受扭构件承载力计算
桥梁受扭构件承载力计算

★纵向受力钢筋配筋率应满足:
st
≥
s,tmin Ab s,tm hin 0.08 2t
1fcd fsd
1.5
1 0.5VdWd Tdbho
●矩形截面承受弯、剪、扭的构件,当符合条件:
0Vd 0Td bh0 Wt
≤ 0.50103 ftd (kN/mm2)
§5.3 在弯、剪、扭共同作用下矩形截面构件的承载力计算
开裂扭矩的计算式为:
Tcr0.7Wt ftd
Wt
b2 6
(3hb)
§5.2 纯扭构件的破坏特征和承载力计算
二、矩形截面纯扭构件的破坏特征
抗扭钢筋:抗扭纵筋
抗扭箍筋
少筋破坏—一开裂,钢筋马上屈服,结构立即破坏;
适筋破坏—纵筋、箍筋先屈服,混凝土受压面压碎;
超筋破坏—纵筋、箍筋未屈服,混凝土受压面先压碎;
◆《混凝土结构设计规范》(GB50010-2002)对于弯剪 扭共同作用构件的配筋计算,采取先按弯矩、剪力和扭矩 各自“单独”作用进行配筋计算,然后再把各种相应配筋 叠加的截面设计方法。
◆《公路桥规》也采取叠加计算的截面设计简化方法。
§5.3 在弯、剪、扭共同作用下矩形截面构件的承载力计算
《公路桥规》弯扭剪构件承载力计算
3.剪扭型破坏:剪力和扭矩都较大 ,破坏时与螺旋形裂缝相 交的钢筋受拉并达到屈服强度,受压区靠近另一侧面(图
5-2c)。
§5.3 在弯、剪、扭共同作用下矩形截面构件的承载力计算 二.弯剪扭构件的配筋计算方法
★弯剪扭共同作用下的钢筋混凝土构件承载力计算方法,与纯扭构件 相同,主要以变角度空间桁架理论和斜弯理论为基础的两种计算方法。 但是在实际应用中,对于弯扭及弯剪扭共同作用下的构件,当按上述 两种理论方法计算是非常复杂的。因此需要简化的实用计算方法。
07 钢筋混凝土受扭构件承载力计算-精品文档

分别计算各区合力及其对截面形心的 力偶之和,可求得塑性极限开裂扭矩为
塑性开裂扭矩
2
截面抗扭塑性抵抗矩
b 3 T f h b fW c r , p t t t 6
混凝土的抗拉强度设计值
按塑性理论,对理想弹塑性材料,截面上某一点应力 达到材料强度时并不立即破坏,而是保持极限应力继续变 形,扭矩仍可继续增加,直到截面上各点应力均达到极限 强度。才达到极限承载力。此时截面上的剪应力分布为四 个区,如图7.2(b)所示。
m ax
T W te
7.2.2 矩形截面的开裂扭矩 按弹性理论, 当主拉应力σtp=τmax=ft时,构件开裂, 即
max
弹性开裂扭矩
Tcr,e ft Wte
截面抗扭弹性抵抗矩
T c r,e ft W te
混凝土的抗扭强度设计值
按塑性理论,对理想弹塑性材料,截面上某一点应力 达到材料强度时并不立即破坏,而是保持极限应力继续变 形,扭矩仍可继续增加,直到截面上各点应力均达到极限 强度。才达到极限承载力。此时截面上的剪应力分布为四 个区,如图7.2(b)所示。
T W te
截面抗扭弹性抵抗矩
由材料力学知识可知,构件侧面的主拉应力σtp和主压 应力σcp相等,主拉应力和主压应力轨迹沿构件表面呈螺旋 形。当主拉应力达到混凝土抗拉强度时,在构件长边中某 个薄弱部位首先开裂,裂缝沿主压应力轨迹迅速延伸。对 于素混凝土构件,一旦开裂就会导致构件破坏,破坏面呈 一空间扭曲面。
2 b W fw 3 h b 6 h f W tf bf b 2 hf W tf bf b 2
T .7fW c r 0 t t
对矩形截面, 截面抗扭塑性抵抗矩按下式计算:
钢筋混凝土受扭构件承载力计算_OK

T
M V
剪应力大的一侧先受拉开裂,
最后破坏, T很小时,仅发生剪
切破坏
23
5.3.3弯剪扭构件实用计算公式
1. 均布荷载下的矩形截面及T形、I形截面构件
弯和扭分开计算
抗弯钢筋布置在构件的受拉区,抗 扭纵筋沿截面均匀布置
剪和扭考虑混凝土部分的相关关系
Vc0 0.7 ftbh0,Tc0 0.35Wt ft
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
q = Tte
F1 D
C
te
Acor
h
b
qhcor
Nd d F2 A
Nsvt
s hcor ctg
q B
11
2. 承载力计算分析
纵筋的拉力
裂缝 箍筋
纵筋
T T
F1 F2 qhcorctg F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
ft fy
,不考虑纵筋的作用;若svt min
0.28
ft f yv
,不考虑箍筋的作用
31
5.4 受扭构件配筋构造要求
1. 抗扭纵筋
a. 最小配筋率
tl ,min
Atl ,min bh
0.6
T Vb
ft fy
其中,当 T 2时,取 T 2
Vb
Vb
b. 受扭纵筋应对称设置于截面的周边,间距不大于200mm且不大 于截面短边长度;
h'f 2 (b' b) 2f
混凝土结构设计第8章受扭构件承载力计算

少筋破坏
01
当配筋数量过少时
02
一旦开裂,将导致扭转角迅速增大,
03
构件随即破坏。 与受弯少筋梁类似,呈受拉脆性破坏特征
04
超筋破坏
箍筋和纵筋配置都过大
在钢筋屈服前混凝土就压坏,
为受压脆性破坏。
与受弯超筋梁类似
部分超筋破坏
——箍筋和受扭纵筋两部分配置不协调
8.3 一般受扭构件承载力计算
8.3.1 钢筋混凝土纯扭构件 1. 矩形截面纯扭构件承载力计算 (1)开裂扭矩 按弹性理论 按塑性理论 考虑混凝土的弹塑性性质 截面受扭塑性抵抗矩
扭矩使纵筋产生拉应力,与受弯时钢筋拉应力叠加,使钢筋拉应力增大,从而会使受弯承载力降低。
而扭矩和剪力产生的剪应力总会在构件的一个侧面上叠加,因此承载力总是小于剪力和扭矩单独作用的承载力。
试验表明:在弯矩、剪力和扭矩的共同作用下,各项承载力是相互关联的,其相互影响十分复杂。
为了简化,《规范》偏于安全地将受弯所需的纵筋与受扭所需纵筋分别计算后进行叠加,而对剪扭作用为避免混凝土部分的抗力被重复利用,考虑混凝土项的相关作用,箍筋的贡献则采用简单叠加方法。
02
《规范》建议取0.6≤z ≤1.7,将不会发生“部分超筋破坏” 设计中通常取z =1.2
01
—— 截面核芯部分的周长,
04
——受扭纵筋的抗拉强度设计值;
03
(3) 抗扭纵筋与箍筋的配筋强度比
2.T形和工字形截面纯扭构件承载力计算 腹板: 受拉翼缘: 受压翼缘: 有效翼缘宽度应满足bf' ≤b+6hf' 及bf ≤b+6hf的条件,且hw/b≤6。 总扭矩T由腹板、受压翼缘和受拉翼缘三个矩形块承担
受扭构件承载力计算

(1)腹板
(6-8)
(2)受压翼缘
(6-9)
(3)受拉翼缘
(6-10)
上一页 下一页 返回
第一节纯扭构件承载力计算
四、箱形截面纯扭构件承载力计算
箱形截面纯扭构件承载力按下式计算:
(6-11) (6-12)
(6-13)
上一页 返回
第二节弯剪扭构件承载力计算
一、弯剪扭构件截面限制条件 (1)在弯矩、剪力和扭矩共同作用下,对hw/b毛6的矩形、T形、I形截面和 hw/tw ≤ 6的箱形截面构件(图6-2 ),其截面应符合下列条件: (6-14) (6-15)
试验表明,对于钢筋混凝土矩形截面受扭构件,其破坏形态与配置 钢筋的数量多少有关,可以分为三类: (1)少筋破坏。 (2)适筋破坏。 (3)超筋破坏。
上一页 下一页 返回
第一节纯扭构件承载力计算
二、矩形截面纯扭构件承载力计算
矩形截面纯扭构件承载力按下式计算:
(6-2) (6-3)
三、T形和I形截面纯扭构件承载力计算
(3)在轴向压力、弯矩、剪力和扭矩共同作用下的钢筋混凝土矩形截面框架 柱,其纵向钢筋截面面积应分别按偏心受压构件的正截面受压承载力和 剪扭构件的受扭承载力计算确定,并应配置在相应的位置;箍筋截面面积 应分别按剪扭构件的受剪承载力和受扭承载力计算确定,并应配置在相 应的位置。
上一页 下一页 返回
第二节弯剪扭构件承载力计算
上一页 返回
图6-1工程中常见的受扭构件
返回
图6-2受扭构件截面
返回
图6-2受扭构件截面
返回
表6-2受扭构件纵筋的构浩要求
返回
(6-4) (6-5) (6-6)
上一页 下一页 返回
第一节纯扭构件承载力计算
第8章-受扭构件承载力的计算-自学笔记汇总

第8章受扭构件承载力的计算§8.1 概述实际工程中哪些构件属于受扭构件?工程结构中,结构或构件处于受扭的情况很多,但处于纯扭矩作用的情况很少,大多数都是处于弯矩、剪力、扭矩共同作用下的复合受扭情况,比如吊车梁、框架边梁、雨棚梁等,如图8-1所示。
图8-1 受扭构件实例受扭的两种情况:平衡扭转和协调扭转。
静定的受扭构件,由荷载产生的扭矩是由构件的静力平衡条件确定的,与受扭构件的扭转刚度无关,此时称为平衡扭转。
如图8-1(a )所示的吊车梁,在竖向轮压和吊车横向刹车力的共同作用下,对吊车梁截面产生扭矩T 的情形即为平衡扭转问题。
对于超静定结构体系,构件上产生的扭矩除了静力平衡条件以外,还必须由相邻构件的变形协调条件才能确定,此时称为协调扭转。
如图8-1(b )所示的框架楼面梁体系,框架的边梁和楼面梁的刚度比对边梁的扭转影响显著,当边梁刚度较大时,对楼面梁的约束就大,则楼面梁的支座弯矩就大,此支座弯矩作用在边梁上即是其承受的扭矩,该扭矩由楼面梁支承点处的转角与该处框架边梁扭转角的变形协调条件所决定,所以这种受扭情况为协调扭转。
§8.2 纯扭构件的试验研究8.2.1 破坏形态钢筋混凝土纯扭构件的最终破坏形态为:三面螺旋形受拉裂缝和一面(截面长边)的斜压破坏面,如图8-3所示。
试验研究表明,钢筋混凝土构件截面的极限扭矩比相应的素混凝土构件增大很多,但开裂扭矩增大不多。
图8-2 未开裂混凝土构件受扭图8-3 开裂混凝土构件的受力状态 8.2.2 纵筋和箍筋配置对纯扭构件破坏性态的影响受扭构件的四种破坏形态受扭构件的破坏形态与受扭纵筋和受扭箍筋配筋率的大小有关,大致可分为适筋破坏、部分超筋破坏、完全超筋破坏和少筋破坏四类。
对于正常配筋条件下的钢筋混凝土构件,在扭矩作用下,纵筋和箍筋先到达屈服强度,然后混凝土被压碎而破坏。
这种破坏与受弯构件适筋梁类似,属延性破坏。
此类受扭构件称为适筋受扭构件。
修--受扭构件承载力计算(有打印)

受扭构件承载力计算一、(纯扭) 某矩形截面纯扭构件,承受扭矩设计值为m KN T .18=,截面尺寸mm 500250⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。
混凝土净保护层厚度为c=30mm 。
环境类别为二类,试计算截面的配筋数量。
(注:2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =)解题思路:本题属矩形截面纯扭构件的计算,先验算截面尺寸,再验算是否需要按计算配置受扭筋;若不需按计算配置抗扭钢筋,则按构造要求配筋;若需要按计算配置抗扭钢筋,可先假定ς值,然后按矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式即可求得,按步骤进行计算。
【解】2/9.11mm N f c =,2/27.1mm N f t =,2/360mm N f y =,2/300mm N f yv =,混凝土保护层为mm 301、验算截面尺寸是否满足要求362210021.13)2505003(6250)3(6mm b h b W t ⨯=-⨯⨯=-= 975.29.110.125.025.0728.110021.138.010188.066=⨯⨯==⨯⨯⨯=c c t f W T β 故截面尺寸满足要求2、验算是否按计算配置抗扭钢筋m KN T m KNN W f t t .18.58.1110021.1327.17.07.06==⨯⨯⨯=故需按计算配置受扭钢筋3、抗扭箍筋的计算mm b cor 190230250=⨯-=,mm h cor 440230500=⨯-=(1)假定1.1=ζ(2)由t t W f T 35.0≤+s f A A yv st cor 12.1ζ得387.04401903001.12.110021.1327.135.010182.135.0661=⨯⨯⨯⨯⨯⨯-⨯=-=cor yv t t st A f W f T s A ς(3)箍筋直径及间距的确定选用8Φ箍筋(213.50mm A sv =),双肢箍,2=n则mm A s st 130387.03.50387.01=== 取mm s 120=<mm s 200max = (满足构造要求)即所配箍筋为120@8Φ(4)验算抗扭箍的配筋率%12.030027.128.028.0%34.01202503.5022min ,1===≥=⨯⨯==yv t sv st sv f f bs A ρρ 满足要求4、抗扭纵筋的计算(1)按cor st yv stl y st yv corstly A f s A f s A f A f μμζ11/==得 214841203.503604401903001.1mm s A f u f A st y cor yv stl =⋅⨯⨯⨯=⋅=ς (2)验算抗扭纵筋配筋率%30.036027.185.085.0%387.0500250484min ,=⨯==≥=⨯==y t tl stl tl f f bh A ρρ 满足要求(3)选筋:选用(2678mm A s =)弯、剪、扭构件计算三、 某雨篷梁,承受弯矩、剪力、扭矩设计值为m KN M .25=, KN V 40=,m KN T .6=,截面尺寸mm 240240⨯,C25混凝土,箍筋为HRB335级钢筋,纵筋为HRB400级钢筋。
第五章-受扭构件承载力计算

第五章 受扭构件承载力计算
基础 知识
➢ 材料特性 ➢ 设计方法
构件 设计
学习内容
➢ 受弯构件 ➢ 受剪构件 ➢ 受扭构件 ➢ 偏压、偏拉构件 ➢轴拉构件 ➢轴压构件 ➢变形、裂缝 ➢预应力混凝土结构
结构设计, 后续课程
➢ 桥梁工程
弯梁桥的截面上除有弯矩M剪力V外,还存在扭矩T。由
开裂后的箱形截面受扭构件的受力可比拟成空间桁架:
纵筋为受拉弦杆, 箍筋为受拉腹杆, 斜裂缝间的混凝土为受压腹杆。
裂缝 箍筋
纵筋
T T
F4+F4=Ast4st
F1+F1=Ast1st
s F3+F3=Ast3st
F2+F2=Ast2st
箱形截面的剪应力分布,可采用薄壁管理论
T
rqds
2q
1 2
rds
纵筋的拉力
对隔离体ABCD
F1 F2 qhcorctg
相应其它三个面的隔离体
F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
裂缝 箍筋
纵筋
T T
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
纯扭构件在工程中几乎是没有的。工程中构件往往要同时 承受轴力、弯矩、剪力和扭矩。对于钢筋混凝土弯扭构件, 轴力对配筋的影响很小,可以忽略不计。为简化计算,设计 中可分别计算在弯扭和剪扭共同作用下的配筋,然后再进行 叠加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章受扭构件承载力计算
思考题
6.1在实际工程中有哪些构件有扭矩作用?
①詹口竖向荷载作用的挑詹梁。
②受水平作用的吊车梁。
③现浇框架的边梁。
6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏?
为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出
T≤0.2βfcWt
最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv
最小纵筋配筋率ρtl,min = 0.85 ft fyv
6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积
ξ=fyAstls / Fyv AstlUcor
加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。
6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么?
Βt 称为剪扭构件混凝土强度降低系数。
用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。
物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。
反之亦然。
6.5受扭构件中纵筋和箍筋的配置应注意哪些问题?
⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应符合表5-1的规定。
箍筋应做成封闭。
箍筋末端应做成135°弯钩。
其平直段长度不应小于5倍箍筋直径或50mm。
当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面布置的封闭箍筋,受剪箍筋壳采用复合箍筋。
(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小
ρ之和。
配筋率和受扭纵向钢筋的最小配筋率
tl
,min
mm
%15.0210
1.128.0f f 28.0yv t sv.min =⨯==ρ,实际配箍率%15.0%25
2.0200
2003.502bs A sv.min sv sv =>=⨯⨯==ρρ,满足要求 0.287.020********V b T 36<=⨯⨯⨯=,故取87.0Vb
T =。
则%194.0%293.0210
1.187.06.0f f Vb T 6.0tl.min y t tl.=>=⨯⨯==ρρ,满足要求。
梁底抗弯纵筋配筋率为:
%24.045.0%89.036520074.650bh A min .0s ==>=⨯==y
t s f f ρρ,满足要求。
截面配筋如图:
6.2 某雨篷如题图所示,雨篷板上承受均布荷载(包括自重)设计值q=3.6kN/m2,在雨篷自由端沿板宽方向每米承受活荷载设计值p=1.4kN/m ,雨篷梁截面尺寸240mm×240mm ,其计算跨度2.5m ,且已知梁承受的最大弯矩设计值M=1.4kN.m ,最大剪力设计值V=16kN ,混凝土强度等级为C20,采用HPB23钢筋,试设计雨篷梁的配筋。
解:C20混凝土f c =9.6N/mm 2,f t =1.1N/mm 2, HPB235钢筋f y =210N/mm 2, 2yv mm /N 210f =。
(1)雨篷梁所受的扭矩值计算:沿梁跨度方向单位长度上的扭矩t
(2)截面特征计算:
262
210608.4)2402403(6
240)3(6mm b h b W t ⨯=-⨯=-= mm 760h b 2u mm 1061.3190190h b A mm
19050240h mm 19050240b cor cor cor 2
4cor cor cor cor cor =+=⨯=⨯=⨯==-==-=)(,
(3)截面尺寸复核:。
截面尺寸符合要求。
226
6
30w /4.26.90.125.0/224.210608.18.010720524010168.0,484.0240205b h mm N mm N Wt T bh V =⨯⨯<=⨯⨯⨯+⨯⨯=+<== (4)雨篷梁剪扭计算:
1.)验算是否要进行受剪、受扭承载力计算:
2266
30/77.01.17.07.0/844.110608.41072052401016mm N f mm N W T bh V t t =⨯=>=⨯⨯+⨯⨯=+
需要进行抗扭计算。
2.)验算是否能忽略扭矩对构件承载力的影响。
m .7.N 10310.010608.41.1175.0175.066KN T mm W f t t =<⨯=⨯⨯⨯=
不能忽略。
3.)验算是否能忽略剪力对构件承载力的影响:
KN V bh f 16KN 942.182052401.135.035.00t =>=⨯⨯⨯=
按抗弯和抗扭共同作用下计算配筋。
(5)确定所用的箍筋量
计算剪扭构建混凝土强度降低系数t β
0.1,0.1236.1205
24010710608.410165.015.15.015.16630=>=⨯⨯⨯⨯⨯⨯+=+=t t t Tbh VW ββ取 取配筋强度比2.1=ξ
mm mm f f s A /524.036100
2102.12.110608.41.10.135.0107A 2.1W 35.0T 26
6cor y v t t t v st1=⨯⨯⨯⨯⨯⨯⨯-⨯=-≥ξβ
(7)计算抗扭纵筋数量
0145.03652006.90.1104.1M 2601s 2
a =⨯⨯⨯⨯=∂=bh f c
b ξξ<=--=0146.0211a s
2
1084.32210
9.61.052004201460.mm f f ξbh A y c s =⨯⨯⨯⨯=∂= 2
min y t min .0s mm 24.138%24.0240240bh As %24.0f f 45.0%2.0max(%057.024024084.32bh A =⨯⨯===⨯=<=⨯==ρρρ则,),
(8)确定纵筋总用量
按构造要求,受扭纵筋间距不应大于200mm 和梁宽b ,故沿梁高分三层布置:
顶层:
,2mm 1703
Astl =选2Ф12钢筋.(226mm 2) 中层:,2mm 1703
Astl =选2Ф12钢筋.(226mm 2) 底层:,2mm 319139170As 3Astl =+=+选3Ф12钢筋.(226mm 2) 截面布置如图:。