人教版七年级联考数学试题

合集下载

吉林省延吉市2021-2022学年数学人教版七年级下册第一次调研单元综合模拟联考试卷(含答案)

吉林省延吉市2021-2022学年数学人教版七年级下册第一次调研单元综合模拟联考试卷(含答案)

吉林省延吉市2021-2022学年数学人教版七年级下册第一次调研单元综合联考试卷一、单选题1.用科学记数法表示2300000,正确的是()A.0.23×107B.2.3×106C.23×105D.2.3×1072.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为()A.100元B.105元C.110元D.120元3.如图所示,边长为a的正方形中阴影部分的周长为()A.a2-14πa2B.a2-πa2C.2a+πa D.2a+2πa4.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为()A.①②B.②③C.②④D.③④5.下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段AC BC=,则点C是线段AB的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是()A.(1)(2)(3)B.(1)(4)C.(2)(3)D.(1)(2)(4)6.3-的相反数是().A.3B.3-C.13D.13-7.点A为数轴上表示﹣2的点,当点A沿数轴移动4个单位长度到点B时,点B所表示的有理数为()A.2B.﹣6C.2或﹣6D.﹣2或6 8.下列各组数,不是互为相反数的是()A .|3|--与3+B .(3)+-与3C .(3)--与3D .(3)--与3- 9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣310.多项式8x 2﹣3x +5与3x 3﹣4mx 2﹣5x +7多项式相加后,不含二次项,则m 的值是( ) A .2 B .4 C .﹣2 D .﹣4二、填空题11.112-的相反数的是_____,绝对值是_____,倒数是_____. 12.a 的相反数是2022,则=a ___________.13.若单项式m 21+4x y 与-54n x y 是同类项,则m+n=_____;14.绝对值小于3.5的整数是_____.15.已知22a b -=,则245a b --的值是______.三、解答题16.求若干个相同的不为零的有理数的除法运算叫做除方.如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.一般地,把n a a a a a÷÷÷⋯÷个(a≠0)记作a ⓝ,记作“a 的圈 n 次方”.(1)直接写出计算结果:2③= ,(-3)⑤ = , 1()2-⑤= (2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算, 请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于 .(3)计算 24÷23+ (-8)×2③.17.如图,已知,A B 两地相距6千米,甲骑自行车从A 地出发前往C 地,同时乙从B 地出发步行前往C 地.(1)已知甲的速度为16千米/小时,乙的速度为4千米/小时,求两人出发几小时后甲追上乙;(2)甲追上乙后,两人都提高了速度,但甲比乙每小时仍然多行12千米,甲到达C 地后立即返回,两人在,B C 两地的中点处相遇,此时离甲追上乙又经过了2小时.求,A C 两地相距多少千米.18.计算2021个连续自然数1、2、3、……、2019、2020、2021的和,可以用下列方法:先把以上这列数写成2021、2020、……、3、2、1,再把这两列数的第一项和第一项相加、第二项和第二项相加、第三项和第三项相加、……倒数第三项和倒数第三项相加、倒数第二项和倒数第二项相加、倒数第一项和倒数第一项相加,可以得到以下解法: 解:()()()()()()120212202032019201932020220211++++++++++++ 202220222022202220222022=++++++20212022.=⨯ 所以11+2+32019+2020+2021=20212022.2++⨯⨯ 通过阅读以上解法,计算下列各题(结果用含有n 的代数式表示):(1)求连续自然数1、2、3、……、()()21n n n --、、的和;(2)求连续奇数1、3、5、……、()21n +的和.19.某学校办公楼前有一长为m ,宽为n 的长方形空地,在中心位置留出一个直径为2b 的圆形区域建一个喷泉,两边是两块长方形的休息区,阴影部分为绿地.(1)用含字母和π的式子表示出阴影部分的面积S ;(2)当m=8,n=6,()2120a b -+-=时,阴影部分的面积是多少?(π取3) 20.用两个合页将房门的一侧安装在门框上,房门可以绕门框转动. 将房门另一侧的插销插在门框上,房门就被固定住(如图).如果把房门看做一个“平面”,两个合页和插销都看做“点”,那么:(1)这三个点是否在一条直线上?(2)从上面的事实可以得到一个结论:21.小明同学研究如下问题:从1,2,3,…,(n n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果?他采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.他进行了如下几个探究:探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?如上表,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?如上表,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有_ 种不同的结果.(4)从1,2,3,…,(n n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有_ _种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有__________种不同的结果.(2)从1,2,3,…,(n n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有_________种不同的结果.探究三:从1,2,3,…,(n n 为整数,且5n ≥这n 个整数中任取4个整数,这4个整数之和共有________________种不同的结果.归纳结论:从1,2,3,…,(n n 为整数,且3n ≥这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有___________种不同的结果.拓展延伸:从1,2,3,…,36这36个整数中任取_______________个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)22.按要求作图:如图,在同一平面内有三个点A 、B 、C .(1)①画直线AB ;②画射线BC ;③连结AC ;(2)用尺规在射线BC 上截取一点D ,使得2BD AC .23.已知∠AOB =20°,∠AOC =4∠AOB ,OD 平分∠AOB ,OM 平分∠AOC ,求∠MOD 的度数.参考答案与试题解析1.B2.A3.C4.C5.B6.A7.C8.C9.B10.A11.112112﹣2312.-202213.5.14.0;±1;±2;±3.15.−116.(1)12,127-,-8;(2)它的倒数的n-2次方;(3)-1.17.(1)两人出发12小时后甲追上乙;(2),A C两地相距30千米.18.(1)12n(n+1)(2)12(n+1)219.(1)mn-πb2-4ab;(2)2820.(1)不在;(2)不共线的三点确定一个平面21.探究一:(3)7;(4)(2n-3);探究二:(1)4;(2)(3n-8);探究三:(4n-15),(an-a2+1),7或29.22.(1)见解析;(2)见解析23.30或50︒.。

2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)

2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)

2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。

2. 一个数的立方根是它自己的数是______。

3. 一个数的倒数是它自己的数是______。

4. 一个数的相反数是它自己的数是______。

三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。

x² 5x + 6 = 02. 解答:求出下列不等式的解集。

2x 3 < 73. 解答:求出下列方程组的解。

2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。

2. 证明:两个直角三角形的斜边相等,则它们是全等的。

五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。

问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。

求这个长方形的面积和周长。

六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。

x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。

A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。

A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。

A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。

A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。

A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。

A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。

A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。

A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。

A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。

A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。

12. 下列各数中,是无理数的是__________。

13. 下列等式中,正确的是__________。

14. 若一个正方形的边长是a,则它的面积是__________。

15. 下列各数中,是负数的是__________。

16. 若一个数的平方是16,则这个数是__________。

17. 下列各数中,是正整数的是__________。

18. 若一个数的绝对值是7,则这个数是__________。

19. 下列各数中,是偶数的是__________。

20. 若一个数的立方是27,则这个数是__________。

三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。

22. 已知一个数的平方是9,求这个数。

人教版七年级数学上册全册综合测试题

人教版七年级数学上册全册综合测试题

人教版七年级数学上册全册综合测试题1、精选优质文档-倾情为你奉上七年级上数学全册综合测试题一、选择题(本题共10个小题,每小题3分,共30分)1等于() A2 B C2 D 2下列各组数中,互为相反数的是( ) A 与1 B(1)2与1 C与1 D12与13下列各组单项式中,为同类项的是( ) Aa与a Ba与2a C2xy与2x D3与a4如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是Aab0 Bab 0 C D5下列各图中,可以是一个正方体的平面展开图的是( )ABCD北OAB第8题图6在灯塔O处观测到轮船A位于北偏西54的方向,同时轮船B在南偏东15的方向,那么AOB的大小为 ( ) A69 B111 C142、1 D1597一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A(150%)x80%x28B(150%)x80%x28 C(150%x)80%x28 D(150%x)80%x288轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米设A港和B港相距x千米根据题意,可列出的方程是() A B C D9.某种出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米以后,每增加1千米加收1.5元(不足1千米按1千3、米计),某人乘这种出租车从甲地到乙地支付车费18元,设此人从甲地到乙地经过的路程为千米,则的最大值是().(A)7 (B)9 (C)10 (D)1110.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q, 如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上, 则数轴上表示2019的点与圆周上重合的点对应的字母是()Am Bn Cp Dq图1图2qnpmqnpm二、填空题(本大题共8个小题;每小题4分,共32分)11单项式xy2的系数是_12若x=2是方程82x=ax的解,则a=_13计算:1537+4251=_14青藏高原是世界上海拔最高的4、高原,它的面积约为2 500 000平方千米将2 500 000用科学记数法表示应为_平方千米15已知,ab=2,那么2a2b+5=_16已知|x|4,y24且y0,则xy的值为_ 17. 下列说法:若a、b互为相反数,则a+b=0;若a+b=0,则a、b互为相反数;若a、b互为相反数,则;若,则a、b互为相反数其中正确的结论是(第20题)18. 如图所示,圆圈内分别标有1,2,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为,则电子跳蚤连续跳()步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳步到标有数字2的圆圈内,完成一次跳跃,第5、二次则要连续跳步到达标有数字6的圆圈,依此规律,若电子跳蚤从开始,那么第3次能跳到的圆圈内所标的数字为10 ;. 三、解答题(本大题共10个小题;共78分)19(本小题满分5分)计算:20(本小题满分5分)先化简,再求值:(4x2+2x8)(x1),其中x=21.(6分)解方程:解:去分母,得6x3x142x4 即3x12x8 移项,得3x2x81合并同类项,得x7x7上述解方程的过程中,是否有错误?答:_;如果有错误,则错在_步.如果上述解方程有错误,请你给出正确的解题过程:OACBED22(本小题满分5分)如图,AOB=COD=90,OC 平分AOB,BOD=3DOE求:COE的度数236、(本小题满分5分)AEDBFC 如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长24(本小题满分10分)一点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n次移动结果这个点在数轴上表示的数为;(5)如果第m次移动后这个点在数轴上表示的数为56,7、求m的值25.(本小题满分8分). 某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超过3公里的,每公里加收多少元?26.(本题满分10分).温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州运往南昌的机器为台。

新人教版七年级数学上册期末检测真题(2023WL县统考)

新人教版七年级数学上册期末检测真题(2023WL县统考)

2022~2023学年度上学期学科学业水平监测七年级数学试题(满分120分,时间100分钟)第I 卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,满分36分)1.下列各数中,互为相反数的是( )A.|-1|和1B.-3和-(-2)C.(-2)2和-22D.-3和 13 2.2019年2月5日《流浪地球》上映这部由刘慈欣小说《流浪地球》改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿元用科学记数法表示为( )A.1.6×107B.0.16×107C.1.6×108D.1.6×1093.下列说法正确的是( )A. 25(x+y)是多项式 B.−23vt 的系数是-2 C.32ab 3的次数是6次 D.x 2+x-1的常数项是14.下列去括号正确的是( )A.a-(2b-c) =a-2b-cB.a+2(2b-3c)=a-4b-6cC.a+ (b- 3c)= a-b+ 3cD.a-3(2b-3c)=a-6b+9c5.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A.传B.统C.文D.化6.对任意四个有理数a 、b 、c 、d ,定义新运算|a b c d |=ad-cb ,已知|2x −4x 1|=18,则x 的值为( )A.-1B.2C.3D.47.下列说法正确的是( )A.若x+1=0则x=1B.若|a|>1则a>1C.若点A,B,C 不在同一条直线上,则AC+BC>ABD.若AM=BM,则点M 为线段AB 的中点8.某工厂用硬纸生产圆柱形茶叶筒.已知该厂有44名工人,每名工人每小时可以制作 筒身50个或制作筒底120个.要求一个筒身配两个筒底,设应该分配x 名工人制作筒身,其它工人制作筒底,使每小时制作出的筒身与筒底刚好配套,则可列方程为( )A.2×120(44-x)=2×50xB.2×50(44-x)=120xC.120(44-x)=2×50xD.120(44-x)=50x9.如图,已知∠AOC=α,∠BOC=β,OM 平分∠AOC,ON 平分∠BOC,则∠MON 的度数是( )A. 12βB. 12 (α-β)C. α- β2D. 12α10.已知一个多项式的2倍与3x 2+9x 的和等于-x 2+5x-2,则这个多项式是( )A.-4x 2-4x-2B.-2x 2-2x-1C.2x 2+14x-2D.x 2+7x-1 11.下列说法:①若a 为有理数,且a ≠0,则a<a 2;②若1a =a,则a=1,则a=1;③若a 3+b 3=0则a,b 互为相反数;④若|a|=-a,则a<0;⑤若b<0<a,且|a|<|b|,则|a+b|=-|a|+|b|,其中正确说法的个数是( )A.1个B.2个C.3个D.4个12.图1是长为a,宽为b(a>b)的小长方形纸片,将6张如图1的纸片按图2的方式不重叠地放在长方形ABCD 内,已知CD 的长度固定不变,BC 的长度可以变化,图中阴影部分(即两个长方形)的面积分别表示为S 1,S 2,若S 1-S 2的差为定值,则a,b 满足的关系是( )A. a= 2bB. a= 3bC. a=4bD.a=5b第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题;毎小题4分,共16分).13.如图所示的运算程序中,若开始输入的x 值为100,则第1次输出的结果为50,第4次输出的结果为_______.14.若m-3n=1,则8+6n-2m 的值为_______.15.一个角的余角比它的补角的一半少30°,则这个角的度数是_______.16.如图,已知数轴上三点M,O,N 对应的数分别为-1,0,3,点P 为数轴上任意一点,其对应的数为x.如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t 分钟时点P 到点M 、点N 的距离相等,则t 的值为___________.三、解答题(本大题共6小题;共68分)17.计算(本题共2小题;满分10分 )(1) |-12|-(-18)+(-7)+6 (2) -14 -(1-0.5)×1/3×|1-(-5)2|8.解方程(本题共2小题;满分12分)(1)5(x-1)-2(1-x)=3+2x (2) x+34−2x−43=219.先化简再求值(本题共2小题;满分12分)(1)已知2(a2b+ab)-2(a2b-1)-2ab2-2,其中a=-2,b=2.(2)已知:x+3=0,A=3x2-5xy+3y-1,B=x2-2xy,计算:A-3B.20.(本题满分10分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

新课标人教版2018-2019学年七年级(上)名校联考期中数学试卷附答案

新课标人教版2018-2019学年七年级(上)名校联考期中数学试卷附答案

2018-2019学年七年级(上)名校联考期中数学试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6B.x﹣1=0C.2x+y=25D.=12.x=2是下列方程()的解.A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=03.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3b B.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣14.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)6.如图,由AD∥BC可以得到的是()A.∠1=∠2B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25B.3x+20=4x﹣25C.3x﹣20=4x﹣25D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB的度数.参考答案一.选择题(每题3分,共30分)BDDDC CBBCD11.3.12.180°.13.1.14.70°.15..16.135°.1714岁.18.20°或140°.①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,193020.70解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,21.解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.22.解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.23.解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.24.证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.26.解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.27.解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.。

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版

七年级数学综合测试卷人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 计算:3 + (-5)的结果是()A. -2B. 2C. 8D. -8.3. 在数轴上,距离原点3个单位长度的点表示的数是()A. 3B. -3C. 3或 -3D. 6或 -6。

4. 单项式-(2)/(3)x^2y的系数是()A. -(2)/(3)B. (2)/(3)C. -2D. 2.5. 下列式子中,是一元一次方程的是()A. x + 2y = 1B. x^2-2x + 1 = 0C. 2x - 3 = (1)/(x)D. 3x - 5 = 2x6. 若x = 2是方程3x + a = 7的解,则a的值为()A. 1B. -1C. 0D. 2.7. 化简:3(a - b)+2(b - a)的结果是()A. a - bB. a + bC. 5(a - b)D. 5(b - a)8. 一个角的度数是35^∘,则它的余角的度数是()A. 55^∘B. 45^∘C. 145^∘D. 65^∘9. 把方程(x)/(2)-(x - 1)/(3)=1去分母后,正确的是()A. 3x - 2(x - 1)=1B. 3x - 2(x - 1)=6C. 3x - 2x - 2 = 6D. 3x - 2x + 2 = 110. 某商品原价为a元,打八折后的价格是()A. 0.2a元B. 0.8a元C. a元D. (a)/(0.8)元。

二、填空题(每题3分,共15分)1. 比较大小:-3___-4(填“>”或“<”)。

2. 计算:(-2)^3=___。

3. 若x = 5,则x =___。

4. 一个多项式加上2x^2-3x + 5的和是4x^2-x + 3,则这个多项式是___。

5. 已知线段AB = 8cm,点C在直线AB上,AC = 3cm,则BC =___cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级联考数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 已知点A的坐标是(3,-1),则把点A在直角坐标系中先向左平移3个单位,再向上平移2个单位得到点A’的坐标是()
A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)
2 . 如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()
A.40°B.45°C.50°D.60°
3 . ﹣的相反数是()
A.﹣B.C.﹣D.
4 . 计算的结果为()
A.6B.-6C.18D.-18
5 . 下列说法:(1)开方开不尽的数是无理数;(2)无理数包括正无理数、零、负无理数;(3)无限不循环小数是无理数;(4)无理数都可以用数轴上的点来表示其中错误的个数是()
A.1个B.2个C.3个D.4个
6 . 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是()
A.B.
C.D.
7 . 点在的平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是()
A.B.C.D.
8 . 在平面直角坐标系中,点的横坐标是-3且点到轴的距离为5,则点的坐标是()
A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)
C.(-3,5)D.(-3,-5)
二、填空题
9 . 直线AB∥x轴,AB=6,点A的坐标为(-2,3),点B的坐标为(2,b),则b=______.
10 . 如图所示,在△ABC中,BC=4,E,F分别是AB,AC的中点,动点P在直线EF上,∠CBP的平分线交CE 于点Q,当点Q把线段EC分成的两线段之比是1:2时,线段EP、BP满足的数量关系是
__________________________.
11 . 比较大小:__________
12 . 36的算术平方根是_______. 的平方根是______.
13 . 如图,已知//,,∠和∠的角平分线交于点F,
∠=__________°.
14 . 一张矩形纸片经过折叠得到一个三角形,(如图所示),则该矩形纸片的长与宽的比为
___________.
15 . 观察下列各式:,,,…,根据你发现的规律,若式子
(a、b为正整数)符合以上规律,则=_______.
三、解答题
16 . 求下列各式中的x值.
(1)
(2)
17 . (1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.
(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.
18 . 已知:如图所示,,,求证:∥
19 . 下面是某古城几个地名的平面示意图,已知民俗街和博物馆的坐标分别为点,,请仔细观察示意图完成以下问题.
(1)请根据题意在图上建立平面直角坐标系.
(2)在(1)的条件下,写出图上B,D两地点的坐标.
(3)某周末甲,乙,丙,丁等4位同学分别到古城楼,民俗街,文化广场,博物馆四个地点游玩,且每人只去一个地点,老师打电话问了赵,钱,孙,李等四位同学,赵说:“甲在民俗街,乙在文化广场”;钱说:“丙在博物馆,乙在民俗街”;孙说:“丁在民俗街,丙在文化广场”;李说:“丁在古城楼,乙在文化广场”.若知道赵,钱,孙,李每人都只说对了一半,则丙同学游玩的地点是.
20 . 如图,AD∥EC.
(1)若∠C=40°,AB平分∠DAC,求∠DAB的度数.
(2)若AE平分∠DAB,BF平分∠ABC,试说明AE∥BF的理由.
21 . 已知,c是-27的立方根,
(1)求a,b,c的值;
(2)求
22 . 我们知道:即.所以的整数部分是2,小数部分是.现已知是
的整数部分,是的小数部分,求-的值.
23 . 已知,∠AOB=90°,点C在射线OA上,CD∥O
A.
(1)如图1,若∠OCD=120°,求∠BOE的度数;
(2)把“∠AOB=90°”改为“∠AOB=120°”,射线OE沿射线OB平移,得O′E,其他条件不变,(如图2所示),探究∠OCD、∠BO′E的数量关系;
(3)在(2)的条件下,作PO′⊥OB垂足为O′,与∠OCD的平分线CP交于点P,若∠BO′E=α,请用含α的式子表示∠CPO′(请直接写出答案).
24 . 求下列各式的值
(1)﹣﹣
(2)﹣12+(﹣2)3×.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
二、填空题
1、
2、
3、
4、
5、
6、
7、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、
9、。

相关文档
最新文档