存储分类介绍
计算机存储器的分类

计算机存储器的分类存储器是指电脑为了保存程序和数据,在计算机系统中必不可少的硬件设备,它的主要作用是让计算机能够以非常快的速度进行操作。
即使当计算机断电或重新启动时,仍然可以存储在存储器中的程序和数据不会丢失,从而保证计算机有一个稳定的运行状态。
一般来说,存储器可以分为内存(Memory)和存储空间(Storage)两种。
二、内存的分类内存分为两种:主存(Main Memory)和高速缓存(Cache)。
1. 主存主存是用于存储程序和数据的最基本的存储器,也叫主存储器,它是计算机内部最重要的存储器,其主要功能是存储和提供程序和数据,可以实现快速存取。
主存大小的计量单位是字,每一个字有16个比特(bits)。
2. 高速缓存高速缓存是一种可以加速计算机运算的存储器,它通常位于计算机的中央处理器和主存之间。
它可以将程序和数据从主存中快速载入,以提高计算机的运算速度。
高速缓存有三种:L1 缓存(Level1 Cache),L2 缓存(Level2 Cache)和L3 缓存(Level3 Cache)。
三、存储空间的分类存储空间也可以分为两种:外部存储器和外部存储器,其中外部存储器是用于存储数据的长期存储器,可以保持存储的数据即使在计算机出现故障或掉电情况下也不会丢失,而外部存储器是一种可以用于储存数据的临时存储器。
1. 外部存储器外部存储器指的是可以存储大量数据的计算机外部存储设备,包括硬盘(Hard Drive),软盘(Floppy disk),记忆棒(Memory Stick),光盘(光碟CD-ROM)等。
外部存储器的容量几乎不受限制,可以大大提高计算机的运行速度。
2. 外部存储器外部存储器是一种比外部存储器更小的临时数据存储设备,其功能是将数据从计算机快速读取或写入,通常包括磁带(Tape),U 盘(USB Flash Drive),移动硬盘(Mobile Hard Drive)等。
存储器的分类与选择

存储器的分类与选择存储器是计算机系统中重要的组成部分,它用于存储和读取数据。
在计算机发展的过程中,存储器也经历了多个阶段的发展与改进。
本文将介绍存储器的分类及如何选择适合自己需求的存储器。
一、存储器的分类1. 随机存取存储器(Random Access Memory,简称RAM):RAM是计算机中最常见的存储器类型,其特点是可以随机存取数据,并且读写速度快。
目前,常见的RAM包括动态随机存取存储器(Dynamic RAM,简称DRAM)和静态随机存取存储器(Static RAM,简称SRAM)。
2. 只读存储器(Read-Only Memory,简称ROM):ROM是一种只能读取数据而不能写入数据的存储器。
它的内容在制造过程中被固化,无法更改。
常见的ROM包括只读存储器(Read-Only Memory,简称PROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM)和电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM)。
3. 快闪存储器(Flash Memory):快闪存储器是一种介于RAM和ROM之间的存储器类型。
它有着类似于RAM的读写速度,同时又可以像ROM一样保持数据的稳定性。
快闪存储器被广泛应用于个人电脑、平板电脑、智能手机等电子设备中。
二、如何选择存储器在选择存储器时,我们需要根据自己的需求来确定合适的存储器类型和规格。
1. 容量:首先,我们需要根据自己的需求确定所需的存储容量。
如果只是进行简单的办公、上网等任务,较小的存储容量可能已经足够。
但是,如果需要处理大量的数据、运行复杂的软件或者进行大型游戏,较大的存储容量将更加适合。
2. 读写速度:除了容量外,读写速度也是一个需要考虑的因素。
如果你需要进行大量的数据传输或者执行高性能的任务,选择读写速度较快的存储器将能提升工作效率。
内存的分类

4.4 内存的选购
4.4.1 内存的选购原则 1.内存条的品牌 如图4 18所示。 如图4-18所示。
2.内存颗粒 3.频率要搭配 4.容量
4.4.2 内存产品介绍 1. 海盗船1GB DDR3 1333 海盗船1GB 海盗船1GB 海盗船1GB DDR3 1333内存条的外观,如图 1333内存条的外观,如图 4-19所示。 19所示。
运行CPU- ,容, 如图4 23所示。 如图4-23所示。
4.1.4 按内存条的技术标准(接口类 按内存条的技术标准( 型)分类
1.DDR SDRAM内存条 SDRAM内存条 DDR SDRAM内存条,其外观如图4-6所示。 SDRAM内存条,其外观如图4
2.DDR2 SDRAM内存条 SDRAM内存条 DDR2内存条的外观如图4 DDR2内存条的外观如图4-7所示。
③ Flash Memory(闪速存储器),如图4-4 Memory(闪速存储器),如图4 所示。
2.RAM (1)SRAM(Static RAM,静态随机存储器) SRAM( RAM,静态随机存储器) (2)DRAM(Dynamic RAM,动态随机存储器) DRAM( RAM,动态随机存储器) 4.1.2 按内存在计算机中的用途分类 1.主存储器 2.高速缓冲存储器(Cache) .高速缓冲存储器(Cache) 3.BIOS ROM
3.CSP封装 CSP封装 CSP( CSP(Chip Scale Package,芯片级封装) Package,芯片级封装) DDR内存,如图4 14所示。 DDR内存,如图4-14所示。
4.3 DRAM内存的时间参数 DRAM内存的时间参数
4.3.1 DRAM内存的参数设置 DRAM内存的参数设置 1.CAS Latency(CL或tCL) Latency(CL或tCL) 目前DDR内存的CL值主要为2 2.5和 目前DDR内存的CL值主要为2、2.5和3, DDR2的CL在 DDR2的CL在3~6之间,DDR3的CL在5~8 之间,DDR3的CL在 之间。DDR2与DDR3延迟时间对比如图4 之间。DDR2与DDR3延迟时间对比如图415所示。 15所示。
存储分类介绍

存储分类介绍存储分类 (1)1.存储分类简介 (2)2.存储解决方案分类 (2)2.1.DAS直接式存储 (2)2.2.NAS网络接入存储 (3)2.3.SAN存储区域网络 (4)3.存储方案比较 (5)3.1.NAS、SAN与传统存储系统DAS的比较 (5)3.2.NAS与SAN得比较 (6)1.存储分类简介目前磁盘存储市场上的存储主要有以下几种分类;图一存储分类●存储分类根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;●开放系统的存储分为:内置存储和外挂存储;●外挂存储根据连接的方式分为:直连式存储Direct-Attached Storage,简称DAS和网络化存储Fabric-Attached Storage,简称FAS;●网络化存储根据传输协议又分为:网络接入存储Network-AttachedStorage,简称NAS和存储区域网络Storage Area Network,简称SAN;2.存储解决方案分类绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上;当前市场上主流的存储解决方案主要为:直连式存储DAS、网络接入存储NAS、存储区域网络SAN;2.1.DAS直接式存储DASDirect Attached Storage,直接附属存储,也可称为SASServer-Attached Storage,服务器附加存储;DAS被定义为直接连接在各种服务器或客户端扩展接口下的数据存储设备,它依赖于服务器,其本身是硬件的堆叠,不带有任何存储操作系统;在这种方式中,存储设备是通过电缆通常是SCSI接口电缆直接到服务器的,I/O输入/输入请求直接发送到存储设备;DAS适用于以下几种环境:●服务器在地理分布上很分散,通过SAN存储区域网络或NAS网络直接存储在它们之间进行互连非常困难;●存储系统必须被直接连接到应用服务器;●包括许多数据库应用和应用服务器在内的应用,它们需要直接连接到存储器上;图二 DSA存储2.2.NAS网络接入存储NASNetwork Attached Storage,网络接入存储或称为网络直联存储设备、网络磁盘阵列,是一种专业的网络文件存储及文件备份设备,它是基于LAN 局域网的,按照TCP/IP协议进行通信,以文件的I/O输入/输出方式进行数据传输;一个NAS里面包括核心处理器,文件服务管理工具,一个或者多个的硬盘驱动器用于数据的存储; NAS 可以应用在任何的网络环境当中;主服务器和客户端可以非常方便地在NAS上存取任意格式的文件,包括SMB格式WindowsNFS 格式Unix,Linux和CIFS格式等等;NAS系统可以根据服务器或者客户端计算机发出的指令完成对内在文件的管理;由于NAS具有不受地域限制、高扩展性、低功耗、高度自动化、高可用性群集、数据备份安全精确等特点,因此NAS企业内部更适合用于重要部门如财务、人事、客户等部门的数据存储备份的场合;2.3.SAN存储区域网络SANStorage AreaNet work,存储区域网络;它是一种通过光纤集线器、光纤路由器、光纤交换机等连接设备将磁盘阵列、磁带等存储设备与相关服务器连接起来的高速专用子网;SAN由三个基本的组件构成:接口如SCSI、光纤通道、ESCON等、连接设备交换设备、网关、路由器、集线器等和通信控制协议如IP和SCSI等;这三个组件再加上附加的存储设备和独立的SAN服务器,就构成一个SAN系统;SAN提供一个专用的、高可靠性的基于光通道的存储网络,SAN允许独立地增加它们的存储容量,也使得管理及集中控制特别是对于全部存储设备都集群在一起的时候更加简化;而且,光纤接口提供了10 km的连接长度,这使得物理上分离的远距离存储变得更容易;目前主要使用于以太网和光纤通道两类环境中;●IP SANIP SAN存储技术,顾名思义是在传统IP以太网上架构一个SAN存储网络把服务器与存储设备连接起来的存储技术;IP SAN其实在FC SAN的基础上再进一步,它把SCSI协议完全封装在IP协议之中;简单来说,IP SAN就是把FC SAN中光纤通道解决的问题通过更为成熟的以太网实现了,从逻辑上讲,它是彻底的SAN架构,即为服务器提供块级服务;IP SAN 技术有其独特的优点:节约大量成本、加快实施速度、优化可靠性以及增强扩展能力等;采用iSCSI 技术组成的IP SAN 可以提供和传统FC SAN 相媲美的存储解决方案,而且普通服务器或PC 机只需要具备网卡,即可共享和使用大容量的存储空间;与传统的分散式直连存储方式不同,它采用集中的存储方式,极大地提高了存储空间的利用率,方便了用户的维护管理;iSCSI 是基于IP 协议的,它能容纳所有IP 协议网络中的部件;通过iSCSI ,用户可以穿越标准的以太网线缆,在任何需要的地方创建实际的SAN 网络,而不需要专门的光纤通道网络在服务器和存储设备之间传送数据;iSCSI 可以实现异地间的数据交换,使远程镜像和备份成为可能;因为没有光纤通道对传输距离的限制,IP SAN 使用标准的TCP/IP 协议,数据即可在以太网上进行传输;●IP SAN和FC SAN的比较SAN主要包含FC SAN和IP SAN两种,FC SAN的网络介质为光纤通道Fibre Channel,而IP SAN使用标准的以太网;采用IP SAN可以将SAN为服务器提供的共享特性以及IP网络的易用性很好结合在一起,并且为用户提供了类似服务器本地存储的较高性能体验;SAN是一种进行块级服务的存储架构,一直以来,光纤通道SAN发展相对迅速,因此,许多用户认为只能通过光纤通道来实现SAN,然而,通过传统的以太网仍然可以构建SAN,那就是IP SAN;3.存储方案比较3.1.NAS、SAN与传统存储系统DAS的比较●独立性;存储系统的独立性反映了服务器与存储系统间的依赖程度;独立性越强,服务器与存储系统之间的相关性就越小;实际上,独立性强的存储系统可以自成体系,不必考虑与服务器物理连接的细节;●带宽与瓶颈;在传统存储系统中,应用程序必须通过服务器访问存储设备;考虑到所有的访问都必须穿透服务器,容易形成瓶颈,因此要求服务器有很大的吞吐速率;LAN的速率和服务质量QoS取决于网络类型;●共享性;在传统存储服务器体系中,存储设备并非直接面向网络用户或应用程序,而是以服务器作为访问的人口;作为存储设备,无论是硬盘、还是阵列,都是间接地提供数据共享服务,真正意义上的物理连接只有服务器的连接;NAS具有数据存储独立性,可以通过 LAN上运行的NFS、CIFS协议实现数据共享; SAN直接支持服务器与存储系统之间的多对多连接,具有共享特性;●可扩展性;DAS体系只能通过增加服务器和磁盘存储量来扩展容量,单一扩展容量几乎不可行;业务增长造成的访问流量增加会使服务器成为瓶颈,而扩展服务器价格过高且管理难度加大;NAS可以通过扩展I/0节点而增加容量,其带宽可以通过新增的网络接口而得以提高;SAN具有可扩展性,可增加存储设备而实现系统扩充;●可管理性;传统的DAS造成企业中有大量的服务器和存储系统,其异构型和分布性使管理工作难以展开;NAS、SAN均采用中心化数据管理,便于控制网络上的每一个存储点;●存储介质的多样性;虽然DAS可以采用多种存储介质,但是它与服务器之间紧密的物理连接,在使用上受到较多限制;基于SAN的存储系统内,存储设备和文件服务器被有效地分离,使得整个系统可以采用多种存储介质;并且利用不同存储介质和设备的特点,通过统一的中心数据管理,建立多层次的异构存储体系;3.2.NAS与SAN得比较NAS和SAN有许多共同的特点;它们都提供集中化的数据存储和整合优化,都能有效的存取文件,都允许在众多的主机间共享并支持多种操作系统,都允许从应用服务器上分离存储;而且,它们都提供数据的高可用性,都能通过冗余部件和RAID保证数据的完整性;这两种技术都能满足消除存储器到服务器的直接联系的需求,有利于更灵活的存储访问,另外,SAN和NAS都是基于开放的行业标准网络协议——用于SAN的光纤通道协议和用于NAS的TCP/IP网络协议;SAN支持的应用软件范围宽广,其中包括提供对NAS软件的存储,而NAS一般被限制在文件层访问数据的软件;存储区域网络SAN和网络附加存储NAS是相互竞争的两种网络存储技术,实际上,它们可以很好地相辅相成,用于存取不同类型的数据;NAS设计用来在文件这个层次上存取数据,而SAN最适合用于高容量数据块的传输;SAN的关键特性●SAN作为网络基础设施,是为了提供灵活、高性能和高扩展性的存储环境而设计的;SAN通过在服务器和存储设备例如磁盘存储系统和磁带库之间实现连接来达到这一目的;●高性能的光纤通道交换机和光纤通道网络协议可以确保设备连接既可靠且有效;这些连接以本地光纤或SCSI通过SCSI-to-Fibre Channel转换器或网关为基础;一个或多个光纤通道交换机以网络拓扑SAN架构形式为主机服务器和存储设备提供互联;●由于SAN是为在服务器和存储设备之间传输大块数据而进行优化的;●集中的存储备份,其中性能、数据一致性和可靠性可以确保企业关键数据的安全;●高可用性和故障切换环境可以确保更低的成本、更高的应用水平;●可扩展的存储虚拟化,可使存储与直接主机连接相分离,并确保动态存储分区;●改进的灾难容错特性,在主机服务器及其连接设备之间提供光纤通道高性能和扩展的距离达到150公里;今天,SAN已经渐渐与NAS环境相结合,以提供用于NAS设备的高性能海量存储;事实上,许多SAN目前都用于NAS设备的后台,满足存储扩展性和备份的需要;。
存储方式的分类

存储方式的分类
存储方式主要可以分为以下几种分类:
1. 主存储器(内存):包括随机存取存储器(RAM)和只读存储器(ROM),用于存储程序和数据。
2. 辅助存储器:例如硬盘驱动器、光盘驱动器、USB闪存驱动器等,用于长期存储大量的数据和文件。
3. 缓存存储器:包括一级缓存(L1 Cache)、二级缓存(L2 Cache)等,用于临时存储正在使用的数据和指令,提高访问速度。
4. 数据库存储器:用于存储和管理大量结构化数据的数据库系统,如关系数据库、NoSQL数据库等。
5. 网络存储器:通过网络连接的存储设备,如网络附加存储(NAS)和存储区域网络(SAN),用于共享和访问数据。
6. 云存储:将数据存储在云计算平台上,用户可以通过互联网随时访问和管理数据。
7. 分布式存储:将数据存储在多个独立节点上,提高容量和可靠性,并实现数据共享与并行处理。
这些存储方式根据其性能、可靠性、容量和访问方式的不同,适用于不同的应用场景和需求。
存储器分类

内存的种类是非常多的,从能否写入的角度来分,就可以分为RAM(随机存取存储器)和ROM(只读存储器)这两大类。
每一类别里面有分别有许多种类的内存。
一、RAM(Random Access Memory,随机存取存储器)RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。
它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。
根据组成元件的不同,RAM内存又分为以下十八种:01.DRAM(Dynamic RAM,动态随机存取存储器):这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM 将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。
存取时间和放电时间一致,约为2~4ms。
因为成本比较便宜,通常都用作计算机内的主存储器。
02.SRAM(Static RAM,静态随机存取存储器)静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。
每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。
03.VRAM(Video RAM,视频内存)它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。
它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。
多用于高级显卡中的高档内存。
04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)改良版的DRAM,大多数为72Pin或30Pin的模块。
传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。
而FRM DRAM 在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。
存储服务器分类

存储服务器分类在信息化时代,数据存储成为了企业和个人不可或缺的部分。
为了高效地管理数据,存储服务器成为了必备的设备。
存储服务器根据其使用场景和特点,可以分为以下几类:网络附加存储(NAS)、直连存储(DAS)、存储区域网络(SAN)和云存储。
一、网络附加存储(NAS)网络附加存储(Network-Attached Storage,NAS)是一种连接在局域网上的存储设备。
它通过网络协议(如NFS、SMB/CIFS等)与其他计算机进行通信,并提供文件级别的存储服务。
NAS通常被用于小型办公环境或家庭网络中,它具有以下特点:1.1 简单易用:NAS设备具有简单的安装和配置过程,用户可以通过简单的图形化界面或Web管理界面进行操作。
1.2 文件级别共享:NAS以文件为单位进行存储和共享,可以方便地实现文件的共享和访问控制。
1.3 多协议支持:NAS设备支持多种网络协议,如NFS、SMB/CIFS 等,可以满足不同操作系统和应用程序的需求。
1.4 可扩展性:NAS设备通常支持硬盘热插拔和RAID技术,可以根据需求进行容量扩展和数据冗余。
二、直连存储(DAS)直连存储(Direct-Attached Storage,DAS)是一种直接连接到主机或服务器的存储设备。
它通过主机总线(如SATA、SAS、USB等)与主机进行通信,并提供块级别的存储服务。
DAS通常被用于单机环境或小规模网络中,它具有以下特点:2.1 高性能:DAS直接连接到主机,数据传输速度快,响应时间低,适用于对性能要求较高的应用场景。
2.2 低延迟:由于没有网络通信环节,DAS可以实现更低的数据访问延迟,提供更加实时的数据访问。
2.3 简化架构:DAS的部署相对简单,不需要额外的网络设备,减少了设备和管理成本。
2.4 安全性:DAS设备直接连接到主机,可以通过物理隔离来提高数据安全性。
三、存储区域网络(SAN)存储区域网络(Storage Area Network,SAN)是一种独立于计算资源的存储设备网络。
存储器的分类和主要性能指标(微机原理)

西南大学电子信息工程学院
19
第6章 半导体存储器及接口 §6.3 SRAM、ROM与CPU的连接方法 ⒈要解决的技术问题 ⑴ SRAM、ROM的速度要满足CPU的读/写要求; ⑵ SRAM、ROM的字数和字长要与系统要求一致; ⑶ 所构成的系统存储器要满足CPU自启动和正常运行条件。 ⒉存储器扩展技术 当单个存储器芯片不能满足系统字长或存储单元个数 的要求时,用多个存储芯片的组合来满足系统存储容量的 需求。这种组合就称为存储器的扩展。 存储器扩展的几种方式: ⑴位扩展 当单个存储芯片的字长(位数)不能满足要求时,就 需要进行位扩展。
按工作方式分按制造工艺分按存储机理分双极型ram随机存取存储器静态读写存储器sramram金属氧化物型mosram动态读写存储器dramromprom只读存储器epromr0m半导体存储器及接口西南大学电子信息工程学院22内存储器的主要性能指标内存储器的主要性能指标内存储容量内存储容量表示一个计算机系统内存储器存储数据多少的指标
西南大学电子信息工程学院
5
第6章 半导体存储器及接口 ③芯片容量
是指一片存储器芯片所具有的存储容量。
例如: SRAM芯片6264的容量为8K×8bit,即它有8K个 单元,每个单元存储8位(一个字节)二进制数据。 DRAM芯片NMC4l256的容量为256K×lbit,即它 有256K个单元,每个单元存储1位二进制数据。 ⑵最大存取时间 内存储器从接收寻找存储单元的地址码开始, 到它取出或存入数码为止所需要的最长时间。
西南大学电子信息工程学院 30
第6章 半导体存储器及接口 ②地址分配 要考虑CPU自启动条件,在8088系统中存储器操作时IO/M=0, ROM要包含0FFFF0H单元,正常运行时要用到中断向量区 0000:0000-0000:003FFH,所以RAM要包含这个区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存储分类介绍存储分类 (1)1.存储分类简介 (2)2.存储解决方案分类 (2)2.1.DAS(直接式存储) (2)2.2.NAS(网络接入存储) (3)2.3.SAN(存储区域网络) (4)3.存储方案比较 (5)3.1.NAS、SAN与传统存储系统(DAS)的比较 (5)3.2.NAS与SAN得比较 (6)1.存储分类简介目前磁盘存储市场上的存储主要有以下几种分类。
图一存储分类●存储分类根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;●开放系统的存储分为:内置存储和外挂存储;●外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);●网络化存储根据传输协议又分为:网络接入存储(Network-AttachedStorage,简称NAS)和存储区域网络(Storage Area Network,简称SAN);2.存储解决方案分类绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上。
当前市场上主流的存储解决方案主要为:直连式存储(DAS)、网络接入存储(NAS)、存储区域网络(SAN)。
2.1.DAS(直接式存储)DAS(Direct Attached Storage,直接附属存储),也可称为SAS (Server-Attached Storage,服务器附加存储)。
DAS被定义为直接连接在各种服务器或客户端扩展接口下的数据存储设备,它依赖于服务器,其本身是硬件的堆叠,不带有任何存储操作系统。
在这种方式中,存储设备是通过电缆(通常是SCSI接口电缆)直接到服务器的,I/O(输入/输入)请求直接发送到存储设备。
DAS适用于以下几种环境:●服务器在地理分布上很分散,通过SAN(存储区域网络)或NAS(网络直接存储)在它们之间进行互连非常困难;●存储系统必须被直接连接到应用服务器;●包括许多数据库应用和应用服务器在内的应用,它们需要直接连接到存储器上。
图二 DSA存储2.2.NAS(网络接入存储)NAS(Network Attached Storage,网络接入存储或称为网络直联存储设备、网络磁盘阵列),是一种专业的网络文件存储及文件备份设备,它是基于LAN(局域网)的,按照TCP/IP协议进行通信,以文件的I/O(输入/输出)方式进行数据传输。
一个NAS里面包括核心处理器,文件服务管理工具,一个或者多个的硬盘驱动器用于数据的存储。
NAS 可以应用在任何的网络环境当中。
主服务器和客户端可以非常方便地在NAS上存取任意格式的文件,包括SMB格式(Windows)NFS格式(Unix,Linux)和CIFS格式等等。
NAS 系统可以根据服务器或者客户端计算机发出的指令完成对内在文件的管理。
由于NAS具有不受地域限制、高扩展性、低功耗、高度自动化、高可用性群集、数据备份安全精确等特点,因此NAS企业内部更适合用于重要部门如财务、人事、客户等部门的数据存储备份的场合。
2.3.SAN(存储区域网络)SAN(Storage AreaNet work,存储区域网络)。
它是一种通过光纤集线器、光纤路由器、光纤交换机等连接设备将磁盘阵列、磁带等存储设备与相关服务器连接起来的高速专用子网。
SAN由三个基本的组件构成:接口(如SCSI、光纤通道、ESCON等)、连接设备(交换设备、网关、路由器、集线器等)和通信控制协议(如IP和SCSI 等)。
这三个组件再加上附加的存储设备和独立的SAN服务器,就构成一个SAN 系统。
SAN提供一个专用的、高可靠性的基于光通道的存储网络,SAN允许独立地增加它们的存储容量,也使得管理及集中控制(特别是对于全部存储设备都集群在一起的时候)更加简化。
而且,光纤接口提供了10 km的连接长度,这使得物理上分离的远距离存储变得更容易。
目前主要使用于以太网和光纤通道两类环境中。
IP SANIP SAN存储技术,顾名思义是在传统IP以太网上架构一个SAN存储网络把服务器与存储设备连接起来的存储技术。
IP SAN其实在FC SAN的基础上再进一步,它把SCSI协议完全封装在IP协议之中。
简单来说,IP SAN就是把FC SAN 中光纤通道解决的问题通过更为成熟的以太网实现了,从逻辑上讲,它是彻底的SAN架构,即为服务器提供块级服务。
IP SAN 技术有其独特的优点:节约大量成本、加快实施速度、优化可靠性以及增强扩展能力等。
采用iSCSI 技术组成的IP SAN 可以提供和传统FC SAN 相媲美的存储解决方案,而且普通服务器或PC 机只需要具备网卡,即可共享和使用大容量的存储空间。
与传统的分散式直连存储方式不同,它采用集中的存储方式,极大地提高了存储空间的利用率,方便了用户的维护管理。
iSCSI 是基于IP 协议的,它能容纳所有IP 协议网络中的部件。
通过iSCSI ,用户可以穿越标准的以太网线缆,在任何需要的地方创建实际的SAN 网络,而不需要专门的光纤通道网络在服务器和存储设备之间传送数据。
iSCSI 可以实现异地间的数据交换,使远程镜像和备份成为可能。
因为没有光纤通道对传输距离的限制,IP SAN 使用标准的TCP/IP 协议,数据即可在以太网上进行传输。
●IP SAN和FC SAN的比较SAN主要包含FC SAN和IP SAN两种,FC SAN的网络介质为光纤通道(Fibre Channel),而IP SAN使用标准的以太网。
采用IP SAN可以将SAN为服务器提供的共享特性以及IP网络的易用性很好结合在一起,并且为用户提供了类似服务器本地存储的较高性能体验。
SAN是一种进行块级服务的存储架构,一直以来,光纤通道SAN发展相对迅速,因此,许多用户认为只能通过光纤通道来实现SAN,然而,通过传统的以太网仍然可以构建SAN,那就是IP SAN。
3.存储方案比较3.1.NAS、SAN与传统存储系统(DAS)的比较●独立性。
存储系统的独立性反映了服务器与存储系统间的依赖程度。
独立性越强,服务器与存储系统之间的相关性就越小。
实际上,独立性强的存储系统可以自成体系,不必考虑与服务器物理连接的细节。
●带宽与瓶颈。
在传统存储系统中,应用程序必须通过服务器访问存储设备。
考虑到所有的访问都必须穿透服务器,容易形成瓶颈,因此要求服务器有很大的吞吐速率。
LAN的速率和服务质量(QoS)取决于网络类型。
●共享性。
在传统存储服务器体系中,存储设备并非直接面向网络用户或应用程序,而是以服务器作为访问的人口。
作为存储设备,无论是硬盘、还是阵列,都是间接地提供数据共享服务,真正意义上的物理连接只有服务器的连接。
NAS具有数据存储独立性,可以通过 LAN上运行的NFS、CIFS协议实现数据共享。
SAN直接支持服务器与存储系统之间的多对多连接,具有共享特性。
●可扩展性。
DAS体系只能通过增加服务器和磁盘存储量来扩展容量,单一扩展容量几乎不可行;业务增长造成的访问流量增加会使服务器成为瓶颈,而扩展服务器价格过高且管理难度加大。
NAS可以通过扩展I/0节点而增加容量,其带宽可以通过新增的网络接口而得以提高。
SAN具有可扩展性,可增加存储设备而实现系统扩充。
●可管理性。
传统的DAS造成企业中有大量的服务器和存储系统,其异构型和分布性使管理工作难以展开。
NAS、SAN均采用中心化数据管理,便于控制网络上的每一个存储点。
●存储介质的多样性。
虽然DAS可以采用多种存储介质,但是它与服务器之间紧密的物理连接,在使用上受到较多限制。
基于SAN的存储系统内,存储设备和文件服务器被有效地分离,使得整个系统可以采用多种存储介质;并且利用不同存储介质和设备的特点,通过统一的中心数据管理,建立多层次的异构存储体系。
3.2.NAS与SAN得比较NAS和SAN有许多共同的特点。
它们都提供集中化的数据存储和整合优化,都能有效的存取文件,都允许在众多的主机间共享并支持多种操作系统,都允许从应用服务器上分离存储。
而且,它们都提供数据的高可用性,都能通过冗余部件和RAID保证数据的完整性。
这两种技术都能满足消除存储器到服务器的直接联系的需求,有利于更灵活的存储访问,另外,SAN和NAS都是基于开放的行业标准网络协议——用于SAN的光纤通道协议和用于NAS的TCP/IP网络协议。
SAN 支持的应用软件范围宽广,其中包括提供对NAS软件的存储,而NAS一般被限制在文件层访问数据的软件。
存储区域网络(SAN)和网络附加存储(NAS)是相互竞争的两种网络存储技术,实际上,它们可以很好地相辅相成,用于存取不同类型的数据。
NAS设计用来在文件这个层次上存取数据,而SAN最适合用于高容量数据块的传输。
SAN的关键特性●SAN作为网络基础设施,是为了提供灵活、高性能和高扩展性的存储环境而设计的。
SAN通过在服务器和存储设备(例如磁盘存储系统和磁带库)之间实现连接来达到这一目的。
●高性能的光纤通道交换机和光纤通道网络协议可以确保设备连接既可靠且有效。
这些连接以本地光纤或SCSI(通过SCSI-to-Fibre Channel转换器或网关)为基础。
一个或多个光纤通道交换机以网络拓扑(SAN架构)形式为主机服务器和存储设备提供互联。
●由于SAN是为在服务器和存储设备之间传输大块数据而进行优化的。
●集中的存储备份,其中性能、数据一致性和可靠性可以确保企业关键数据的安全。
●高可用性和故障切换环境可以确保更低的成本、更高的应用水平。
●可扩展的存储虚拟化,可使存储与直接主机连接相分离,并确保动态存储分区。
●改进的灾难容错特性,在主机服务器及其连接设备之间提供光纤通道高性能和扩展的距离(达到150公里)。
今天,SAN已经渐渐与NAS环境相结合,以提供用于NAS设备的高性能海量存储。
事实上,许多SAN目前都用于NAS设备的后台,满足存储扩展性和备份的需要。