理论力学06点合成运动

合集下载

理论力学:第6章 点的合成运动

理论力学:第6章 点的合成运动


2 2 r

aeτ 0 ,解出 aa=142r。所以小环 M 的加速度为 142r。
6-23 已知 O1 A O2 B l 1.5 m,且 O1A 平行于 O2 B ,题 6-23 图所示位置,
滑道 OC 的角速度=2 rad/s,角加速度 =1 rad/s2,OM = b =1 m。试求图示位置
第 6 章 点的合成运动
6-7 题 6-7 图所示曲柄滑道机构中,杆 BC 为水平,而杆 DE 保持铅直。 曲柄长 OA=10 cm,以匀角速度 = 20 rad/s 绕 O 轴转动,通过滑块 A 使杆 BC 作 往复运动。求当曲柄与水平线的交角为 = 0、30、90时,杆 BC 的速度。
·8·
由图得 vr=ve=b=2 m/s, va O1 l 。
得到 O1

l
b cos 45
21
1.5
2 2
1.89 rad/s 。
(2)求加速度。动点,动坐标系的选择不变,则动点 M 的加速度图如图(c)
所示。由加速度合成定理
aa ae ar aC
即 aan aaτ aeτ aen ar aC
时 O1A 的角速度和角加速度。
M
45 45
vr
ve
va
x
ae
ane
ana
45
ar
aC
aa
(a)
(b)
(c)
题 6-23 图
解:(1)求速度。
选取 M 为动点,动坐标系固连于滑道 OC 上,则动点 M 的速度图如图(b)
所示。由速度合成定理
va=ve+vr
沿 OC 轴的垂直方向投影得

理论力学06_4刚体平面运动_加速度

理论力学06_4刚体平面运动_加速度

§6.3* 平面运动刚体上点的加速度由于平面运动可以看成是随同基点的牵连平移与绕基点的相对转动的合成运动,于是图形上任一点的加速度可以由加速度合成定理求出。

设已知某瞬时图形内A 点的加速度a A ,图形的角速度为ω,角加速度为α,如图6-13所示。

以A 点为基点,分析图形上任意一点B 的加速度a B 。

因为牵连运动为动坐标系随同基点的平移,故牵连加速度a e =a A 。

相对运动是点B 绕基点A 的转动,故相对加速度a r =a BA ,其中a BA 是点B 绕基点A 的转动加速度。

由式 (5.3.7)可得图6-13 加速度分析的基点法 α (6.3.1) BA A B αα+=由于B 点绕基点A 转动的加速度包括切向加速度和法向加速度a ,故式(6.3.1)可写为t BA a n BAa (6.3.2) n t BA BA A B a a a ++=即平面图形上任意一点的加速度,等于基点的加速度与该点绕基点转动的切向加速度和法向加速度的矢量和。

当基点A 和所求点B 均作曲线运动时,它们的加速度也应分解为切向加速度和法向加速度的矢量和,因此,式(6.3.2)可表示为(6.3.3)n t n t n t BA BA A A B B a a a a a a +++=+在式(6.3.3)中,相对切向加速度与点A 和B 连线方向垂直,相对法向加速度沿点A 和B连线方向从B 指向A ;仅当点A 和B 的运动轨迹已知时,才可以确定点A 和B 的切向加速度a 和及法向加速度和a 。

t BA a n BA a t A t B a n A a n B 在应用式(6.3.2)或(6.3.3)计算平面图形上各点的加速度时,只能求解矢量表达式中的两个要素。

因此在解题时,要注意分析所求问题是否可解。

当问题可解时,将式(6.3.2)或(6.3.3)在平面直角坐标系上投影,即可由两个代数方程联立求得所需的未知量。

例6.3-2:半径为R 的车轮沿直线滚动,某瞬时轮心O 点的速度为v O ,加速度为a O ,如图a 所示。

理论力学基础点的合成运动

理论力学基础点的合成运动

1
平动和转动的区别
2
它们之间的关系对于理解合成运动具有
重要意义;
3
运动学基本公式
4
位置、速度、加速度等运动学基本公式 是研究合成运动的基础知识。
牛顿第二定律
合力产生加速度,加速度与力成正比。 一切合成运动都符合牛顿第二定律;
匀速圆周运动的分解
它是所有曲线合成运动的基础,掌握分 解方法可以为其他曲线合成运动的研究 提供启示;
结论和总结
合成运动是力学基础点之一,但不同于其他运动,它是由多个运动步骤组 成的复杂过程,因此有其独特的研究方法和工具。对合成运动理论及其实 际应用的深度理解和掌握,具有重要意义。 ——陈晓明,中国科技大学教授
机器人动作设计
机器人动作设计中需要进行多种复杂的合成运动分析与控制。合成运动理论可以指导机器人 的运动规划、轨迹跟踪和动作执行。
运动传感设计
合成运动分解是一种重要的运动测量技术。在车辆安全、物流配送、航空监控等领域,合成 运动传感器为复杂运动测量提供了有效手段。
合成运动的实验方法和技术
1
高速相机
观测高速运动的一种重要方法。运用指定的曝光时间和快门速度,拍摄合成运动 过程中的关键帧。
2
追踪仪器
用于测量运动物体的位置、速度和加速度等多种参数,对于合成运动的分析和控 制有着重要作用。
3
动力学仿真软件
自动地计算合成运动的轨迹、速度、加速度等参数。可以模拟物体的运动过程, 为结构设计和工艺分析提供有力支持。
合成运动的分类和特点
线性合成运动
由两个或两个以上直线运动叠 加而成;
圆周合成运动
由两个或两个以上曲线运动叠 加而成;
复合合成运动
由不同类型直线运动或曲线运 动叠加而成。

点的合成运动

点的合成运动

种位移之间的关系为
MM'' =MM' + M' M''
目录
刚体的运动\点的合成运动
将上式两边分别除以Δt ,并取Δt→0 时的极限,得
y Ox
lim lim lim MM
MM
M M
t0 t
t0 t
t0 t
式在中绝:对lit运m0动M中Mt 的 表速示度动,点称在为瞬动时点t的、
y
vr
va
系相固结的物体的运动,因而是指一个刚体的运动,它可以是平移、
转动或其他复杂的运动。
目录
刚体的运动\点的合成运动
1.2 点的速度合成定理
以图示桥式起重机为例,研究
y Ox
绝对运动、相对运动和牵连运动三
者速度之间的关系。设在瞬时t,动 点在位置M。假如动点不作相对运
y
M''
动,则经Δt时间后,动点随动系运
理论力学
刚体的运动\点的合成运动
点的合成运动
在研究刚体的平面运动之前,先介绍点的合成运动的有关概念 及点的速度合成定理,这既是研究点的运动的又一种方法,又是研 究刚体复杂运动的基础。
1.1 点的合成运动的概念
在不同的物体上观察同一物体的运动时,会得出不同的结果。 例如,当火车行驶时,在车厢上观察车轮上一点的运动是圆周运动, 在地面上观察则是复杂的曲线运动,若在车轮上观察则是静止的。 因此,在研究一个物体的运动时,必须指明是相对于哪个物体而言, 即必须选定参考体或参考系。在工程上如果没有特别的说明,都是 以地面作为参考系。
目录
刚体的运动\点的合成运动 【例6.5】 凸轮机构(如图)中,导
杆AB可在铅垂管D内上下滑动,其下端 与凸轮保持接触。凸轮以匀角速度ω绕O 轴逆时针转动,在图示瞬时OA=a ,凸轮

理论力学第六章 点的合成运动 [同济大学]

理论力学第六章 点的合成运动 [同济大学]

解: 从例6-2已知得: 1 =
vr r 3 , 2
ω 4
O
解: 从上例已知得: 1 =
r
M
ω 4
va
A
aaτ =0 ,
3 , 4
aan=2r aen=
ωr 8
x’
2
ac 21vr 2 r
va
30°
3 1 1/ s2 8
2
动点取A,
va v A

ar
dvr d 2 x ' ' d 2 y ' ' d 2 z ' ' 2 r 2 j 2 k dt dt dt dt
dx ' di ' dy ' dj' dz ' dk ' dt dt dt dt dt dt
ar ω vr
a a ae a r ac; ac= 2vr
ve
a n a ae a rn a rτ
矢量
1.瞬时状态; 2.可解两个未知量 (大小,方向)。
例6-5 曲柄滑道机构,OA=01A=r=10cm, =30°,=4, 求: 转到30°时直杆的加速度a。 va vr 动点取A; 绝对:圆周; ve 解:相对:圆周;牵连:直线。 [速度] =
a a ae a r ac; aa a an ae aen ar arn ac;
例6-8 曲柄绕O转动,並通过滑块M带动滑槽绕O′摆动, ’ y 求摆动到30°时的角加速度1。
例6-9 将例6-8滑槽改变为图示牛头刨床机构,MA=2r, 求:刨床刨刀的速度,加速度。
vr
dv e dω dr r ω dt dt dt α r ω v e ω v r ae ω v r

理论力学(第6章)

理论力学(第6章)

t 已知:O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 求: va , aa s BM
π
加速度合成定理的矢量形式向 直角坐标轴x、y上投影,得:
π aax a a cos 6.67cm / s 2 6 π n n aay ar ae sin 20cm / s 2 6
绝对:大圆周(半径R)
相对:沿OA的直线运动 牵连:定轴转动(绕o轴)
2.速度分析 v a ve 大小 ? 方向 √
ve va 2Rω cos

vr
OM√?√ Nhomakorabeavr ve tan 2 R ω sin ω t
6.3 牵连运动为平移时点的加速度合成定理
点的加速度合成定理:
解:(1) 动点:取顶杆AB的A点 动系:固连在凸轮上。 绝对运动:沿AB竖直方向 的平移。 相对运动:A点沿凸轮边 缘的圆周运动。 牵连运动:动系凸轮沿水 平面向右平移。
已知:
v0
30
2.速度分析
va ve vr
由几何关系可以得到:

3 vB vA v tan 30 v 3
例6-5 平面机构中直杆O1A、O2B平行且等长,分别 绕O1、O2轴转动,直杆的A、B连接半圆形平板,动 点M沿半圆形平板ABD边缘运动,起点为点B。已知 π t, O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 。 s BM
求:当 t 3s 时, 动点M的绝对速度 和绝对加速度。

方向竖直向上
例6-2 刨床的急回机构如图所示。曲柄OA的一端 A与滑块用铰链连接。当曲柄OA以匀角速度ω绕固 定轴O转动时,滑块在摇杆O1B上滑动,并带动杆 O1B绕定轴O1摆动。设曲柄长为OA=r,两轴间距 离OO1=l。 B 求: O ① 曲柄在水平位 A 置时摇杆的角 速度 1 。 ② 滑块A对于摇 杆 的相对角 O1 速度

理论力学-点的合成运动

理论力学-点的合成运动

第六章点的合成运动一、是非题1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。

()2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

()3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。

()4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。

()5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。

()6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。

()7、当牵连运动定轴转动时一定有科氏加速度。

()8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。

()二、选择题1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴转动。

今以圆盘边缘上的一点M为动点,OA为动坐标,当AM垂直OA时,点M的相对速度为。

①υr=Lωr,方向沿AM;②υr=r(ωr-ω),方向垂直AM,指向左下方;③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方;④υr=rωr,方向垂直AM,指向在左下方。

2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小αr= ;牵连加速度的大小αe = ;科氏加速度的大小αk = 。

方向均需在图中画出。

①Lω2;②0;③3Lω2;④23 L ω2。

3.圆盘以匀角速度ω0绕O 轴转动,其上一动点M 相对于圆盘以匀速u 在直槽内运动。

若以圆盘为动系,则当M 运动到A 、B 、C 各点时,动点的牵连加速度的大小 ,科氏加速度的大小 。

①相等;②不相等;③处于A ,B 位置时相等。

大学本科理论力学课程第9章 点的合成运动

大学本科理论力学课程第9章 点的合成运动

在任意瞬时,动参考系上与动点重合的那一点称为牵连点。 注意动点相对动系运动,故牵连点不是动系上的某个固定点。
有了牵连点的概念,可以定义牵连速度和牵连加速度如下: 牵连运动中,某瞬时牵连点的速度和加速度称为该瞬时动
点的牵连速度 ve 和牵连加速度 ae 。
下面通过例子来说明以上的各个概念:
理论力学电子教程
则M点速度大小:
v R O1M (OM sin ) r sin
由此,据线性代数知
v rOM
O1 R v
θ
M
r
O
上式是转动刚体上点的速度矢
积表达式。
理论力学电子教程
第九章 点的合成运动
由于角速度矢量与角加速度矢量共线,故
d
dt
又 v r
a dv dt
a dv d r
第九章 点的合成运动
理论力学电子教程
第九章 点的合成运动
理论力学电子教程
第九章 点的合成运动
不同动点的选择会有不同的运动分析结果,尤其是相对运动 轨迹有时简单明了有时复杂难辩,从而影响速度、加速度分析。 例如下面各例:
详例1:
理论力学电子教程
动点:AB杆上A点 动系:固结于偏心凸轮C上 定系:固结在地面上
理论力学电子教程
第九章 点的合成运动
下面介绍点的合成运动中的重要基本概念:“一点两系三运动” 一 点: 即动点,所研究的点。 P175 两 系:定(静)坐标系和动坐标系。 定(静)坐标系 — 固结于地面(地球)上的坐标系,
简称定(静)系。 动坐标系 — 建立在相对于地面运动着的物体上的坐标系,
简称动系。例如建立在行驶的火车上的坐标系。
理论力学电子教程
第九章 点的合成运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
若动点A在偏心轮上时
动点:A(在AB杆上)
A(在偏心轮上)
动系:偏心轮
AB杆
静系:地面
地面
绝对运动:直线
圆周(红色虚线)
相对运动:圆周(曲线) 曲线(未知)
牵连运动:定轴转动
平动
[注] 要指明动点应在哪个 物体上, 但不能选在 动系上。
10
§6-2点的速度、加速度合成定理
哈工大教材,我们的详细证明在最后做
1
第六章 点的合成运动
§6–1 点的合成运动的概念 §6–2.1 点的速度合成定理 §6–2.2 牵连运动为平动时点的加速度合成定理 §6–3 牵连运动为转动时点的加速度合成定理 习题课
2
前两章中我们研究点和刚体的运动,一般都是以地面为参考 体的。然而在实际问题中,还常常要在相对于地面运动着的参 考系上观察和研究物体的运动。例如,从行驶的汽车上观看飞 机的运动等,坐在行驶的火车内看下雨的雨点是向后斜落的等。
分析上式:可见,当牵连运动为转动时,动点的绝对加速度 a a 并不
等于牵连加速度 a e 和相对加速度 a r 的矢量和。那么他们
之间的关系是什么呢? 2 vr 又是怎样出现的呢?牵连运动
为转动时点的加速度合成定理的证明留待以后。
16
绝对、相对和牵连加速度之间的关系就是加速度合成定理,表达
z
rM
r'
ro '
o' x'
y'
dt
绝对速度为:
d r v o a' d x d r'M i • 't y d'( • jr'o d ' zt'rk • ')' x • 'i ' y • 'x jO' z • 'k '
y
dt
所以有:
• • • vex'i'y'j'z'k'
va ve vr
3.动参考系:把固结于相对于地面运动物体上的坐标系,
称为动坐标系,简称动系。例如在行驶的汽车。
3
二.三种运动及三种速度与三种加速度。
1.绝对运动:动点对静系的运动。 2.相对运动:动点对动系的运动。
点的运动
例如:人在行驶的汽车里走动。
3.牵连运动:动系相对于静系的运动
刚体的运动
例如:行驶的汽车相对于地面的运动。
定系:Oxyz
动系:O’x’y’z’ O’点 在定系中矢径:ro '
动点 M在动系中的矢径: r' x 'i' y 'j' z'k '
M z'
z rM
r'
o' y'
ro '
x'
求相对导数得相对速v 度r:d d r ' tx •'i' y •' j'z•'k '
O x
y
此与牵动时动连点牵点速M连度M在点在:定定M系’系v 在中e 中定的 的系矢d 矢中径d r 径M 的:相'矢 同r径M t :d d r o 'rr M o''x •t 'i r • r'' o' y •'r • j'' z •'k • ' x • 'i ' y • ' j' z • 'k '
为什么在不同的坐标系或参考体上观察物体的运动会有不 同的结果呢?我们说事物都是相互联系着的。下面我们就将研 究参考体与观察物体运动之间的联系。为了便于研究,下面先 来介绍有关的概念。
§6-1 点合成运动的基本概念
一.动点、坐标系:
1、动点: 所研究的点(运动着的点)。
2.静参考系:把固结于地面上的坐标系称为静坐标系,简称静系。
绝对运动中,动点的速度与加速度称为绝对速度 v a 与绝对加速度 a a 相对运动中,动点的速度和加速度称为相对速度 v r 与相对加速度a r
牵连运动中,牵连点的速度和加速度称为牵连速度v e与牵连加速度 a e
牵连点:在任意瞬时,动坐标系中与动点相重合的点,也就是 设想将该动点固结在动坐标系上,而随着动坐标系一起运动时 该点叫牵连点。
式为:
aaaear2vr
4
三.动点的选择原则: 一般选择主动件与从动件的连接点,它是对两个坐标系都有
运动的点。 四.动系的选择原则: 动点对动系有相对运动,且相对运动的轨迹是已知的,
或者能直接看出的。 下面举例说明以上各概念:
动点:AB杆上A点
动系:固结于凸轮O'上
静系:固结在地面上
5
绝对运动: 直线 相对运动: 曲线(圆弧) 牵连运动: 直线平动
6
绝对速度 :v a 相对速度 : v r
牵连速度 :v e
7
绝对加速度:a a 相对加速度:a r
牵连加速度:a e
8
动点:A1(在O'A1 摆杆上) 动系:圆盘 静系:机架 绝对运动:曲线(圆弧) 相对运动:曲线 牵连运动:定轴转动
动点:A(在圆盘上) 动系:O'A摆杆 静系:机架 绝对运动:曲线(圆周) 相对运动:直线 牵连运动:定轴转动
veR, ae2R (方向如图)
相对运动为匀速圆周运动,
有vr
常数 ,ar
vr2 R
(方向如图)
由速度合成定理可得出
vavevrRvr常数
即绝对运动也为匀速圆周运动,所以
a av R a2(RR vr)2R2v R r2 2vr
方向指向圆心O点
15
a av R a2(RR vr)2R2v R r2 2vr
13
牵连运动为转动时点的加速度合成定理
当牵连运动为转动时,加速度合成定理是怎样表达?下面我们 来分析一特例。
设一圆盘以匀角速度 绕定轴O顺
时针转动,盘上圆槽内有一点M以大 小不变的速度 vr 沿槽作圆周运动,那 么M点相对于静系的绝对加速度应是 多少呢?
14
选点M为动点,动系固结与圆盘上, 则M点的牵连运动为匀速转动
v rd d r ' tx •'i'y •' j'z•'k '
12
绝对、相对和牵连速度之间的关系就是速度合成定理,它表明: 三个速度矢量的任何一个可以由其余两个叠加得到,表达式为:
va ve vr
(6.1)
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度的 矢量和,这就是点的速度合成定理。
动系平动时的加速度合成 a d d vatd(ve dv tr)a ea r
注意在动系中牵连点导数为零: x'i'y' j'z'k'0
11
• • •
所以牵连速度为:
x'i'y' j'z'k'0
M z'
v e dd d rr oo '' xtx ''i•i • ' ' yy ''•j • j' ' zz ''k•k • '' x • 'i ' y • ' j' z • 'k '
相关文档
最新文档