图论模型
数学建模-图论模型

思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的
•
为一条有向
的D哈密尔A顿路B。 C E
数学建模图论模型

任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许
图论模型及其解答

各种图论模型及其解答摘要:本文用另一种思路重新组织《图论及其应用》相关知识。
首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。
符号约定:Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。
一、引言图论是研究点、线间关系的一门学科,属于应用数学的一部分。
现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。
点表示事物,连线表示事物间的联系。
整个求解过程如下:原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。
存在以下两种情况:①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。
综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。
例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友A:问题转化为任何一个图一定存在两个顶点的度相等二、图论模型接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。
2.1 偶图模型凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。
作图时,将两类事物分成两行或者两列。
这类模型通常被包含在后续的模型中,但因许多现实问题可抽象成该模型,所以单列出来讨论。
图论 模型

图论模型图论是运筹学的一个经典和重要分支,专门研究图与网络模型的特点、性质以及求解方法。
许多优化问题,可以利用图与网络的固有特性而形成的特定方法来解决,比用数学规划等其他模型来求解往往要简单且有效得多。
图论起源于1736年欧拉对柯尼斯堡七桥问题的抽象和论证。
1936年,匈牙利数学家柯尼希(D. Kӧnig )出版的第一部图论专著《有限图与无限图理论》,树立了图论发展的第一座里程碑。
近几十年来,计算机科学和技术的飞速发展,大大地促进了图论研究和应用,其理论和方法已经渗透到物理、化学、计算机科学、通信科学、建筑学、生物遗传学、心理学、经济学、社会学各个学科中。
9.1 图的基础理论9.1.1 图的基本概念所谓图,概括地讲就是由一些点和这些点之间的连线组成的。
定义为(,)G V E =,V 是顶点的非空有限集合,称为顶点集。
E 是边的集合,称为边集。
边一般用(,)i j v v 表示,其中,i j v v 属于顶点集V 。
以下用V 表示图(,)G V E =中顶点的个数,E 表示边的条数。
如图9.1是几个图的示例,其中图9.1 (a)共有3个顶点、2条边,将其表示为(,)G V E =,123{,,}V v v v =,1213{(,),(,)}E v v v v =.23v 45v 34(a)(c)图9.1 图的示意图1.无向图和有向图如果图的边是没有方向的,则称此图为无向图(简称为图),无向图的边称为无向边(简称边)。
如图9.1 (a)和(b)都是无向图。
连接两顶点i v 和j v 的无向边记为(,)i j v v 或(,)j i v v 。
如果图的边是有方向(带箭头)的,则称此图为有向图,有向图的边称为弧(或有向边),如图9.1 (c)是一个有向图。
连接两顶点i v 和j v 的弧记为,i j v v 〈〉,其中i v 称为起点,j v 称为终点。
显然此时弧,i j v v 〈〉与弧,j i v v 〈〉是不同的两条有向边。
图论模型

图论模型图是为了解决一些具体问题而产生的模型,这可以从它的发源“哥尼斯堡的七桥问题”看到。
一个图表示了某些对象集合元素之间的关系,所以它被广泛用来作为许多与对象的离散安排有关问题的模型。
它已在物理、化学、经济、管理、信息、控制等所有离散系统中应用。
本章仅介绍几类图论模型。
9.1 连线问题一、问题的背景与提出现实社会中,我们可以看到,公路、铁路、通信、输电线路等的建设中,都涉及到“如何设计建造一个既能畅通无阻又造价小的网络”问题,即连线问题。
二、模型假设与符号说明假设要建造一个连接若干城镇的通信网络,第i个城镇与第j个城镇之间直通线路的造价为cij。
三、模型的建立与求解把每个城镇看作是一个点v;两个城镇直通线路看作边e;城镇vi与城镇vj之间直通线路的造价看作边vivj的权w(vivj)=cij,这样我们得到了一个赋权图G。
设计一个总造价最小的通信网络,就转化为:在赋权图G,找出具有最小权的连通生成子图,即寻找赋权图的最小权的生成树(最优数)。
1956年Kruskal给出了一种求最优树的算法,称为避圈法,算法如下: 10 选择边e1,使得w(e1)尽可能小;20 若已选定边e1, e2, …, ei, 则从边集E\{e1, e2, …, ei}中选取ei+1,使(ⅰ)G[{e1, e2, …, ei+1}]为无圈图;(ⅱ)w(ei+1)是满足(ⅰ)的尽可能小的权, 30 当20不能继续执行时停止。
对于p个点ε条的赋权图G,该算法就是先将赋权图的边按权的递增顺序排列:a1, a2, …, aε设e1=a1, e2=a2, 检查a3,如果a3与e1, e2不构成圈,则令e3=a3,否则放弃a3,检查a4,1。
第九章 图论模型

第九章 图论模型现实世界的许多实际问题都可以用图形来解释或说明.例如通讯网络就可以用图的形式直观的表现出来:点可以表示通讯中心,而边表示通讯线路.图论模型是应用十分广泛的数学模型,它已经在物理、化学、控制论、信息论、科学管理和计算机等领域.由于它具有图形直观,方法简单容易掌握的特点,因此在实际、生活和数学建模中,有许多问题可以运用图论的理论和方法解决.§9.1图论起源图论起源于18世纪欧拉对哥尼斯堡七桥问题的研究.哥尼斯堡是18世纪东普鲁士的一个城市,城中有一条普雷格尔河,河中有两个岛,河上有七座桥,如图1所示.图1 当时那里的居民热终于思考这样一个问题,一个人能否经过七座桥且每座桥只走过一次,最后回到出发点.能否用数学的方法解决这个问题一贯成为当时居民的一个悬而未决的问题.1736年欧拉创造性的将陆地用点表示,桥用边表示,从而将这个问题转化为如图2所示的一笔画问题,即能否从某个点开始一笔画出这个图形,最后回到原点而不重复.欧拉证明了这个问题是不可能的.图2欧拉解决七桥问题时,其方法超出了常用的数学方法,充分发挥自己的想象力,用了全新的思想方法,从而使得问题得到完美解决.由于这一项开创性的工作,产生了“图论”这门崭新学科,欧拉被认为是图论的创始人.ABCDABCD1e 2e 5e 6e 7e 4e 3e§9.2基本概念定义1 图G 由两个点集合V 以及边集合E 组成,记为(),G V E =,其中: (1)V 是顶点构成的集合;(2)E 是连接某些顶点对构成的边组成的集合.例1 {}1234,,,V v v v v =,{}12232434,,,E e e e e =,画出图(),G V E =.图3注:图分为无向图和有向图.定义2 若图(),G V E =的边均没有方向,这样的图成为无向图.例如图2,图3为无向图.无向图的边称为无向边,无向边是由两个顶点构成的无序对,无序对通常用圆括号表示. 例2 (),i j v v 表示一条无向边,(),i j v v 与(),j i v v 是同一条边.定义3 若图(),G V E =的边均有方向,这样的图称为有向图.有向图的边称为有向边,有向边是由两个顶点构成的有序对,有序对通常用尖括号表示.有向边又称为弧. 例3,i j v v 表示一条有向边,,i j v v与,j i v v 是两条不同的有向边.定义4 一条边的端点称为与这条边关联,反之,一条边称为与它的端点关联.与同一条边关联的两个端点是邻接的.如果两边有一个公共端点,则这两条边是邻接的。
美赛 7:图论模型、分类模型(十大模型篇)

目录五、图论模型1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法2.弗洛伊德(Floyd)算法六、分类模型1.逻辑回归2.Fisher线性判别分析五、图论模型图论模型主要解决最短路径问题,根据图的不同,对应采用迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法、弗洛伊德算法(Floyd)。
Matlab代码:% Matlab中的图节点要从1开始编号s = [9 9 1 1 2 2 2 7 7 6 6 5 5 4];t = [1 7 7 2 8 3 5 8 6 8 5 3 4 3];w = [4 8 3 8 2 7 4 1 6 6 2 14 10 9];G =graph(s,t,w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set ( gca, 'XTick', [], 'YTick', [] );%% Matlab作无向图% (1)无权重(每条边的权重默认为1)% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并生成一个图% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组% 注意:编号从1开始连续编号s1 = [1,2,3,4];t1 = [2,3,1,1];G1 = graph(s1, t1);plot(G1)% 注意字符串元胞数组是用大括号包起来s2 = {'学校','电影院','网吧','酒店'};t2 = {'电影院','酒店','酒店','KTV'};G2 = graph(s2, t2);% 设置线的宽度plot(G2, 'line width', 2) % 画图后不显示坐标set( gca, 'XTick', [], 'YTick', [] ); % (2)有权重% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图s = [1,2,3,4];t = [2,3,1,1];w = [3,8,9,2];G = graph(s, t, w); plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] ); %% Matlab作有向图% 无权图 digraph(s,t)s = [1,2,3,4, 1];t = [2,3,1,1,4];G = digraph(s, t);plot(G)set( gca, 'XTick', [], 'YTi ck', [] ); % 有权图 digraph(s,t,w)s = [1,2,3,4];t = [2,3,1,1];w = [3,8, 9,2];G = digraph(s, t, w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] );1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法迪杰斯特拉算法是基于贪婪算法的思想,从起点出发逐步找到通向终点的最短距离。
图论模型(最优连线问题、最短路问题)

v3
8.1 最优连线问题(最小生成树)
例1 现需从自来水厂接自来水管道到各个城镇,自 来水厂到各城镇之间铺设自来水管道价格如下,问 如何铺设最经济。
A 8 B
5
E 1
7 6
水厂
3 10
D 9
C
分析: ①显然铺设的自来水管道要连通各个顶点; ②铺设的管道中如果有回路,则去掉一条边,仍可 行。 故所铺设的管道是连通各个顶点且没有回路的 图形,称为图G的生成树。 我们的目标是寻找一颗图G的生成树,其各条 边的权之和最小,称为最小生成树。 1956年,Kruskal给出了一种求最小生成树的 算法,称为避圈法。
e2 e5
e4
M
v2
v3
v4
v4
0 0 0 1
1 0 1 0
0 0 0 1
0 1 0 0
e3
v3
例3
v1 2 v2
v1 v1 v2 v3 v4
3 7
8
M
v2
v3
v4
v4
0 7
2 0 8
0 5
3 0
5
lv; v; s(k+1)=v; k=k+1; u=s(k); end l z 输出结果为: l=0 2 1 7 3 6 9 12 z=1 1 1 6 2 5 4 5
注:l输出的是u1到u1、u2、…、u8各个顶点的 最短路径距离。 z输出的是最短路径中u1、u2、…、u8的父节点。
%求从u0到uj0的最短路径 disp('起点为u1.'); j=input('输入终点u'); disp('下面求从起点u1到终点'); j, disp('的最短路径。'); lj=[]; while j~=1 lj=[[j],lj]; j=z(j); end lj=[[1],lj]; lj 例如求u1到u8的最短路径,程序执行后输出为:1 2 5 6 8 各位有兴趣还可以考虑将图可视化,点击屏幕输入终点以及 在图形上输出显示最短路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uavdxcw 路或路径:
圈或回路:uavbwcxfygu
3.最短路问题及算法
最短路问题是图论应用的基本问题,很多实际 问题,如线路的布设、运输安排、运输网络最小费 用流等问题,都可通过建立最短路问题模型来求解. •最短路的定义 •最短路问题的两种方法:Dijkstra和Floyd算法 . 1) 求赋权图中从给定点到其余顶点的最短路. 2) 求赋权图中任意两点间的最短路.
,
K6
Y : y1 y2 y3 y4 Y : y1 y2 y3 y4 K3,4 二部图
K1,4
2) 赋权图与子图
定义 若图 G (V (G ), E (G )) 的每一条边e 都赋以 一个实数w(e),称w(e)为边e的权,G 连同边上的权 称为赋权图. 定义 设 G (V , E )和 G (V , E) 是两个图. 1) 若V V , E E ,称 G 是 G 的一个子图,记 G G. E 2) 若 V V, E ,则称 G 是 G 的生成子图. 3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在 V 中的边的全体为边集的图 G 的子图,称 为 G 的由 V 导出的子图,记为 G[V ] . 4) 若E E ,且 E ,以 E 为边集,以 E 的端点 集为顶点集的图 G 的子图,称为 G 的由 E 导出的 边导出的子图,记为 G[E] .
例设 G (V (G ), E (G )) , 其中:V (G) {v1, v2 , v3 , v4},
E (G ) {e1, e2 , e3 , e4 , e5 , e6} , e1 v1v1,e2 v2v3,e3 v1v3,
e4 v1v4 , 5 v3v4 , 6 v3v4 . e e
解决此类问题的一般方法是不现实的,对于规模较大 的问题可使用近似算法来求得近似最优解.
2.图论的基本概念
1) 图的概念 2) 赋权图与子图 3) 图的矩阵表示 4) 图的顶点度 5) 路和连通
1) 图的概念
定义 一个图G是指一个二元组(V(G),E(G)),其中: 1) V (G) {v1, v2 ,, v }是非空有限集,称为顶点集, 其中元素称为图G的顶点. 2) E(G)是顶点集V(G)中的无序或有序的元素偶对 (vi , v j ) 组成的集合,即称为边集,其中元素称为边. 定义 图G的阶是指图的顶点数|V(G)|, 用 v 来表示; 图的边的数目|E(G)|用 来表示. 用 G (V (G ), E (G )) 表示图,简记 G (V , E ). 也用 vi v j 来表示边 (vi , v j ).
e1 e2 M 1 1 1 0 0 1 0 0 0 0 e3 e4 0 1 1 0 0 e5 0 0 v1 0 0 v2 1 1 v3 1 0 v4 0 1 v5
2) 对有向图 G (V , E ) ,其关联矩阵 M (mij ) , 其中:
4) 图的顶点度
定义 1) 在无向图G中,与顶点v关联的边的数目(环 算两次),称为顶点v的度或次数,记为d(v)或 dG(v). 称度为奇数的顶点为奇点,度为偶数的顶点为偶点. 2) 在有向图中,从顶点v引出的边的数目称为顶点 v的出度,记为d+(v),从顶点v引入的边的数目称为 v的入度,记为d -(v). 称d(v)= d+(v)+d -(v)为顶点v的 度或次数. 定理 d (v) 2 .
图论模型
1. 问题引入与分析 2. 图论的基本概念 3. 最短路问题及算法 4. 最小生成树及算法 5. 旅行售货员问题
回
停 下
6. 模型建立与求解
1. 问题引入与分析
1) 98年全国大学生数学建模竞赛B题“最佳灾
情巡视路线”中的前两个问题是这样的:
今年(1998年)夏天某县遭受水灾. 为考察灾情、
公路边的数字为该路段的公里数.
2) 问题分析: 本题给出了某县的公路网络图,要求的是在不 同的条件下,灾情巡视的最佳分组方案和路线. 将每个乡(镇)或村看作一个图的顶点,各乡 镇、村之间的公路看作此图对应顶点间的边,各条 公路的长度(或行驶时间)看作对应边上的权,所 给公路网就转化为加权网络图,问题就转化图论中 一类称之为旅行售货员问题,即在给定的加权网络 图中寻找从给定点O出发,行遍所有顶点至少一次 再回到点O,使得总权(路程或时间)最小.
本题是旅行售货员问题的延伸-多旅行售货员问题. 本题所求的分组巡视的最佳路线,也就是m条 经过同一点并覆盖所有其他顶点又使边权之和达到 最小的闭链(闭迹). 如第一问是三个旅行售货员问题,第二问是四 个旅行售货员问题. 众所周知,旅行售货员问题属于NP完全问题, 即求解没有多项式时间算法. 显然本问题更应属于NP完全问题. 有鉴于此, 一定要针对问题的实际特点寻找简便方法,想找到
6) 图G中任意两点皆连通的图称为连通图. 7) 对于有向图G,若W v0e1v1e2 ek vk ,且 ei 有 头 vi 和尾 vi 1 ,则称W为有向途径.
类似地,可定义有向迹,有向路和有向圈. 例 在右图中: 途径或链: ugyexeyfxcw
vbwcxdvaug,带领有关部门负责人到 全县各乡(镇)、村巡视. 巡视路线指从县政府 所在地出发,走遍各乡(镇)、村,又回到县政
府所在地的路线.
1)若分三组(路)巡视,试设计总路程最 短且各组尽可能均衡的巡视路线. 2)假定巡视人员在各乡(镇)停留时间T=2 小时,在各村停留时间t=1小时,汽车行驶速度V =35公里/小时. 要在24小时内完成巡视,至少应分 几组;给出这种分组下最佳的巡视路线.
G[{v1, v2 , v3}]
G[{e3 , e4 , e5 , e6}]
3) 若 V V,且 V ,以 V 为顶点集,以两端点 均在 V 中的边的全体为边集的图 G 的子图,称 为 G 的由 V 导出的子图,记为 G[V ] . 4) 若E E ,且 E ,以 E 为边集,以 E 的端点 集为顶点集的图 G 的子图,称为 G 的由 E 导出的 边导出的子图,记为 G[E] .
1, 若vi是e j的尾, mij 1, 若vi是e j的头, 0, 若v 不是e 的头与尾. i j
e1 e2
e3 e4
e5
1 0 1 1 0 u1 1 1 0 0 0 u 2 M 0 1 1 0 1 u3 0 0 0 1 1 u 4
a4 (u4 , u5 ) , a5 (u4 , u3 ) , a6 (u3 , u4 ) , a7 (u1, u3 ) . (见右图 3)
常用术语
1) 边和它的两端点称为互相关联. 2)与同一条边关联的两个端点称 为相邻的顶点,与同一个顶点 点关联的两条边称为相邻的边. 3) 端点重合为一点的边称为环, 端点不相同的边称为连杆.
例 设 H (V ( H ), E ( H )) ,其中:
V ( H ) {u1, u2 , u3 , u4 , u5},
E ( H ) {a1, a2 , a3 , a4 , a5 , a6 , a7 }, a1 (u1, u2 ) , a2 (u2 , u2 ) , a3 (u4 , u2 ) ,
u1 u2 u3 u4 0 0 A 0 0 1 1 1 u1 0 0 0 u2 1 0 0 u3 0 1 0 u4
3) 对有向赋权图 G (V , E ) , 其邻接矩阵 A (aij ) , 其中: wij , 若(vi , v j ) E , 且wij为其权, aij 0, i j, , 若(vi , v j ) E.
1 1 0 1 1
0 0 v1 0 0 v2 1 1 v3 0 0 v4 0 0 v5
2) 对有向图 G (V , E ) ,其邻接矩阵 A (aij ) ,其中:
1, 若(vi , v j ) E , aij 0, 若(vi , v j ) E.
(见图 2)
定义 若一个图的顶点集和边集都是有限集,则称 其为有限图. 只有一个顶点的图称为平凡图,其他的
所有图都称为非平凡图.
定义若图G中的边均为有序偶对 (vi , v j ),称G为有向 图. 称边 e (vi , v j ) 为有向边或弧,称 e (vi , v j )是从vi 连接 v j ,称 vi为e的尾,称 v j为e的头. 若图G中的边均为无序偶对 vi v j ,称G为无向图.称 边 e vi v j 为无向边,称e连接 vi 和 v j,顶点 vi 和 v j 称 为e的端点. 既有无向边又有有向边的图称为混合图.
vV
d (u3 ) 1
d (u3 ) 2
推论 任何图中奇点 的个数为偶数.
d (v1 ) 4
d (u3 ) 3
5) 路和连通 定义1) 无向图G的一条途径(或通道或链)是指 一个有限非空序列 W v0e1v1e2 ek vk ,它的项交替 地为顶点和边,使得对 1 i k,ei的端点是 vi 1和 vi , 称W是从v0 到 vk 的一条途径,或一条 (v0 , vk ) 途径. 整 数k称为W的长. 顶点 v0 和 vk 分别称为的起点和终点 , 而 v1, v2 ,, vk 1 称为W的内部顶点. 2) 若途径W的边互不相同但顶点可重复,则称W 为迹或简单链. 3) 若途径W的顶点和边均互不相同,则称W为路 或路径. 一条起点为 v0 ,终点为 vk 的路称为 (v0 , vk ) 路 记为P(v0 , vk ).
3) 图的矩阵表示 (以下均假设图为简单图). 邻接矩阵: 1) 对无向图 G,其邻接矩阵 A (aij ) ,其中: 1, 若vi与v j 相邻, aij 0, 若vi与v j不相邻. v1 v2 v3 v4 v5