物理与美学
物理中的美学

物理中的美学物理学是一门揭示物质存在与运动规律的自然科学。
它科学地揭示了自然规律,同时也展示了自然、人类与科学的艺术魅力。
物理中有自然的美,也有科学和艺术的美。
一.物理学的美表现在以下几个方面:1.物理学发展过程中的精神美在物理学发展的过程中,物理学家在探索物理学规律的艰辛旅程中,一方面总是伴随着对美的热烈追求,另一方面又强烈的表现出他们精神上的种种美德。
哥白尼与托勒密地心说的决裂,就是有其执着追求美的因素,他深信完美的理论在数学上应该是“和谐与简单”的。
托勒密为了解释天文观测的现象,引入了许多“均轮”、“本轮”,使得天文理论既复杂又失洽。
因此,在极端困难的条件下,研究了三十多年,终于建立了不朽的日心说。
后来,开普勒深切感受到日心说的美,毅然地抛弃了从他的老师第谷那接受的地心说观点。
他说:“我从灵魂的最深处证明它是真实的,我以难以想象的心情去欣赏它的美。
”布鲁诺面对罗马教廷的熊熊烈火,用响彻环宇的“火并不能把我征服”的宣言,宣告了神学的毁灭,真理的永存,其捍卫真理的英名和美德,万世流芳。
还有牛顿、哈雷、伽利略、施士元、吴健雄、钱学森等等,每一位科学家名字的背后不知隐藏了多少可歌可泣、感人肺腑的故事。
他们坚忍不拔的毅力、默默无私的奉献、废寝忘食的工作、不惜以生命为代价、这些高尚的人格与情操、为真理奋斗不息的精神之美,正是站在我们面前的榜样,也是在教学中培养学生高尚品质的典范,可以启迪学生的智慧,引发学习兴趣,激励成功的意志,养成献身科学的良好品质。
2、物理现象的自然美中学物理涉及力、声、热、光、电、磁和原子物理等内容,物理现象千姿百态、美妙无穷。
如星移斗转、日夜交替、春秋轮回、物态互变等自然规律,因有序而美;光的反射与倒影、折射与海市蜃楼、色散与彩虹、日食和月食都有奇异的美。
人类在研究和应用物理方面创造的辉煌成果,是美的精品。
蒸汽机、发电机、激光器、电子对撞机的发明,步步促进人类生产、生活和高科技的发展;“阿波罗”登月成功,“嫦娥奔月”的传说变成了现实美谈,“神五神六”畅游太空再次实现人类超载地球之梦;众多的航天器和卫星正在全球通讯、气象观测、国防和科研等方面建功立业;电磁技术、激光技术、能源开发技术突飞猛进;核电站、太阳能电站的相继林立充分展示了物理前景无限美好。
物理中的艺术与美学

物理中的艺术与美学物理学作为一门自然科学,研究的是物质、能量和它们之间的相互作用。
然而,除了深入探索自然规律和物质世界的本质,物理学也蕴含着许多令人惊叹的艺术与美学。
本文将探讨物理学中的艺术性和美学价值,以及它们如何与科学研究融为一体。
一、优雅的数学美学物理学与数学密不可分,数学作为物理学的语言和工具,为研究者提供了一种优雅的表达方式。
物理学中的公式、方程和推导都借助于各种数学原理和方法,这些数学工具的运用使得物理学的推理过程更加精确且可靠。
菲涅耳的衍射理论和麦克斯韦方程组是物理学中的两个重要例子。
菲涅耳的衍射理论通过数学上的复杂积分和波动方程,描述了光的衍射和干涉现象。
这些理论的数学形式十分优美,将自然现象与纯粹的数学相结合,给人留下了深刻的印象。
同样,麦克斯韦方程组也体现了一种宏伟的数学美感,并为电磁学的发展奠定了基础。
二、实验与观察的视觉艺术在物理学的研究过程中,实验与观察在发现新现象和验证理论方面起着重要的作用。
实验仪器的设计和搭建往往需要物理学家充分发挥他们的创意和想象力,以确保实验过程的准确性和可重复性。
举个例子,电子显微镜是一种非常重要的实验工具,它能够通过电子束来观察样品的微观结构。
在使用电子显微镜观察时,科学家不仅可以清晰地看到物质的微观形态,还能欣赏到其令人叹为观止的美丽。
比如光的干涉与衍射现象在电子显微镜下的呈现,以及金属晶体的纹理、多层石墨烯结构的奇特图案等,都展示了物质世界的独特之美。
除了实验观察,大自然本身也以其奇特的景象和自然现象展示着物理的艺术美。
闪电的瞬间、日落的余晖、彩虹的霞光等自然景观以及天文现象如星系的演化、黑洞的吞噬等,都使我们领略到了宇宙万物的壮丽与奥秘。
三、理论和模型的美学构建物理学研究的重要目标之一是建立一个能够解释和预测各种现象的理论或模型。
优秀的理论或模型不仅需要具备很高的科学价值,还需要在美学上具备一定的魅力。
例如,爱因斯坦的广义相对论是描述引力现象的理论,这个理论不仅在科学上引起了巨大的变革,而且其数学形式和几何观念的创新也令人惊叹。
浅谈初中物理教学中的美学教育

浅谈初中物理教学中的美学教育作者:王俊华来源:《中学物理·初中》2014年第02期师者,传道授业解惑也.初中物理教师要使学生在学到物理知识的同时,还要使学生从物理学习中受到美的熏陶、汲取美学的营养.笔者认为,这样的物理教师一定很受学生爱戴.世上万物都是美的,物理是一门自然科学,自然科学其实更美.“三种基本色光按不同的比例混合可以得到千万种颜色”是物理的繁华之美,“力的平衡”是物理的和谐之美.“静止状态”是物理的凝固之美,“物态变化”是物理流动之美;“光的直线传播”是物理直观之美,“声和光的反射现象”是物理婉转之美.只要你有一双发现美的眼睛,有一颗感悟美的心灵,初中物理教学处处洋溢着美.1感受物理的规范美、严谨美规范的格式、准确的措辞、美观整洁的书写既有利于培养学生严谨的治学态度,又能给人以美的享受.物理公式要用到许多的希腊字母,教师要指导学生如何写好希腊字母,否则物理公式很难写漂亮.比如密度用ρ表示,是八年级学生遇到的第一个难写的希腊字母.笔者让学生从下往上起笔,并带有一定弧度,收笔圆润干脆,不拖泥带水.教师亲自示范,学生互相评比.选书写最佳的到黑板前示范.一定要让初中生写出的物理公式美观整洁.初学物理,许多物理专有词语对八年级学生而言,是模糊不清的.教师一定要把这些易混淆的词语收集到一起,让学生仔细区别.比如“溶化、熔化、融化”三个词,用法是不同的,在学习物理之前,学生们通常容易混淆.“溶化”指固体溶解在水或其它液体里.九年级化学“溶液”这一章用得较多.例如:“盐放进水里,很快就溶化了.”“两块冰糖搁进杯子里的水中,慢慢就在水里溶化了.”“一勺鸡精放到汤里,搅拌几下就溶化了.”“这种胶块儿放进酒精里溶化得比较快.”“熔化”指物质由固态变成液态.八年级物理“物态变化”这一章用得较多.例如:“当铁被加热到1535 ℃,且不断吸热,铁块就会慢慢熔化成铁水.” “激光产生的高温,能在瞬间熔化钢铁.”“大块状的沥青倒进大锅,加热后就熔化了.”“融化”这个词,在文学作品中用得较多,文学色彩较浓.在语文上专特指冰、雪、霜受热后化成水.例如:“初春,太阳照在桑干河上,冰开始融化了.”“太阳照射不到的地方,积雪融化得比较慢.”“太阳升起来后,花坛上的霜慢慢融化了.”“时间、时刻”这两个词,在学完机械运动这一章,就要让学生明白,这两个词在物理上其实有着严格的区别.时刻一定是某个时间点,1点整就是时刻. 时间是两时间点中的一段,比如“在滨江公园里,我们玩了20分钟”,这个“20分钟”就是指时间.如果借用数学语言表示,时刻是数轴上的一个点,时间是数轴上的一个线段.“烟、雾”:“烟”指的是固体小颗粒悬浮在空气中.“雾”指的是悬浮在空气中的许许多多的小液滴.比如说浓硝酸,浓盐酸的挥发,能在空中看到白雾.而一般化学反应生成的固体小颗粒就叫做烟.比如说白磷在空气中燃烧.金属钠与氯气发生化学反应,生成了氯化钠小颗粒固体,漂浮在空气中就叫做白烟.所以烟其实是固态,雾是液态.它们都不是气态.“物质、物体”:“物体”是由“物质”组成的.没有不是由物质组成的物体!但是物质不一定都能够组成物体,比方说,磁场是物质,但没有由磁场组成的物体.物体可以由不同物质组成,比如说桌面、桌腿可以是木头的,连接处可以是金属的.我们常用这样一句话让学生来体会“物质”、“物体”的区别:“铁锤和铁钉是两个不同的物体,但它们都是由同一种物质…铁‟构成的.”区分了以上词语以后,学生会从内心里觉得:物理是一门很严谨的学科,规范和严谨其实就是一种美.2体会物理的思想美初中主要的物理思想方法有观察法、比较法、控制变量法、等效替代法、转换法、类比法、理想化物理模型法、放大法、图像法等.在实际解题时,还要有能量意识和整体思想.从能量角度考虑,不必考虑过程中的细节,因而具有一定的优越性.有时能将题目运算大大简化,甚至不必计算就能将难题解决.如图1所示,把一个质量分布均匀不可伸长的绳子的两端悬挂在天花板A、B两点上,如果在绳的最下端c处用一个竖直向下的拉力缓慢向下拉成如图1所示的“V”字形,则绳子的重心将A.下降B.升高C.不变D.无法确定即便绳子质量均匀,绳子的重心对初中生来说,还是难以确定.当用力将c往向下拉时,拉力对绳子做功,天花板对绳子的两个拉力由于没有在力的方向上移动距离,所以天花板对绳子不做功,而绳子在拉之前和拉之后,绳子的动能均为为零.所以,做功的结果只能是绳子的重力势能增加,绳子的重心升高.或者反过来,当撤消外力后,绳子会上下跳动许多次才能停下来,这是因为重力势能和绳子的动能在相互转化的缘故.也就是说,撤消外力后绳子的重心会下降.故拉绳子c处时,绳子的重心是升高的.系统是由相互作用、相互依赖的各部分组成的有机整体,用系统观点分析、处理问题的方法称为整体法.从整体考虑,可以使问题处理得到简化.如图2所示,静止在光滑水平面上的小车,受到手持磁铁的吸引,整个系统的运动情况是A.向左运动,越来越快B.向右运动,越来越快C.运动状态不会发生变化D.条件不足,无法判断分析小车和磁铁之间力的作用是相互的,对于小车和磁铁整个系统而言,在水平方向上是不受力的,原来静止的还将保持静止.如果单独对小车或磁铁进行受力分析,都将麻烦而难以解决.通过这两道题,学生一定会感到物理思想之美.3体会物理的真实美流体在流速大的地方压强小,在流速小的地方压强大.在处理这个知识点时,笔者常常采取这样的实验引入新课:取一个吹风机,让它竖直向上只吹冷风,然后将乒乓球放置于风口,左右移动吹风机,乒乓球一边随着吹风机左右移动一边跳舞.甚至我们还可以用一只铁圈从左向右凭空套过乒乓球.学生会很惊奇,为这种奇妙的物理现象所叹服.物理之美已经将学生牢牢地征服.这时,再来分析乒乓球为什么不会掉下来,学生就会很感兴趣,水到渠成.学习物态变化时,我们把固体分为两类,晶体和非晶体.为什么取这样一个名字呢?书上没有讲,笔者借机给学生补充并进行美的熏陶:晶体是原子、离子或分子按照一定的周期性在空间排列,在结晶过程中形成具有一定规则的几何外形的固体.晶体在天然状况下通常呈现规则的几何形状,比如食盐呈立方体;冰花呈六角棱柱体;明矾呈八面体等.雪花是冰的天然结晶,所以会有规则的外形.其实雪花的个体是极其微小的,大约5000颗雪花总质量不过才1克,所以,很多同学并没有仔细观察过.教师适时推出一组雪花图片(见图3),学生大呼过瘾.大自然的神奇、物理的对称美,已经深深印入学生脑海中.4领略物理的和谐美、统一美给学生心灵上切实的震撼、意想不到的感觉就是物理的和谐统一之美,它会激发学生学习物理的兴趣.例如,一个地质勘探小分队,在野外河边休息时发现了一种矿石,他们非常想尽快知道这种矿石的密度大约是多少,但是手中只有皮尺、直木棍和针线包中缝衣服用的针和细线,请你帮助他们利用现有的物品,设计一个测定矿石密度的方案,并推导出计算矿石密度的表达式.操作步骤如下:(1)在直木棍上选一固定点作为支点,用细线把直木棍悬挂起来;(2)如图4,使木棍在水平位置平衡;(3)分别量出悬挂矿石和石块的点到支点的距离为l1和l2;(4)将矿石浸没在水中,移动石块直到木棍再次水平平衡;(5)量出悬挂石块的点到支点的距离为l3(如图5);(6)计算矿石密度ρ矿=l2 l2-l3ρ水.解析如下:F1l1=F2l2.第一次杠杆平衡得G矿l1=G石l2,即ρ矿gV矿l1=G石l2(1)第二次杠杆平衡得(G矿-F浮)l1=G石l3,即(ρ矿gV矿-ρ水gV矿)l1=G石l3(2)由(1)和(2)可解得ρ矿=l2 l2-l3ρ水.这时,引导学生回忆浮力一个固定知识块:一个实心物体在空气中的重力为G,浸没在水中时受到的拉力为F拉,那么物体的密度为:G G-F拉ρ水.解析如下:因为F浮=ρ水gV排,所以V物=V排=F浮ρ水g=G-F拉ρ水g,ρ物=m物 V物=m物 V物=G/g G-F拉ρ水g=G G-F拉ρ水.笔者再次引导学生:图4和图5的装置可理解为是一把秤,一把测重力的秤,在空气中的示数为l2,浸没在水中的示数为l3,这样两个题目的结果就实现了完美统一.和谐和统一在这道题中得到完美的诠释,美再次在物理教学中得到体现.5在物理习题教学中渗透美学教育物理规律肯定是美的,运用物理规律解决问题同样蕴含着美.比如在物理习题课上,教师可以让学生在美学思想的指导下,从美的角度思考,有时可以帮助学生理解,减少错误的发生.如图6所示的电路,三个电阻是串联、并联还是混联?一直以来,笔者发现学生对这种类型的题目比较头疼.笔者处理这道题的方法之一就是先把三个电阻用不同的颜色区别开来,然后将电路进行等效转化,转化过程如下图所示:学生觉得物理原来可以这么美,不必听老师枯燥的讲解,只要将图形变换竟然也能把复杂的题目弄懂.可以预见,学生一定会被物理所折服,并深深爱上物理.物理的美还表现在很多方面,比如物理的简洁之美:牛顿只用看似简单的三条定律就概括了物质世界纷繁复杂的力和运动现象,麦克斯韦只用四个方程组就让电和磁实现完美统一等.在初中物理教学中,我们也要引导学生巧妙运用物理规律,简单直接地解决繁杂问题,用巧劲解难题.在初中物理教学中,教师要是能有意识地挖掘物理这门学科美的因素,对初中生进行美的教育,不仅能使初中生更好地掌握双基,还能使初中生在受教育的同时体验到美、享受到美,把物理学习变为一种高级的审美享受,让初中物理学习不再是负担,而是短暂人生中的一段快乐旅程.使得初中生能充分发挥主观能动性,真正意义上从被动学习转为主动地学习.。
物理美学研究现状与发展趋势之我见

技
术
物
理
教
学
V 1 2 o 2 o . ON .
T C N C L PY I S T A H N E H IA H S C E C I G
Jn2 2 u . 01
物 理美学研 究现状 与发展趋 势之我见
左庆 峰 ( 贺州学 源自物 电系 ,广 西 贺州从 物 理 学 的 发展 看 宇 宙之 和 谐 美
陈 雅
( 苏 省 南 通 市 第 二 中 学 ,江 苏 南 通 2 0 2 江 60 )
中国古代道家 的思维本 质,就是世界上所有 的 事物都具有统 一性和相 互关系, 《 老子》 日: “ 祸 兮福之所倚 ,福兮祸 之所伏 ”.道家 的思维传统不 追求绝对 的一 致,而企望在两极之 间保持 一种 协调 或互补 的关系 .有 趣的是在物理伟人爱 因斯坦 的头 脑 中, 自然 界中所有存在 的事物 ,也都是 处于密切 的相 互联 结和普遍的联系 中,宇 宙的和谐 在物 理学 的发 展 历 程 中处 处 有 体 现 . 1 电与磁 的和谐 .
[] 振 宁. 和理 论物 理学 . 1杨 美 自然辩 证法 通 讯 [] 18 J. 98 [] 健 平 . 振 宁 的物 理美 学 思想 研 究 [] 皖西 学 院 学报 , 2刘 杨 J.
20 09
[] 宇德 著. 3厚 物理 文 化与物 理 学史 []浙 江 : M. 浙江 科 学技 术 出 版 社、 西南 交通 大学 出版社 ,20 04 [] 永 芝著. 学原 理 []南 京 :东南 大学 出版 社 ,20 4顾 美 M. 08 [] 大 宁编著 . 5施 物理 与艺术 []北 京 :科学 出版 社 ,2 1 M. 00
美与物理学观后感

美与物理学观后感引言美和物理学是两个互不相干的领域,前者涉及我们对事物的审美感受,后者则研究物质、力、运动等自然现象。
然而,在我深入学习物理学的过程中,我发现美和物理学之间存在着一种微妙的联系。
本文将探讨美与物理学之间的关系,并以个人的观后感进行述述。
美学与物理学的联系美学是一门研究审美的学科,而物理学则是一门关于自然界规律的学科。
尽管这两个领域看似没有太多交集,但当我们深入研究物理学,探索自然现象的规律时,我们不禁会对大自然的美丽和奥妙感到惊叹。
对称性与美物理学中的对称性概念是美学中的一个核心要素。
对称性在自然界中无处不在,无论是花朵、水晶、建筑物还是海浪,都呈现出各种形式的对称性。
物理学研究对称性的规律,而这些对称性的存在赋予了自然界独特的美感。
数学与美的奥妙物理学是一门数学工具重要的学科,数学在物理学中扮演着至关重要的角色。
数学的美感来源于它的简洁性、逻辑性和完备性。
而物理学中的数学模型则赋予了我们理解自然界的能力,从而将美学和数学联系在一起。
能量与美的共振物理学研究能量的传递与转化的规律,而美学关注的是物体所散发的能量带来的感受。
当我们欣赏一幅画作或是一首音乐时,我们往往会感受到其中蕴含的能量与情感,这与物理学所研究的能量规律相呼应。
美学和物理学都以能量为基础,它们共同带给我们情感上的满足。
个人观后感在学习物理学的过程中,我深深感受到美和物理学之间的联系。
物理学世界的规律和美学的审美感受并不是完全隔离的,它们相互影响、相互交织,共同构成了世界的奇妙之处。
通过学习物理学,我开始更加注重对自然界的观察和感受。
我发现,大自然中存在着各种形式的对称性,它们展现出一种纯粹而完美的美。
这种美让我感受到自然界的秩序和和谐。
物理学为我打开了一扇数学的大门,让我更加深入地理解了数学的美妙和重要性。
数学的逻辑性和严谨性给了我对事物的抽象思维和分析能力,使我能够更好地理解和欣赏艺术作品中的美。
在我学习物理学时,我也意识到能量的重要性。
《美与物理学》观后感

杨振宁博士是大家熟知的诺贝尔奖金获得者,举世闻名的物理学家。
近三百年来,物理学上留下九个划时代的里程碑般的方程式,涉及十二位科学家。
这十二位科学家至今还健在的就是杨振宁和他的学生密尔斯,而划时代的九个物理方程式中的第九个就是杨振宁和密尔斯的共同场。
如果再考虑杨振宁还有获得诺贝尔奖金的宇宙不守恒定律,那么杨振宁理所当然是当代物理学的泰斗了。
然而,这只是一面,许多人并不知道杨振宁对音乐、诗歌、绘画等艺术方面也有极高的造诣。
这篇妙笔生花的《美与物理学》,虽然是管中窥豹,但确实可以让我们领略他在人文素质方面的风采。
本世纪初,是物理学界人才荟萃,群英辈出的年代,是一个窥视宇宙奥秘翻天覆地的创新年代。
不仅涌现一批著名的物理学家,而且都有鲜明的个性与风格,比如狄拉克。
杨振宁博士一直想把他的风格写给文、史、艺术方面的朋友们看,但不知如何下笔。
一次偶然看到香港大众报上的一篇文章,其中引用了高适《答侯少府》的两句诗:“性灵出万象,风骨超常伦”,觉得非常高兴,认为用这两句话来描述狄拉克方程和反粒子理论再合适不过了,于是写了这篇文章。
他在这篇文章中指出,每个科学家的研究都是有风格的,正如一位音乐家听到几个音节后,就能辨认出莫扎特、贝多芬或舒伯特的音乐。
同样,一位数学家或物理学家也能在读了数页文字后辨认出柯西、高斯、雅可比或克尔期豪夫的工作。
这是因为,他以物理学为例,物理学的原理有它的结构。
这个结构有它的美和妙的地方。
而各个物理学工作者,对于这个结构不同的美和妙的地方,有不同的感觉。
所以,他会形成自己的风格。
从这个观点出发,他认为狄拉克的文章有一种“秋水文章不染尘”的清新,有一种充满数学的简洁美和逻辑美,“独抒性灵,不拘格套”是他的风格。
而海森伯的文章有惊人的独创性,但朦胧有渣滓。
因为狄拉克的灵感来自对数学美的直觉欣赏,而海森伯的灵感来自实验物理和唯象物理。
他认为牛顿的运动方程、麦克斯韦方程、爱因斯坦狭义与广义相对论方程、狄拉克方程、海森伯方程和其他五、六个方程是物理学理论架构的骨干,可以说它们是造物者的诗篇。
物理学中的美学文化

物理学中的美学文化物理学(physics)一词起源于古希腊,拉丁文原意是“自然”。
自公元前七世纪,物理学就以自然哲学的形式从人类的生产劳动中萌芽出来,先后经历了古代物理学、经典物理学、近代物理学和现代物理学四个阶段。
然而物理学在这近三千年的发展历程中却存在着一些起过作用的、科学之外的,并且在一定程度上为非理性的、有价值的动力因素,它们与美学有关。
美学是一门既古老又年轻的科学。
从古代到现代,随着人类思维能力的发展和审美领域的扩大,人们开始对审美经验进行思考;于是美学思想便逐步形成。
西方美学思想亦发源于古希腊;但是早期的美学思想大都依附于自然科学,往往是在探究宇宙本源时涉及美的问题。
其代表人物就是柏拉图和亚里士多德。
亚里士多德关于美的理论是建立在对柏拉图唯心主义理式论的批判基础上的,他认为美不存在于超感性的理式世界;美只存在于具体的美的事物中。
物理学固然不是美学,但物理学中包含着美。
物理美应包含三部分:自然物理现象的美;物理创造的美;物理学作为一门科学的美——物理学美。
由于物理学所反映的是自然界丰富多彩的运动形式及规律性,因而它也就同时展现了自然界在结构上的对称、和谐与韵律美。
物理美的主要表现形式是用其具有的性质来表现的,这种表现反映了物理世界、物理学内部的规律性,这就使得这些性质之间具有相互联系,因而没有非常明显的界限,也就是说物理学美蕴涵了简单美,对称美,和谐美的统一。
一、简单深刻美在一个艺术家眼里简单是一种美。
自然现象错综复杂,物理学则力求用简单的方程或定律去概括自然规律,但其反映的内在规律确是非常深刻的。
如能量的转化和守恒定律反映了各种不同形式的能量的转化,牛顿的三大定律更是概括了宏观低速条件下各种机械运动的规律,麦克斯韦电磁方程组将复杂的电磁现象统一其中,爱因斯坦相对论中的基本原理简单凝练,但其中内涵确是丰富而深刻的。
二、对称守恒美对称是自然界中广泛存在的也是人们很乐于接受的一种美学形式,物理学在对自然的表述中处处显现出了这种对称的美:引力和斥力,“电生磁”与“磁生电”,粒子与反粒子,物质与反物质、圆孔或单缝衍射图样的对称、无限长直导线周围磁场的轴对称等等。
浅谈物理学中的美学

浅谈物理学中的美学笔者以物理学中的美感入手,探究物理之美对大家的作用与对学习物理的促进作用。
在许多人心中,科学和艺术是风马牛不相及的两个领域学追求的是严谨,是理性的演繹;而艺术追求的是美感,是灵感的发挥。
两者南辕北辙,毫不相干,真是这样吗?标签:和谐奇异美;简单对称美;审美观;热情;情操一、物理学中的美物理教育是为了培养学生认识宇宙,让学生从繁杂、混乱无序之中,整理出统一的、简洁的秩序和规律。
这里所谓的“秩序”意味着真理与和谐。
而审美教育是为了让学生从零散、无序的艺术哲学之中整理出令人神往的秩序和规律。
可见,物理教育与审美教育都是为了秩序,追求“规律”,只是学科不同,相应的教育方式和方法不同而已。
以下我们看看物理学中美的体现与作用。
1.和谐奇异美古代思想家把美与和谐画上等号,希腊古典时代的大哲学家们认为,美在于和谐,美应当是完美的,千百年来,这些观点深刻地影响了一代又一代的科学家,所以无论是地心说还是日心说都认为天体运动是最完美,最和谐的匀速圆周运动。
又如海市蜃楼现象,在风平浪静的海面上,有时会突然出现亭台楼阁、城郭古堡、村庄小岛等幻影,虚无飘缈、变幻莫测、宛若仙境,给我们呈现了奇异的美。
2.简单对称美在美学中,“对称”是形式美的表现,如空间上的对称,体现为:在运动学中,如机械振动,又如在物体竖直上抛运动与自由落体中的对称;在光学中的镜像对称。
在时间上的对称,体现为:单摆运动中的时间,交变电流与电磁振荡中的时间对称。
物理学公式、定律表达方式上和理论结构上所反映的对称性更是不胜枚举。
如电磁学中静电力的库仑定律就是追求跟万有引力平方反比定律的对称而获得的。
也正是由于对称性,让法拉第在奥斯特发现“电生磁”后,坚信“磁也能产生电”,并坚持实验了十年,终于取得了成功,才有了我们现在的电气化时代。
物质世界的运动形式最简单,比如:光沿着最简单的直线传播;行星沿着简单的几何曲线──圆、椭圆运动。
物质世界的组成也最简单,由基本粒子组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与美学
摘要:本文从古希腊的艺术与物理学谈起,讨论了桥托确立“透视法”和哥白尼的日心说,爱因斯坦的相对论和毕加索的立体主义,将物理学的发展与艺术的发展联系起来,阐述了物理与美学的关系。
关键字物理美学
物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学,是人们对无生命自然界中物质的转变的知识做出规律性的总结。
美的内涵是对能引起人们美感的客观事物的共同本质属性的抽象概括,其本质是审美客体合目的性和合规律性的统一。
美的存在也是客观事物的一种表现,是一种普遍的东西。
美学是从人对现实的审美关系出发,以艺术作为主要对象,研究美、丑、崇高等审美范畴和人的审美意识,美感经验,以及美的创造、发展及其规律的科学。
美学是以对美的本质及其意义的研究为主题的学科。
物理与美学就是物理学家与艺术学家通过不同的方式、不同的思维方式来认知事物的本源与特性,他们都揭示了人类的想象力与创造力。
从古希腊的雕塑家到瓦霍耳和姜斯,从亚里士多德到爱因斯坦,艺术家们似乎预见到了科学家们的发现。
先溯源古希腊的艺术与物理学。
这时期的情况看起来似乎简单(但不可轻视,相对后来的变化对照认识非常重要):艺术方面,雕塑家已精确掌握了人体各部位间的比例;物理学方面(更多属于思辨),以欧几里得为代表,认为空间是空虚的;以亚里士多德为代表,认为时间是线形的、顺序的;而认为光是在由空间、时间形成的框架内到处碰撞弹射。
中世纪,空间和时间的主流概念被扭曲。
空间被宗教教义的分类法一块块分割开,不再是各向同性,也不复可以量度;时间在艺术活动中表现出非线形的任意性;光也被这时期的艺术家认为是某种具有灵性的东西。
中世纪后期,空间、时间和光的概念又渐复归古希腊。
是画家乔托把欧几里得空间带回美术界(确立“透视法”),同时还为艺术树立了静止时间的框架。
乔托是一位开先河的画家,在他之前没有人这么作画。
他完全没有可以参照和借鉴的蓝本,全凭自己的勤奋和天才的想像力摸索着前进。
虽然我们今天提起意大利文艺复兴时期的画家,首先想到的便是达芬奇、米开朗琪罗和拉斐尔,而并非乔托,但正是这位艺术的先驱,为后代的画家铺平了道路,才会有意大利文艺复兴全盛时期绘画艺术的辉煌成就。
尊重科学、崇尚自然、再现真实生活,这是乔托绘画的鲜明特色。
乔托笔下的宗教人物摆脱了神灵般的肃穆与僵硬,具有现实中饮食男女的七情六欲,在处理手法上,也更加注重画面主体三维空间效果的表现,使人物造型更为生动、逼真,线条的运用也日趋娴熟畅达。
托勒密认为,地球静止不动地坐镇宇宙的中心,所有的天体,包括太阳在内,都围绕地球运转。
但是,人们在观测中,发现天体的运行有一种忽前忽后、时快时慢的现象。
为了解释忽前忽后的现象,托勒密说,环绕地球作均衡运动的,并不是天体本身,而是天体运动的圆轮中心。
他把环绕地球的圆轮叫做“均轮”,较小的圆轮叫做“本轮”。
为了解释时快时慢的现象,他又在主要的“本轮”之外,增加一些辅助的“本轮”,还采用了“虚轮”的说法,这样就可以使“本轮”中心的不均衡的运动,从“虚轮”的中心看来仿佛是“均衡”的。
托勒密就这样对古代的观测资料作出了牵强附会的解释。
哥白尼曾十分勤奋地钻研过托勒密的著作。
他看出了托勒密的错误结论和科学方法之间的矛盾。
哥白尼正是发现了托勒密的错误的根源,才找到了真理。
哥白尼认识到,天文学的发展道路,不应该继续“修补”托勒密的旧学说,而是要发现宇宙结构的新学说。
他打过一个比方:那些站在
托勒密立场上的学者,从事个别的、孤立的观测,拼凑些大小重叠的“本轮”来解释宇宙的现象,就好像有人东找西寻地捡来四肢和头颅,把它们描绘下来,结果并不像人,却像个怪物。
哥白尼观测天体的目的和过去的学者相反。
他不是强迫宇宙现象服从“地球中心”学说。
哥白尼有一句名言:“现象引导天文学家。
”他正是要让宇宙现象来解答他所提出的问题,要让观测到的现象证实一个新创立的学说——“太阳中心”学说。
他这种目标明确的观测,终于促成了天文学的彻底变革。
1543年,哥白尼出版《天体运行论》。
日心说从根本上来说脱胎于艺术家选定观察位置。
伽利略通过观察支持哥白尼的学说,进而提出惯性参考系、绝对静止概念。
前有艺术中观察透视画法作品,观者需处于一个绝对静止状态,今有物理学中绝对静止点。
十九世纪中叶,摄影术的发明对艺术产生极大影响。
1863年,马奈展出大幅油画《草地上的午餐》,画作有意违背透视原理,阴影处理也不一致,无疑是对传统美术范式挑战。
有相当多的艺术史家视此为现代艺术的开端。
其后莫奈致力于表现物体随时间的变化;而塞尚恰相反,有意在画中去除时间这个变数。
1905年,爱因斯坦掀起物理学革命,颠覆了牛顿的空间和时间概念。
爱因斯坦指出,时间和空间反逆关联(后也称时空连续统):当时间扩展时,空间就会收缩;当时间收缩时,空间就会膨胀。
另外,狭义相对论将光提到凌驾于空间和时间两者的地位上。
毕加索以自己独特的视角审视这个世界。
于1907年完成的《阿维农少女》,不仅是毕加索走入黑人时期以至立体主义时期的里程碑,还是人类再次以平面画布描述三度空间,从此立体主义进入了快速发展的新时期。
扭曲的空间,扭曲的人物,画面中央的两个形象脸部呈正面,但其鼻子却画成了侧面;左边形象侧面的头部,眼睛却是正面的。
不同角度的视象被结合在同一个形象上。
这种所谓“同时性视象”的语言,被更加明显地用在了画面右边那个蹲着的形象上。
这个呈四分之三背面的形象,由于受到分解与拼接的处理,而脱离了脊柱的中轴。
它的腿和手臂均被拉长,暗示着向深处的延伸;而那头部也被拧了过来,直楞楞地对着观者。
毕加索似乎是围着形象绕了180度之后,才将诸角度的视象综合为这一形象的。
这种画法,彻底打破了自意大利文艺复兴之始的五百年来透视法则对画家的限制。
实际上,《亚维农的少女》是一个独立的绘画结构,它并不关照外在的世界。
它所关照的,是它自身的形、色构成的世界。
它脱胎于塞尚那些描绘浴女的纪念碑式作品。
它以某种不同于自然秩序的秩序,组建了一个独立的绘画结构。
爱因斯坦的相对论以他自己超凡的想象力与独特的思维方式向世人展现了一个相对的时空世界。
相对论超越了传统的经典物理学,是物理学的一次革新,是使得物理学大厦向更高发展的奠基石。
无论是相对论的动力学,还是相对论的时空观,都向我们展示了一代物理学家爱因斯坦丰富的想象力。
那几个简单的公式转变,不正是爱因斯坦独特的有别于传统的思维方式所带来的震撼。
无论是毕加索还是爱因斯坦,他们都在原有的体系下创立了属于自己的独特体系。
对待同一事物的看法是如此的相似,虽然两者分属不同的领域。
两位伟人同时在各自的领域引领了一场变革。
毕加索理解相对论吗,爱因斯坦懂得立体主义吗?答案是否定的。
假设毕加索与爱因斯坦就是一个人,接下来历史会发生怎样的转变呢?可能性有很多种,一种可能是现代物理与现代艺术的到来会晚几十年,甚至几个世纪;也有可能是人类的进程速度会加快,物理与艺术的结合,将
会诞生卓越的智慧,物理与艺术的碰撞将会给人类带来无尽的思考创新源泉。
但是上帝是公平的,正如某位哲人所说,每个人都是咬坏的苹果,总有自己的特点与缺点。
[1] 史莱因著.暴永宁,吴伯泽译. 艺术与物理学——时空和光的艺术观与物理观. 长春:吉林人民出版社,2001
[2] 米勒著.方在庆,伍梅红译. 爱因斯坦·毕加索——空间、时间和动人心魄之美. 上海:上海科技教育出版社,2003
[3] 拉塞尔著.陈世怀等译. 现代艺术的意义. 南京:江苏美术出版社,1996。