连续函数的概念与性质
数学中的连续函数概念及其性质

数学中的连续函数概念及其性质连续函数是数学分析中非常重要的概念之一。
在数学中,连续函数是指在定义域上没有突变或断裂的函数。
具体来说,连续函数可以用以下方式定义:对于任意给定的x值,如果在x上的函数值与x靠近的函数值非常接近,那么该函数就是连续的。
连续函数在不同的数学领域中都有广泛的应用。
首先,连续函数具有局部性质。
这意味着在一个连续函数中,任意小的定义域范围内的变化都会引起相应的函数值的变化。
换句话说,如果一个连续函数在一个点上发生了微小的变化,那么在该点附近的函数值也会有相应的微小变化。
这个性质使得连续函数在物理学、经济学和工程学等实际问题中具有广泛的应用。
其次,连续函数具有介值性质。
也就是说,如果一个连续函数在定义域的两个端点上取不同的函数值,那么它在这两个端点之间的某个位置上的函数值一定会等于这两个端点的中间值。
这个性质使得连续函数在求解方程和不等式的问题中有很多应用。
此外,连续函数还具有零点性质。
如果一个连续函数在定义域的两个端点上取正负两个不同的函数值,那么它在这两个端点之间一定存在一个零点。
这个性质在数值方法中求解方程和优化问题时经常被用到。
进一步探讨连续函数的性质,我们可以观察到在一个闭区间上连续函数一定是有界的。
也就是说,如果一个函数在闭区间上连续,那么它在该区间上的函数值一定存在上界和下界。
这个结论可以通过连续函数的介值性质和闭区间的紧致性(即有界闭区间的性质)来证明。
此外,连续函数的和、差、积和商仍然是连续函数。
也就是说,如果两个函数在定义域上连续,那么它们的和、差、积和商在这个定义域上仍然是连续的。
这个性质在数学分析中非常重要,因为它使得我们能够将已知的连续函数进行组合,从而构造出更复杂的连续函数。
最后,连续函数可以通过微分和积分进行进一步的分析。
如果一个函数在某一点的导数存在,那么该函数在该点处是连续的。
反之,如果一个函数在某一点处不连续,那么它在该点处的导数也不存在。
类似地,如果一个函数在定义域上可积,那么该函数在该定义域上是连续的。
连续函数的定义和性质

连续函数的定义和性质连续函数是数学中一个重要的概念,它在实际问题的建模和解决中起着关键的作用。
本文将讨论连续函数的定义和性质,以帮助读者更加深入地理解和应用连续函数。
一、连续函数的定义连续函数的定义是基于极限的概念的。
设函数$f(x)$在点$x=a$的某个邻域内有定义,如果对于任意给定的数$\varepsilon>0$,都存在一个正数$\delta>0$,使得当$0<|x-a|<\delta$时,有$|f(x)-f(a)|<\varepsilon$成立,那么称函数$f(x)$在点$x=a$连续。
二、连续函数的性质1. 连续函数的四则运算性质如果函数$y=f(x)$和$y=g(x)$在点$x=a$连续,则它们的和、差、积、商函数也在点$x=a$连续。
2. 连续函数的复合性质设函数$y=f(x)$在点$x=a$连续,函数$y=g(u)$在点$u=f(a)$连续,则复合函数$y=g[f(x)]$在点$x=a$连续。
3. 连续函数的介值性质设函数$f(x)$在闭区间$[a,b]$上连续,且$f(a)$和$f(b)$异号,则方程$f(x)=0$在区间$(a,b)$内至少有一个根。
4. 连续函数的最大值和最小值定理设函数$f(x)$在闭区间$[a,b]$上连续,那么$f(x)$在该闭区间上必有最大值和最小值。
5. 连续函数在有界闭区间上的均匀连续性质设函数$f(x)$在闭区间$[a,b]$上连续,则对于任意给定的正数$\varepsilon>0$,都存在一个正数$\delta>0$,当$|x-y|<\delta$时,有$|f(x)-f(y)|<\varepsilon$成立。
三、连续函数与间断点函数可分为连续函数和间断函数两类。
连续函数在定义域内无间断点,而间断函数则存在间断点。
1. 第一类间断点函数$f(x)$在$x=a$处有第一类间断点,当且仅当存在左右极限$\lim_{x \to a^-} f(x)$和$\lim_{x \to a^+} f(x)$,且两者不相等。
(高等数学)第二章 连续函数

周 世 国 讲 义第二章 连续函数第一节 连续函数一.连续函数的概念引:许多物理量都是随时间而连续变化的。
例如:自由落体的高度或冷却中固体的温度等。
通常我们说物理量()t f 随时间t 的变化而连续变化,其确切含义啥?那就是说,物理量()t f 在变化过程中不会突然发生跳跃,只要时间t 的改变量非常小,相应地量()t f 的改变也应该非常小.用极限的语言来说: ()()00l i m t t f t f t →=.推广上述的说法,就得到一般函数在一点处连续的概念.1.定义1.设函数()x f 在0x 的邻域()0U x 内有定义,如果()()00lim x x f x f x →=,则称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点. 注意:(1)由定义1可见,函数在0x 点处连续,则0x 点必属于()x f 的定义域,这()0lim x x f x A →=定义的前提有本质的区别;(2)如果()x f 在0x 点处连续,则函数()x f 在0x 点首先必有极限,而且极限值就 是函数()x f 在0x 点处的定义值,因此()x f 在连续点处的极限很好求; (3)如果()x f 在0x 点处连续,则()()lim x x x x f x f lim x →→=.2.连续的第一个等价定义:设函数()x f 在0x 的邻域()0U x 内有定义,如果对0,0>∃>∀δε,使当0x x ε-<时,就有()()0f x f x ε-<成立,称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点. 注意:定义中,不再象函数极限定义中那样,要求00x x <-(为何?) 函数在一点处连续还有第二种等价定义,为此要先介绍一个新概念----增量.3.定义2.若自变量从初始值0x 变化到终值x ,相应地函数值由()0f x 变化到()x f ,则称0x x -为自变量的增量,并计为0x x x ∆=-;而称()()0f x f x -为函数的增量,计为()()0y f x f x ∆=-.注意:显然()()0y f x f x ∆=-又可表示为:()()00y f x x f x ∆=+∆-由此可见()()0y f x f x ∆=-是0x x x ∆=-的函数.4.连续的第二种等价定义:设函数()x f 在0x 的邻域()0U x 内有定义,如果lim 0x y ∆→∆=,则称()x f 在0x 点处连续,并称0x 点为函数()x f 的连续点.二.左、右连续1.定义3.如果()()00lim x x f x f x -→=,则称()x f 在0x 点处左连续,并称0x 点为函数()x f 的左连续点;2.定义4.如果()()00lim x x f x f x +→=,则称()x f 在0x 点处右连续,并称0x 点为函数()x f 的右连续点.定理1.()x f 在x 0点处连续⇔()x f 在x 0点处既左连续又,右连续. 注意:连续函数的几何意义是:函数()x f y =的曲线在0x 点处没有断.三.函数在区间上连续定义5.若函数()x f 在开区间()b a ,内每一点0x 处都连续,则称函数()x f 在开区间()b a ,内连续;若函数()x f 在开区间()b a ,内每一点0x 处都连续,而且在点a 处右连续,在点b 处左连续则称函数()x f 在闭区间[]b a ,上连续.注意:在在闭区间[]b a ,上连续的函数的图形特征是曲线位于[]b a ,上方的一段是连续不间断的.例1.证明常值函数()c x f ≡在()+∞∞-,连续.证明:任取0x ()+∞∞-∈,,下证()x f 在0x 点处连续,即要证()()00lim x x f x f x →=,也就是要证: c c x x =→0lim .事实上,对,0>∀ε要使()()0||||0f x f x c c ε-=-=<,可取δ为任意正实数,则当0||x x ε-<时,就有 ()()0||f x f x ε-<成立。
函数的连续性连续函数的定义与性质

函数的连续性连续函数的定义与性质函数在数学中起着重要的作用,而函数的连续性是函数理论中的一个基本概念。
本文将探讨函数的连续性以及连续函数的定义和性质。
一、函数的连续性函数的连续性是指函数在某个区间上的“连续程度”,也就是函数在区间上是否存在间断点。
如果函数在某个点上连续,则说明函数在该点上没有间断,可以通过一个流畅的曲线来表示。
而如果函数在某个点上不连续,则说明函数在该点上存在间断,无法用一个曲线来表示。
在数学中,有三种类型的间断点:可去间断点、跳跃间断点和无穷间断点。
可去间断点指的是当函数在某个点上无定义时,如果通过修改函数在该点的定义,可以使函数在该点上连续,则该点是可去间断点。
跳跃间断点指的是当函数在某个点上左右两侧的极限存在,但两个极限不相等时,该点是跳跃间断点。
无穷间断点指的是当函数在某个点上的极限为无穷大或无穷小时,该点是无穷间断点。
二、连续函数的定义与性质连续函数是指在定义域上的每个点上都连续的函数。
如果一个函数在其定义域内处处连续,则称为全局连续函数;如果一个函数只在某个区间内连续,则称为局部连续函数。
连续函数具有以下重要性质:1. 若函数f(x)和g(x)都是连续函数,则它们的和f(x)+g(x)、差f(x)-g(x)以及积f(x)g(x)也是连续函数。
2. 若函数f(x)和g(x)都是连续函数,且g(x)不为0,则它们的商f(x)/g(x)也是连续函数。
3. 连续函数的复合函数仍然是连续函数。
换言之,如果函数f(x)在区间[a,b]上连续,并且函数g(t)在区间[c,d]上连续,且f(b)位于g(t)的定义域内,则复合函数f(g(t))在区间[c,d]上连续。
4. 连续函数在闭区间上一定有最大值和最小值。
形式化地表达就是,如果函数f(x)在闭区间[a,b]上连续,则函数f(x)在该区间上存在最大值和最小值。
5. 连续函数的中间值定理:如果函数f(x)在闭区间[a,b]上连续,并且f(a)≠f(b),那么对于任意介于f(a)和f(b)之间的值c(f(a)<c<f(b)或者f(b)<c<f(a)),在开区间(a,b)内至少存在一个点x0,使得f(x0)=c。
函数的连续性

在闭区间上连续的函数必取得介于最大值M与最小值m 之间的任何值 >>>
作业:
P43 习题1—6 2、(2) 3、(4) 4、 5、
下页
❖最大值与最小值
对于在区间I上有定义的函数f(x) 如果有x0I 使得对于 任一xI都有
f(x)f(x0) (f(x)f(x0)) 则称f(x0)是函数f(x)在区间I上的最大值(最小值)
应注意的问题:
并非任何函数都有最大值和 最小值
例 如 , 函 数 f(x)=x在 开 区 间 (a b)内既无最大值又无最小值
•间断点的定义
设函数 f(x)在点x0的某去心邻域内有定义 在此前提 下 如果函数 f(x)有下列三种情形之一
(1)在x0没有定义
(2)虽然在x0有定义 但 lim f(x) 不存在
x x0
(3)虽然在x0有定义且lim f(x)存在 但 lim f(x)f(x0)
x x0
x x0
则函数 f(x)在点x0不连续 而点x0称为函数 f(x)的不连续点
lim
x x0
P(
x)
=
P(x0
)
注: 如果区间包括端点 那么函数在右端点连续是指左连续
在左端点连续是指右连续
下页
❖连续函数
在区间上每一点都连续的函数 叫做在该区间上的 连续函数 或者说函数在该区间上连续
•连续函数举例 2 函数 y=sin x 在区间(- +)内是连续的
这是因为 函数y=sin x在(- +)内任意一点x处有 定义 并且
lim Dy =0
Dx0
lim [
x x0
f
(x)-
f
(x0)]= 0
函数,极限与连续

定义 1 表明,函数在某点连续含有三层意思:
它在该点的一个邻域内有定义,极限存在且极限 值等于该点处的函数值.
例 1 证明函数 y = sin x 在其定义域内连续 . 证 任取 x0 (- , + ),则因
有定义, 如果
x 0
lim y 0.
则称函数 y = f (x) 在 x0 处连续.
若函数 y = f (x) 在点 x0 处有:
x x0
lim f ( x ) f ( x 0 ) 或 lim f ( x ) f ( x 0 ) ,
x x0
则分别称函数 y = f (x) 在 x0 处是左连续或右连续.
a O c b x y = f (x)
例 9 证明方程 x3 - 4x2 + 1 = 0 在 (0, 1) 内至 少有一个实根.
证
设 f (x) = x3 - 4x2 + 1,由于它在 [0, 1]
上连续且 f (0) = 1 > 0, f (1) = - 2 < 0,因此由推 论可知,至少存在一点 c (0, 1) ,使得 f (c) = 0. 这表明所给方程在 (0, 1) 内至少有一个实根 .
sin(x a ) lim x a ( x a ) cos a cos x
令 x – a t ,由 x a,则 t 0.
sint 1 1 上式 lim lim . 2 t 0 t cos a cos(t a ) t 0 cos a cos(t a ) cos a
因 此 lim y 0. 这表明 y = sin x 在 x0 处连续,
什么是连续函数

什么是连续函数在数学中,函数是描述变量之间关系的基本工具。
而连续函数是分析和研究函数性质的重要概念之一。
理解连续函数对于学习微积分、数学分析及应用数学等领域都是极为重要的。
本篇文章将全面探讨连续函数的定义、性质、例子以及它在实际应用中的重要性。
一、连续函数的定义从直观上看,连续函数是一种没有“跳跃”或“间断”的函数。
这意味着,如果你在一个点附近选择任意小的范围,那么函数值也会在一个相应的小范围内波动。
更严格地说,连续函数可以用极限的概念来定义。
设函数 ( f(x) ) 在点 ( x = a ) 处是连续的,当且仅当以下三个条件成立:函数在点 ( a ) 上有定义:即 ( f(a) ) 存在。
极限存在:即 ( _{x a} f(x) ) 存在。
值与极限相等:即 ( _{x a} f(x) = f(a) )。
如果这三个条件都满足,则称函数 ( f(x) ) 在点 ( a ) 上是连续的。
如果它在某个区间内的每一点都满足这一条件,那么我们称( f(x) ) 在该区间内是连续的。
二、连续函数的几何意义在图形上,连续函数通常表现为一条光滑的曲线,没有裂口或跳跃。
例如,考虑函数 ( f(x) = x^2 ),其图像是一条抛物线,每个点都是连续的。
与之相对,分段定义的函数如:[ f(x) =]在 ( x = 0 ) 处并不连续,因为在该点左侧和右侧的函数值没有相等。
三、连续函数的性质了解了什么是连续函数后,我们需要进一步探讨它的一些重要性质。
1. 有界性如果一个实数域上的连续函数在闭区间 [a, b] 上定义,并且是有界的,即存在某个数 M,使得对于所有 ( x ),都有|f(x)| ≤ M。
那么根据极大值定理,这个函数在 [a, b] 上必存在最大值和最小值。
2. 中间值定理中间值定理是初等数学中的一个重要定理。
它表明,如果一个函数是连续的,并且在某个区间 [a, b] 的两端有不同的值,则在这个区间内一定存在至少一个数 c,使得 ( f(c) ) 是两个端点值之间的任何数。
函数的连续性

函数的连续性函数的连续性是数学中重要的一个概念,它描述了函数在某个点附近的表现。
连续性可以用来刻画函数的光滑程度和连贯性,对于分析和解决实际问题具有重要的意义。
本文将详细介绍函数的连续性以及相关的性质和定理。
1. 连续函数的定义与性质连续函数是指在定义域上的每一个点都具有连续性的函数。
具体而言,若函数f(x)在某一点x=a处的极限存在且与f(a)的函数值相等,那么函数f(x)在点x=a处连续。
连续函数具有以下重要性质:- 连续函数的和、差、积仍为连续函数;- 连续函数的复合函数仍为连续函数;- 有界闭区间上的连续函数一定存在最大值和最小值。
2. 初等函数的连续性初等函数是由常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等通过有限次的代数运算与函数复合得到的函数。
初等函数在其定义域上都是连续函数。
初等函数的连续性可以通过初等函数的定义和性质来证明。
以指数函数为例,指数函数f(x) = exp(x)在整个实数域上都是连续函数,因为它是由幂函数与以基数e为底的指数函数复合得到的。
3. 间断点与连续点函数可以在某些点上具有间断现象,这些点称为间断点。
间断点分为可去间断点、跳跃间断点和无穷间断点。
相应地,函数在某些点上具有连续性,这些点称为连续点。
可去间断点是指在该点处存在左极限和右极限,但极限值不相等。
通过修正函数在该点处的定义可以使其连续。
跳跃间断点是指在该点处左右极限存在且不相等,函数在该点处无法修正。
4. 连续函数的中值定理中值定理是连续函数的重要定理之一,它刻画了连续函数在某个区间上的平均增长率等于其两个端点处斜率之间某个值的关系。
根据中值定理,如果函数f(x)在闭区间[a,b]上连续,且可导于开区间(a,b)内,则存在一个点c∈(a,b),满足f(b)-f(a)=(b-a)f'(c)。
这个定理在微积分和实际问题的分析中有广泛的应用。
5. 连续函数的一致连续性一致连续性是连续函数的另一个重要性质,它描述了函数在整个定义域上的连续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特别:
lim ( x) lim ( x)
x x0
第二章中的对数函数、幂函数、指数函数求导公式 的推导过程要用到下面几个极限
例11. 求下列极限
ln( 1 x) (1) lim x 0 x a x 1 (a>0 a≠1) (2) lim x 0 x
( 为实常数)
(1 x) 1 (3) lim x 0 x
解:(1)∵
1 x x 0
lim(1 x) e
1 x
(重要极限Ⅱ)
1 x
ln( 1 x) lim lim ln( 1 x) ln lim(1 x) x 0 x 0 x 0 x
在 x 1 是第__类间断点 . x 1 是第__类间断点;
2、若 f ( x ) 在 x0 连续,则| f ( x ) |、 f ( x )在 x0 是否
2
2 f 连续?又若| f ( x ) |、 ( x )在 x0 连续, f ( x ) 在 x0 是
否连续?
思考题1解答
1、一类;一类;二类。 2、 f ( x ) 在x0 连续, lim f ( x ) f ( x0 )
四. 连续性在求极限中的应用
利用函数y=f(u)在u=A点连续的定义,可以证明,如果
x x0
lim ( x) A,lim f ( ( x)) f ( A) f ( lim ( x))
x x0 x x0
特别:(1)当f(u)=au
则
x x0
lim a
x x0
1 x
二、函数的间断点
函数 f ( x )在点 x0处连续必须满足的三个 条件 :
(1) f ( x )在点x0处有定义;
( 2) lim f ( x )存在;
x x0
( 3) lim f ( x ) f ( x 0 ).
x x0
如果上述三个条件中只 要有一个不满足, 则称 函数 f ( x )在点 x0处不连续 (或间断), 并称点 x0为 f ( x )的不连续点(或间断点).
定义 2
设函数 f ( x ) 在U ( x0 ) 内有定义,如果
函数 f ( x ) 当 x x0 时的极限存在,且等于它在 点 x0 处的函数值 f ( x0 ),即 lim f ( x ) f ( x0 )
x x0
那么就称函数 f ( x ) 在点 x0 连续.
1 x sin , 例1 试 证 函 数f ( x ) x 0, 处连续 .
y
2 1
o1x来自跳跃间断点与可去间断点统称为第一类间断点.
特点 函数在点 x0处的左、右极限都存在.
3.第二类间断点 如果 f ( x )在点 x0处的左、
右极限至少有一个不存在, 则称点 x0为函数 f ( x )的第二类间断点 . 1 , x 0, 例6 讨论函数 f ( x ) 在x 0处的连续性. x x , x 0, y
连续函数的图形是一条连续而不间断的曲线.
例如,多项式函数在R上是连续的。
四则运算的连续性
定理1
若函数 f ( x ), g ( x )在点 x0处连续,
f ( x) 则 f ( x ) g ( x ), f ( x ) g ( x ), ( g ( x0 ) 0 ) g( x ) 在点 x0处也连续.
例如, sin x, cos x在(,)内连续,
故 tan x , cot x , sec x , csc x 在其定义域内连续 .
lim ( x ) a , 函数 f ( u)在点a连续, 定理2 设u ( x ), 若 x x
0
则有 lim f [ ( x )] f [ lim ( x )] f (a ) lim f ( u).
第一章 函数与极限
第八-九节 连续函数的概念与性质
主要内容:
一、函数的连续性 二、函数的间断点 三、初等函数的连续性
四、闭区间上连续函数的性质
一、函数的连续性
1.函数的增量
设函数 f ( x )在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
x x0 x x0 u a
意义 1.极限符号可以与函数符号互换;
2.变量代换( u ( x ))的理论依据 .
ln(1 x ) . 例3 求 lim x 0 x
解 原式 lim ln(1 x )
x 0 1 x
ln[lim ( 1 x ) ] ln e 1. x 0
D : x 0,2,4,
这些孤立点的邻域内没有定义.
y x ( x 1) ,
2 3
D : x 0, 及x 1,
在0点的邻域内没有定义.
函数在区间 [1,)上连续.
注意2 初等函数求极限的方法代入法.
x x0
lim f ( x ) f ( x0 )
求 lim sin e x 1.
故| f ( x ) |、 f ( x ) 在x0 都连续.
2
三、初等函数的连续性
定理3 定理4 续的. 基本初等函数在定义域内是连续的. 一切初等函数在其定义区间内都是连
定义区间是指包含在定义域内的区间.
注意1 初等函数仅在其定义区间内连续, 在其 定义域内不一定连续; 例如,
y cos x 1,
( x)
a
x x0
lim ( x )
(2)当f(u)=logau 则 (3)当f(u)=
x x0
lim log a ( x) log a lim ( x)
x x0
u
(μ为实数),则
x x0
lim [ ( x)] [ lim ( x)]
x x0
y f ( x ) f ( x0 ), 称为函数 f ( x )相应于x的增量.
y
y f ( x)
y
y y
y f ( x)
0
x x0 x 0 x x
x
0 x 0 x
x0
x
2.连续的定义
定义 1 设函数 f ( x ) 在U ( x0 )内有定义,如 或 果当自变量的增量 x 趋向于零时,对应的函 数的增量 y 也趋向于零,即 lim y 0
x 1
( x0 定义区间 )
例9 解
原式 sin e 1 1 sin e 1.
1 x2 1 . 例10 求 lim x 0 x
( 1 x 2 1)( 1 x 2 1) 解 原式 lim x 0 x( 1 x 2 1) x 0 0. lim 2 x 0 1 x 1 2
1.跳跃间断点 如果 f ( x )在点 x0处左, 右极限都
存在, 但f ( x0 0) f ( x0 0), 则称点 x0为函数 f ( x )的跳跃间断点.
x, 例4 讨论函数 f ( x ) 1 x , x 0, 在x 0处的连续性. x 0,
解 f (0 0) 0,
f (0 0) ,
o x
x 1为函数的第二类间断点 .
这种情况称为无穷间 断点.
1 例7 讨论函数 f ( x ) sin 在 x 0处的连续性. x 解 在x 0处没有定义,
1 且 lim sin 不存在. x0 x
y sin 1 x
第一类间断点:可去型,跳跃型. 间断点 第二类间断点:无穷型,振荡型.
(见下图)
第 一 类 间 断 点 第 二 类 间 断 点
y
y 可去型
y 跳跃型
o
x0
x
o y
x0
x
o
x0
x
o
x 振荡型
无穷型
思考题1
x2 x 1、 指出 y 在 x 0 是第__类间断点;在 2 x ( x 1)
x 0为第二类间断点 .
这种情况称为的振荡间 断点.
例8 当a取何值时,
cos x , x 0, 函数 f ( x ) 在 x 0处连续. a x , x 0, 解 f ( 0) a ,
lim f ( x ) limcos x 1,
x 0 x 0
x 0 x 0
lim [ f ( x 0 x ) f ( x 0 )] 0 ,那么就称函数
f ( x )在点 x0 连续, x0 称为 f ( x )的连续点.
设 x x0 x,
y f ( x ) f ( x0 ),
x 0 就是 x x0 , y 0 就是 f ( x ) f ( x0 ).
y
解
f (0 0) 0,
f (0 0) 1,
f (0 0) f (0 0),
x 0为函数的跳跃间断点 .
o
x
2.可去间断点如果 f ( x )在点 x0处的极限存在 ,
但 lim f ( x ) A f ( x ), 或 f ( x ) 在点 x 处无定 0 0 x x
0
义则称点 x0为函数 f ( x )的可去间断点 .
例5 讨论函数
2 x , 0 x 1, f ( x ) 1, x 1 x 1, 1 x , 在x 1处的连续性 .
y
2 1
y 1 x
y2 x
1
o
x
y
y 1 x
解
f (1) 1, f (1 0) 2,
1 证 lim x sin 0, x0 x
又 f (0) 0,
x 0, x 0,