B C D36033332πn R25111111x x x x xx x x x ++=-=-+--.51x -≤<.(2)频数分布直方图如下图所示:所以ODE △,DEM △都是等边三角形,所以OD OE EM DM ===,所以四边形OEMD 是菱形。

tan379CD ︒≈2.2513.5=(米)(3)由函数图象知:①函数22||y x x -=的图象关于y 轴对称;②当1x >时,y 随x 的增大而增大.(4)①由函数图象知:函数图象与x 轴有3个交点,所以对应的方程22||0x x -=有3个实数根.②由函数图象知:因为22||y x x -=的图象与直线2y =有两个交点,所以22||2x x -=有2个实数根.③由函数图象知:因为关于x 的方程22||x x a -=有4个实数根,所以a 的取值范围是10a -<<.【提示】本题正确的识别图象是解题的关键。

(1)根据函数的对称性即可得到结论; (2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数22||y x x -=的图象关于y 轴对称;当1x >时,y 随x 的增大而增大; (4)①根据函数图象与x 轴的交点个数,即可得到结论;②如图,根据22y x =-的图象与直线2y =的交点个数,即可得到结论;③根据函数的图象即可得到a 的取值范围是10a ﹣<< . 【考点】二次函数的图象,根的判别式22.【答案】(1)因为点A 为线段BC 外一动点,且BC a =,AB b =,所以当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC AB a b +=+, (2)①CD BE =,理由:因为ABD △与ACE △是等边三角形,所以AD AB =,AC AE =,60BAD CAE ∠=∠=︒, 所以BAD BAC CAE BAC ∠+∠=∠+∠,即CAD EAB ∠=∠.在CAD △与EAB △中,AD ABCAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,所以CAD EAB △≌△,所以CD BE =.②因为线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,所以最大值为4BD BC AB BC +=+=.(3)如下图1,连接BM ,将APM △绕着点P 顺时针旋转90°得到PBN △,连接AN ,33832。

2016中考数学试题及答案解析

2016中考数学试题及答案解析

2016中考数学试题及答案解析2016年中考数学已经结束,本文将对本次考试试题出现的知识点进行解析,帮助考生对数学考点更加清晰明确。

2016年中考数学试题及答案解析一、单项选择题1.斐波那契数列(第n项满足公式 Fn=Fn-1+Fn-2)中,第25项的值为(A. 1250B. 1280C. 1290D. 1300答案:D,解析:F1=1,F2=1,F3=2,那么F25=F24+F23=750+550=1300。

2.若复数z=(6-3i)*(2+i),z的共轭复数为(A. 8-3iB. 8+3iC. 6-iD. 6+i答案: B. 8+3i,解析:z的共轭复数即为z的根号共轭复数,即(6-3i)(2+i)的根号共轭复数为(6+3i)(2-i),得到结果8+3i。

3.下列函数中的值正确的连续12点的解析式是(A. y=x^2-3x+7B. y=3x^2+2x-1C. y=(x-2)^2-5x+7D. y=x^2+7答案: C,解析:根据函数y=(x-2)^2-5x+7,它的x取值为0,1,2,3,4,5,6,7,8,9,10,11,且y均为正数,因此其值正确。

二、解答题4.一家公司把罐装蜂蜜装入木箱,每个木箱里装有六个罐装蜂蜜,每罐蜂蜜重1.5Kg,请计算出20个木箱装蜂蜜重量是多少答案:20*6*1.5kg=180kg。

解析:每个木箱里装6个罐装蜂蜜,每个蜂蜜罐重1.5Kg,20个木箱装蜂蜜重量计算为:20*6*1.5kg=180kg。

5.若△ABC的面积为40,AB=4,BC=6,则BC角度数是(答案:60°. 解析:△ABC的面积为40,AB=4,BC=6,则AB:BC=2:3,可利用海伦公式求出其BC角α,即:α=arccos(2/3)=60°。

2016年江西省中考数学试卷-答案

2016年江西省中考数学试卷-答案

23=24 x x x故选C.OAB S S =【提示】由反比例函数的图象过第一象限可得出-+x x 3)(3)(x16.【答案】(1)补全条形统计图如图:补全条形统计图如图:+46(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案; (3)无确切答案,结合自身情况或条形统计图,言之有理即可. 【考点】条形统计图,用样本估计总体17.【答案】(1)如图(画法有两种,正确画出其中一种即可)(2)如图:(画出其中一种即可)【解析】(1)如图所示,45ABC ∠=︒.(AB 、AC 是小长方形的对角线)(2)线段AB 的垂直平分线如图所示【提示】(1)根据等腰直角三角形的性质即可解决问题;(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题. 【考点】应用与设计作图 18.【答案】(1)证明:连接OC ,∵OAC ACO ∠=∠,PE OE ⊥,OC CD ⊥,∴APE PCD ∠=∠, ∵APE DPC ∠=∠,∴DPC PCD ∠=∠,∴DC DP =; (2)解:以A ,O ,C ,F 为顶点的四边形是菱形;∴四边形OACF为菱形.++-14)9(2)解法一:他们的“最终稿点数”如下表所示:5解法二:5OB︒≈⨯sin92即所作圆的半径约为3.13cm;AB︒≈⨯sin92【提示】(1)根据题意作辅助线OC AB ⊥于点C ,根据10OA OB cm ==,90OCB ∠=︒,18AOB ∠=︒,可以求得∠BOC 的度数,从而可以求得AB 的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE AB =,然后作出相应的辅助线,画出图形,从而可以求得BE 的长,本题得以解决. 【考点】解直角三角形的应用 22.【答案】(1)如图1,∵四边形ABCD 是正方形,由旋转知:'AD AD =,'90D D ∠=∠=︒,'60DAD OAP ∠=∠=︒,∴'DAP D AO ∠=∠,∴'()APD AOD ASA △≌△∴AP AO =,∵60OAP ∠=︒,∴△AOP 是等边三角形;(2)如图2,作AM DE ⊥于M ,作AN CB ⊥于N .∵五边形ABCDE 是正五边形,由旋转知:'AE AE =,'108E E ∠=∠=︒,'60EAE OAP ∠=∠=︒ ∴'EAP E AO ∠=∠∴'()APE AOE ASA △≌△∴'OAE PAE ∠=∠.在Rt △AEM 和Rt △ABN 中,72AEM ABN ∠=∠=︒,AE AB =∴Rt Rt ()AEM ABN AAS △≌△, ∴EAM BAN ∠=∠,AM AN =.在Rt △APM 和Rt △AON 中,AP AO =,AM AN =∴Rt Rt ()APM AON HL △≌△ ∴PAM OAN ∠=∠,∴PAE OAB ∠=∠,∴'OAE OAB ∠=∠(等量代换)故答案为:是.所以:存在Rt△A k B k B k+1与Rt△A m B m B m+1相似,其相似比为64:1或8:1.。

2016河南中考数学试题及答案

2016河南中考数学试题及答案

2016河南中考数学试题及答案一、选择题(共40题,每题2分)1. 【解析】选C。

已知矩形的长和宽比为5:3,设长为5x,宽为3x,根据题意得到以下等式:5x + 3x = 40,解得x = 4,则长为20,宽为12。

所以周长为2(20 + 12) = 64(单位:cm)。

2. 【解析】选A。

解方程x^2 - 9 = 0,得到x = ±3,所以x的值为3或-3,选项A符合题意。

3. 【解析】选B。

已知等腰直角三角形,那么两个直角边的长度一样,设为x,则斜边长为x√2,根据勾股定理得到以下等式:x^2 + x^2 = (x√2)^2,整理得到x = (2 - √2)x,即1 = (2 - √2),解得x = √2 - 1,所以选项B符合题意。

4. 【解析】选A。

已知a:b = 2:3,c:b = 3:5,将c的值代入第一个等式中,得到a:b:c = 2:3:9,所以选项A符合题意。

5. 【解析】选C。

根据题意,1个女生的译文是1个字,1个男生的译文是2个字,设男生人数为x,则女生人数为x + 4。

根据总字数等于总人数的2倍得到以下等式:1(x + 4) + 2x = 1300,解得x = 436,所以男生人数为436人,女生人数为440人,所以选项C符合题意。

...二、解答题6. 【解析】答案:分式为1/7。

题目描述:某商店原价为42元的商品打8折,之后的价格再降低20%。

求最终的价格是原价的几分之几?解答步骤:原价打折后的价格为42 * 0.8 = 33.6元;价格再降低20%后的价格为33.6 * 0.8 = 26.88元;最终价格与原价的比值为26.88 / 42 = 0.64,约为4/7,所以最终的价格是原价的4/7。

7. 【解析】答案:3时17分。

题目描述:某地有两个水库,甲水库每小时汇入1000立方米水,乙水库每小时排出800立方米水。

初始时,两个水库都是空的。

如果同时打开两个水库,经过多长时间两个水库的水位相等?解答步骤:甲水库每小时净汇入1000 - 800 = 200立方米水;设经过t小时后,两个水库的水位相等,则甲水库汇入水的总量为200t;乙水库排出的总水量为800t;由于两个水库最终的水位相等,所以200t = 800t,解得t = 1/3,即1小时20分钟,所以经过1小时20分钟后两个水库的水位相等。

2016年江西省中考数学试卷(含解析版)

2016年江西省中考数学试卷(含解析版)

2016年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣22.(3分)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n24.(3分)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.5.(3分)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2 B.1 C.﹣2 D.﹣16.(3分)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n的是()A.只有②B.只有③C.②③ D.①②③二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)计算:﹣3+2=.8.(3分)分解因式:ax2﹣ay2=.9.(3分)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.10.(3分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为.11.(3分)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=.12.(3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.三、解答题(本大题共5小题,每小题6分,满分30分)13.(6分)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.14.(6分)先化简,再求值:(+)÷,其中x=6.15.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.16.(6分)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?17.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.(8分)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P 作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.19.(8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.20.(8分)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.21.(8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)五、(本大题共10分)22.(10分)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)六、(本大题共12分)23.(12分)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;…;过点B n(()n﹣1,0)(n为正整数)作x轴的垂线,交抛物线于点A n,连接A n B n+1,得Rt△A n B n B n+1.(1)求a的值;(2)直接写出线段A n B n,B n B n+1的长(用含n的式子表示);(3)在系列Rt△A n B n B n+1中,探究下列问题:①当n为何值时,Rt△A n B n B n+1是等腰直角三角形?②设1≤k<m≤n(k,m均为正整数),问:是否存在Rt△A k B k B k+1与Rt△A m B m B m+1相似?若存在,求出其相似比;若不存在,说明理由.2016年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,每小题只有一个正确选项)1.(3分)(2016•江西)下列四个数中,最大的一个数是()A.2 B.C.0 D.﹣2【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣2<0<<2,故四个数中,最大的一个数是2.故选:A.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2016•江西)将不等式3x﹣2<1的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】方程与不等式.【分析】先解出不等式3x﹣2<1的解集,即可解答本题.【解答】解:3x﹣2<1移项,得3x<3,系数化为1,得x<1,故选D.【点评】本题考查解一元一次不等式\在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式的方法.3.(3分)(2016•江西)下列运算正确的是()A.a2+a2=a4B.(﹣b2)3=﹣b6C.2x•2x2=2x3D.(m﹣n)2=m2﹣n2【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】结合选项分别进行合并同类项、积的乘方、单项式乘单项式、完全平方公式的运算,选出正确答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选B.【点评】本题考查了合并同类项、积的乘方、单项式乘单项式、完全平方公式,掌握运算法则是解答本题的关键.4.(3分)(2016•江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义即可得到结果.【解答】解:其主视图是C,故选C.【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.5.(3分)(2016•江西)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2 B.1 C.﹣2 D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ==,故选D.【点评】本题考查根与系数的关系,解题的关键是明确两根之积等于常数项与二次项系数的比值.6.(3分)(2016•江西)如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③)的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为m,水平部分线段长度之和记为n,则这三个多边形中满足m=n 的是()A.只有②B.只有③C.②③ D.①②③【考点】相似三角形的判定与性质;三角形中位线定理.【专题】网格型.【分析】利用相似三角形的判定和性质分别求出各多边形竖直部分线段长度之和与水平部分线段长度之和,再比较即可.【解答】解:假设每个小正方形的边长为1,①:m=1+2+1=4,n=2+4=6,则m≠n;②在△ACN中,BM∥CN,∴=,∴BM=,在△AGF中,DM∥NE∥FG,∴=,=,得DM=,NE=,∴m=2+=2.5,n=+1++=2.5,∴m=n;③由②得:BE=,CF=,∴m=2+2++1+=6,n=4+2=6,∴m=n,则这三个多边形中满足m=n的是②和③;故选C.【点评】本题考查了相似多边形的判定和性质,对于有中点的三角形可以利用三角形中位线定理得出;本题线段比较多要依次相加,做到不重不漏.二、填空题(本大题共6小题,每小题3分,满分18分)7.(3分)(2016•江西)计算:﹣3+2=﹣1.【考点】有理数的加法.【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【解答】解:﹣3+2=﹣1.故答案为:﹣1.【点评】此题考查了有理数的加法.注意在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.(3分)(2016•江西)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.9.(3分)(2016•江西)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.【考点】旋转的性质.【分析】先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.【解答】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)(2016•江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.【考点】平行四边形的性质.【分析】由“平行四边形的对边相互平行”、“两直线平行,同位角相等”以及“直角三角形的两个锐角互余”的性质进行解答.【解答】解:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠C=∠ABF.又∵∠C=40°,∴∠ABF=40°.∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.故答案是:50°.【点评】本题考查了平行四边形的性质.利用平行四边形的对边相互平行推知DC∥AB是解题的关键.11.(3分)(2016•江西)如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=4.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP=k1,S△OBP=k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.【解答】解:∵反比例函数y1=(x>0)及y2=(x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP=k1,S△OBP=k2.∴S△OAB=S△OAP﹣S△OBP=(k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【点评】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB=(k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.12.(3分)(2016•江西)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是5或4或5.【考点】矩形的性质;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.【点评】本题考查了矩形的性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质和等腰三角形的判定,进行分类讨论是解决问题的关键.三、解答题(本大题共5小题,每小题6分,满分30分)13.(6分)(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.14.(6分)(2016•江西)先化简,再求值:(+)÷,其中x=6.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x=6代入进行计算即可.【解答】解:原式=÷=÷=•=,当x=6时,原式==﹣.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.15.(6分)(2016•江西)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【考点】两条直线相交或平行问题;待定系数法求一次函数解析式;勾股定理的应用.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A(2,0),AB=∴BO===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣1【点评】本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.16.(6分)(2016•江西)为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.(1)补全条形统计图.(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【考点】条形统计图;用样本估计总体.【分析】(1)用甲、乙两班学生家长共100人减去其余各项目人数可得乙组关心“情感品质”的家长人数,补全图形即可;(2)用样本中关心孩子“情感品质”方面的家长数占被调查人数的比例乘以总人数3600可得答案;(3)无确切答案,结合自身情况或条形统计图,言之有理即可.【解答】解:(1)乙组关心“情感品质”的家长有:100﹣(18+20+23+17+5+7+4)=6(人),补全条形统计图如图:(2)×3600=360(人).答:估计约有360位家长最关心孩子“情感品质”方面的成长;(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,家长对“情感品质”关心不够,可适当关注与指导.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.17.(6分)(2016•江西)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【考点】作图—应用与设计作图.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.四、(本大题共4小题,每小题8分,共32分)18.(8分)(2016•江西)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接OC,根据切线的性质和PE⊥OE以及∠OAC=∠OCA得∠APE=∠DPC,然后结合对顶角的性质可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接OC,∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,∴∠APE=∠PCD,∵∠APE=∠DPC,∴∠DPC=∠PCD,∴DC=DP;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.【点评】本题主要考查了切线的性质、圆周角定理和等边三角形的判定等,作出恰当的辅助线利用切线的性质是解答此题的关键.19.(8分)(2016•江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系直接求值;(2)根据数量关系找出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出不等式(方程或方程组)是关键.20.(8分)(2016•江西)甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【考点】列表法与树状图法.【分析】(1)由现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,甲摸牌数字是4与5则获胜,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后根据树状图列出甲、乙的“最终点数”,继而求得答案.【解答】解:(1)∵现甲、乙均各自摸了两张牌,数字之和都是5,甲从桌上继续摸一张扑克牌,乙不再摸牌,∴甲摸牌数字是4与5则获胜,∴甲获胜的概率为:=;故答案为:;(2)画树状图得:则共有12种等可能的结果;列表得:∴乙获胜的概率为:.【点评】此题考查了列表法或树状图法求概率.注意根据题意列出甲、乙的“最终点数”的表格是难点.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)(2016•江西)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)【考点】解直角三角形的应用.【专题】探究型.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.五、(本大题共10分)22.(10分)(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为15°,24°;(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为60°﹣(用含n的式子表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛市二〇一六年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.5-的绝对值是( ).A .51- B .5-C .5D .5 2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg 的煤所产生的能量。

把130 000 000kg 用科学记数法可表示为( ). A .kg 71013⨯ B .kg 81013.0⨯ C .kg 7103.1⨯ D .kg 8103.1⨯ 3.下列四个图形中,既是轴对称图形又是中心对称图形的是( ).4.计算235)2(a a a -⋅的结果为( ).A .562a a -B .6a -C .564a a -D .63a - 5.如图,线段AB 经过平移得到线段,其中点A 、B 的对应点分别为,这四个点都在格点上。

若线段AB 上有一个点),(b a P ,则点P 在上的对应 点的坐标为( )A.)3,2(+-b aB.)3,2(--b aC. )3,2(++b aD.)3,2(-+b a6.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地 间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h.若设原来的平均车速为x km/h ,则根据题意可列方程为( )。

A 、1%)501(180180=+-x x B.1180%)501(180=-+x x C.1%)501(180180=--x x D 、1180%)501(180=--xx 7.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的 夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm , 若纸扇两面贴纸,则贴纸的面积为( )A .π1752cmB .π3502cmC .π38002cm D .π1502cm8. 输入一组数据,按照右图程序进行计算,输出的结果如下表:分析表格中的数据,估计方程0826)8(2=-+x 的一个正数解x 的大致范围( ) A .6.205.20<<x B .7.206.20<<x C .8.207.20<<x D .9.208.20<<x第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:.________2832=-10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以 决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成 如图所示的扇形统计图.若本次活动共有 12000 名参与者,则估计其中选择红色运动衫 的约有______________名.11. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD=______°12.已知二次函数c x y +=23与正比例函数x y 4=的图象只有一个交点,则c 的值为______.13. 如图,在正方形 ABCD 中,对角线 AC 与 BD 相交于点 O ,E 为 BC 上一点,CE=5, F 为DE 的中点.若△CEF 的周长为 18,则 OF 的长为__________.14.如图,以边长为 20cm 的正三角形纸板的各顶点为端点,在各边上分别截取 4cm 长的 六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿 图中虚线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子, 则它的容积为____________cm 3. 三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段 a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO =a , 且⊙O 与∠ACB 的两边分别相切.四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)化简:14112---+x x x x ; (2)解不等式组⎪⎩⎪⎨⎧-≤+xx x 985121< 并写出它的整数解17.(本小题满分6分)小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇 形.转动两个转盘各一次,若两次数字之积大于 2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.(本小题满分6分)如图,AB 是长为 10m ,倾斜角为 37°的自动扶梯,平台 BD 与大楼 CE 垂直,且与扶梯AB 的长度相等,在 B 处测得大楼顶部 C 的仰角为 65°,求大楼 CE 的高度(结果保留整数).甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:(1(2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩. 若选派其中一名参赛,你认为应选哪名队员?20.(本小题满分8分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用 )0(2≠+=a bx ax y 表示.已知抛物线上 B ,C 两点到地面的距离均为m 43,到墙边 OA 的距离分别为m 21,m 23.(1)求该抛物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m ,则最多可以连续绘制几个这样的抛物线型图案?已知:如图,在□ABCD 中,E,F 分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC 的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF 是什么特殊四边形?请说明理由.22.(本小题满分10分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.(1(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30 元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400 个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5 或2×3 的矩形(ba,的矩形)?a⨯的矩形指边长分别为b问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5 时,可将正方形分割为五个1×5 的矩形.如图②,当n=6 时,可将正方形分割为六个2×3 的矩形.如图③,当n=7 时,可将正方形分割为五个1×5 的矩形和四个2×3 的矩形.如图④,当n=8 时,可将正方形分割为八个1×5 的矩形和四个2×3 的矩形.如图⑤,当n=9 时,可将正方形分割为九个1×5 的矩形和六个2×3 的矩形.当n=10,11,12,13,14 时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14 时,均可将正方形分割为一个5×5 的正方形、一个⨯n的矩形.显然,5×5 的正方形和)5)5(5-⨯n的矩形均可(5-)(n的正方形和两个)55-n(-分割为1×5 的矩形,而)5-nn的正方形是边长分别为5,6,7,8,9的正方形,用探(-5)(究一的方法可分割为一些1×5 或2×3 的矩形.探究三:当n=15,16,17,18,19 时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19 的正方形分割示意图.所以,当n=15,16,17,18,19 时,均可将正方形分割为一个10×10 的正方形、一个)10-(⨯n的矩形.显然,10×10 的正方形和)(⨯n的10-1010)(1010(--nn的正方形和两个)矩形均可分割为1×5 的矩形,而)-nn的正方形又是边长分别为5,6,7,8,9 的10(-10)(正方形,用探究一的方法可分割为一些1×5 或2×3 的矩形.问题解决:如何将边长为,5nn且n为整数)的正方形分割为一些1×5 或2×3 的矩形?(请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61 的正方形分割为一些1×5 或2×3 的矩形?(只需按照探究三的方法画出分割示意图即可)24.(本小题满分12分)已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点O .点P 从点A 出发,沿AD 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作 QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题: (1)当 t 为何值时,△ AOP 是等腰三角形? (2)设五边形 OECQF 的面积为 S (cm 2),试确定 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使16:9:=∆ACD OECQF S S 五边形?若存在,求出 t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻 t ,使 OD 平分∠COP ?若存在,求出 t 的值;若 不存在,请说明理由.。

相关文档
最新文档