电磁感应现象优秀课件
合集下载
大学物理电磁感应-PPT课件精选全文完整版

的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
电磁感应定律PPT课件

21 B1 I1
12
互感电动势
N 221 M21I1
N112 M12 I2
21
M 21
dI1 dt
12
M 12
dI 2 dt
N1 N2
互感系数 M12 M 21 M
21 M
dI1 dt
12
M
dI 2 dt
.
21
例 11-11 在磁导率为 的均匀无限大的磁介质中,一
无限长直导线与一宽、长分别为b 和 l 的矩形线圈共
.
26
3 麦克斯韦方程组的积分形式
(Maxwell equations)
麦
电场
LE
dl
S
B t
dS
变化磁场可以 激发涡旋电场
克 斯
S D dS qi i
电场是有源场
韦 方 程
H dl
L
(
s
jc
D ) t
ds
传导电流和 变化电场可 以激发磁场
组 磁场
B dS 0 S
I2
互感线圈周围没有铁磁质时其互感系数是常数,仅
取决于线圈的结构、相对位置和磁介质。
2
M
dI1 dt
1
M
dI2 dt
M、L的单位:H
.
30
五、磁场的能量
自感磁能:
Wm
1 LI 2
2
磁场能量密度:
wm
B2
2
1 H 2
2
1 BH 2
磁场的能量:
Wm V wmdV
.
31
六、麦克斯韦的电磁场理论
(D)电子受到洛伦兹力而减速。
a
[A ]
F洛
a
12
互感电动势
N 221 M21I1
N112 M12 I2
21
M 21
dI1 dt
12
M 12
dI 2 dt
N1 N2
互感系数 M12 M 21 M
21 M
dI1 dt
12
M
dI 2 dt
.
21
例 11-11 在磁导率为 的均匀无限大的磁介质中,一
无限长直导线与一宽、长分别为b 和 l 的矩形线圈共
.
26
3 麦克斯韦方程组的积分形式
(Maxwell equations)
麦
电场
LE
dl
S
B t
dS
变化磁场可以 激发涡旋电场
克 斯
S D dS qi i
电场是有源场
韦 方 程
H dl
L
(
s
jc
D ) t
ds
传导电流和 变化电场可 以激发磁场
组 磁场
B dS 0 S
I2
互感线圈周围没有铁磁质时其互感系数是常数,仅
取决于线圈的结构、相对位置和磁介质。
2
M
dI1 dt
1
M
dI2 dt
M、L的单位:H
.
30
五、磁场的能量
自感磁能:
Wm
1 LI 2
2
磁场能量密度:
wm
B2
2
1 H 2
2
1 BH 2
磁场的能量:
Wm V wmdV
.
31
六、麦克斯韦的电磁场理论
(D)电子受到洛伦兹力而减速。
a
[A ]
F洛
a
电磁感应现象的两类情况 课件

由电荷的电场 静电力
力
导体中自由电 荷所受洛伦兹 力沿导体方向 的分力
感生电动势
动生电动势
回路中相当于电 处于变化磁场中 做切割磁感线运动的导
源的部分
的线圈部分
体
通常由右手定则判断,也 方向判断方法 由楞次定律判断
可由楞次定律判断
大小计算方法
由 E=nΔΔΦt 计算
通常由 E=Blvsinθ 计算, 也可由 E=nΔΔΦt 计算
3.感生电场可用电场线形象描述,但感生电场的电场 线是闭合曲线,所以感生电场又称为涡旋电场.这一点与 静电场不同,静电场的电场线不闭合.
4.感生电场可以对带电粒子做功,可使带电粒子加速 和偏转.
二、感生电动势与动生电动势的对比
感生电动势 动生电动势
产生原因
导体做切割磁 磁场的变化
感线运动
感生电场对自 移动电荷的非
3.感生电场的方向 磁场变化时,垂直磁场的闭合环形回路(可假定 存在)中 感应电流 的方向就表示感生电场的方向.
电磁感应现象中的洛伦兹力
1.成因:导体棒做切割磁感线,导体棒中的自由电荷 随棒一起定向运动,并因此受到 洛伦兹力.
2.动生电动势 (1)定义:如果感应电动势是由于 导体运动 产生的, 它也叫做动生电动势. (2)非静电力:动生电动势中,非静电力是洛伦兹力 沿 导体棒方向的分力.
势 E2=ΔΔΦt22=ΔΔBt22S,由 ΔB1=ΔB2,Δt2=2Δt1,故 E1=2E2, 由此可知,A 项正确.
答案:A
电磁感应中的能量转化与守恒
图中虚线为相邻两个匀强磁场区域 1 和 2 的边 界,两个区域的磁场方向相反且都垂直于纸面,磁感应强 度大小都为 B,两个区域的高度都为 L.一质量为 m、电阻 为 R、边长也为 L 的单匝矩形导线框 abcd,从磁场区域 上方某处竖直自由下落,ab 边
力
导体中自由电 荷所受洛伦兹 力沿导体方向 的分力
感生电动势
动生电动势
回路中相当于电 处于变化磁场中 做切割磁感线运动的导
源的部分
的线圈部分
体
通常由右手定则判断,也 方向判断方法 由楞次定律判断
可由楞次定律判断
大小计算方法
由 E=nΔΔΦt 计算
通常由 E=Blvsinθ 计算, 也可由 E=nΔΔΦt 计算
3.感生电场可用电场线形象描述,但感生电场的电场 线是闭合曲线,所以感生电场又称为涡旋电场.这一点与 静电场不同,静电场的电场线不闭合.
4.感生电场可以对带电粒子做功,可使带电粒子加速 和偏转.
二、感生电动势与动生电动势的对比
感生电动势 动生电动势
产生原因
导体做切割磁 磁场的变化
感线运动
感生电场对自 移动电荷的非
3.感生电场的方向 磁场变化时,垂直磁场的闭合环形回路(可假定 存在)中 感应电流 的方向就表示感生电场的方向.
电磁感应现象中的洛伦兹力
1.成因:导体棒做切割磁感线,导体棒中的自由电荷 随棒一起定向运动,并因此受到 洛伦兹力.
2.动生电动势 (1)定义:如果感应电动势是由于 导体运动 产生的, 它也叫做动生电动势. (2)非静电力:动生电动势中,非静电力是洛伦兹力 沿 导体棒方向的分力.
势 E2=ΔΔΦt22=ΔΔBt22S,由 ΔB1=ΔB2,Δt2=2Δt1,故 E1=2E2, 由此可知,A 项正确.
答案:A
电磁感应中的能量转化与守恒
图中虚线为相邻两个匀强磁场区域 1 和 2 的边 界,两个区域的磁场方向相反且都垂直于纸面,磁感应强 度大小都为 B,两个区域的高度都为 L.一质量为 m、电阻 为 R、边长也为 L 的单匝矩形导线框 abcd,从磁场区域 上方某处竖直自由下落,ab 边
电磁感应(20张ppt)

(3)线框绕轴线AB转动(图丙)。
生成智慧之果
三、感应电流产生的条件应用
2.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
生成智慧之果
三、感应电流产生的条件应用
3、 如图所示,垂直于纸面的匀强磁场局限在虚线框内, 闭合线圈由位置1穿过虚线框运动到位置2。线圈在什么时候 有感应电流?什么时候没有感应电流?为什么?
孙正林 泰州市第三高级中学
开启智慧之门
一、电磁感应的探索历程 1.奥斯特梦圆“电生磁” 1820年,丹麦物理学家奥斯特发现通电导 线周围的小磁针发生偏转,从而发现电流的磁 效应.
开启智慧之门
2.法拉第发现“磁生电” 1831年,英国物理学家法拉第发现
了电磁感应现象.
电源
G
开启智慧之门
奥斯特梦圆 : “电”生“磁” (机遇总是垂青那些有准备的人)
法拉第心系: “磁”生“电” (成功总是属于那些坚持不懈的人)
探究智慧之源
二、探究感应电流产生的条件
实验1:
如何才能在回路中 产生感应电流?
实验操作 表针是否摆动
导体棒左移 是 导体棒右移 是 导体棒不动 否 导体棒上移 否 导体棒下移 否
结论:闭合回路的部分导体在磁场
中切割磁感线
实验2:向线圈中插入磁铁和把磁铁 从线圈中拔出
实验2:向线圈中插入磁铁和把磁铁从线圈中拔出
磁铁的运 指针是
动
否摆动
N极插入线 圈
是
N极停在线 否 圈中
N极从线圈 中抽出
是
磁铁的运 指针是
动
否摆动
S极插入线 圈
是
S极停在线
生成智慧之果
三、感应电流产生的条件应用
2.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲), 然后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么?
生成智慧之果
三、感应电流产生的条件应用
3、 如图所示,垂直于纸面的匀强磁场局限在虚线框内, 闭合线圈由位置1穿过虚线框运动到位置2。线圈在什么时候 有感应电流?什么时候没有感应电流?为什么?
孙正林 泰州市第三高级中学
开启智慧之门
一、电磁感应的探索历程 1.奥斯特梦圆“电生磁” 1820年,丹麦物理学家奥斯特发现通电导 线周围的小磁针发生偏转,从而发现电流的磁 效应.
开启智慧之门
2.法拉第发现“磁生电” 1831年,英国物理学家法拉第发现
了电磁感应现象.
电源
G
开启智慧之门
奥斯特梦圆 : “电”生“磁” (机遇总是垂青那些有准备的人)
法拉第心系: “磁”生“电” (成功总是属于那些坚持不懈的人)
探究智慧之源
二、探究感应电流产生的条件
实验1:
如何才能在回路中 产生感应电流?
实验操作 表针是否摆动
导体棒左移 是 导体棒右移 是 导体棒不动 否 导体棒上移 否 导体棒下移 否
结论:闭合回路的部分导体在磁场
中切割磁感线
实验2:向线圈中插入磁铁和把磁铁 从线圈中拔出
实验2:向线圈中插入磁铁和把磁铁从线圈中拔出
磁铁的运 指针是
动
否摆动
N极插入线 圈
是
N极停在线 否 圈中
N极从线圈 中抽出
是
磁铁的运 指针是
动
否摆动
S极插入线 圈
是
S极停在线
电磁感应现象及应用ppt课件

2.产生感应电流的条件
2.电磁感应现象产生的电流叫做 感应电流
二、探究感应电流的产生条件
1.实验观察 探究1:导体棒在磁场中运动是否产生电流
实验操作
导体棒静止 导体棒平行磁感
线运动 导体棒切割磁感
线运动
实验现象(有无电流 )
_无___ _无___
_有___
结论: 当闭合回路中部分导体切割磁感线时,电路中会产生感应电流。
产生感应电流的条件
• 分析下列各种情况,线圈有无感应电流产生? • 1 ) 向右平动(ad边还没有进入磁场)
有感应电流
• 2 ) 向上平动(ab边还没有离开磁场)
• 无3 感) 以应bc电边流为轴转动(ad边还没有转入磁场)
• 无4 感) 以应ab电边流为轴转动(转角不超过90°)
• 5 ) B=kt(k>0),且线框在图中位置不动
家用微波炉
家用微波炉把220V家用电,通过变压器增大电压,高压使 磁控管产生高频微波,高频微波再通过滤导管传送给搅拌器, 搅拌器使高频微波均匀分布在炉腔内。食物内的水分被高频微 波振动,产生热量,进而使食物加热。
日常变压器
变压器分为单相变 压器和三相变压器,右 图为单相变压器,主要 应用电磁感应原理,使 N1N2两线圈内的磁通量 发生改变,从而使线圈 内的电流发生改变。
安培未能足够重视这一转瞬即逝的实验现象,痛失 了一项重大的科学发现,原因何在?
这是因为他把分子电流假说看得极为重要,他完 全被自己的理论禁锢起来了。
解放思想,实事求是
法拉第发现的电磁感应使人们对电 和磁内在联系的认识更加完善,宣告 了电磁学作为一门统一学科的诞生, 为电磁学的发展作出了重大贡献。
1.利用磁场产生电流的现象叫电磁感 应现象
2.电磁感应现象产生的电流叫做 感应电流
二、探究感应电流的产生条件
1.实验观察 探究1:导体棒在磁场中运动是否产生电流
实验操作
导体棒静止 导体棒平行磁感
线运动 导体棒切割磁感
线运动
实验现象(有无电流 )
_无___ _无___
_有___
结论: 当闭合回路中部分导体切割磁感线时,电路中会产生感应电流。
产生感应电流的条件
• 分析下列各种情况,线圈有无感应电流产生? • 1 ) 向右平动(ad边还没有进入磁场)
有感应电流
• 2 ) 向上平动(ab边还没有离开磁场)
• 无3 感) 以应bc电边流为轴转动(ad边还没有转入磁场)
• 无4 感) 以应ab电边流为轴转动(转角不超过90°)
• 5 ) B=kt(k>0),且线框在图中位置不动
家用微波炉
家用微波炉把220V家用电,通过变压器增大电压,高压使 磁控管产生高频微波,高频微波再通过滤导管传送给搅拌器, 搅拌器使高频微波均匀分布在炉腔内。食物内的水分被高频微 波振动,产生热量,进而使食物加热。
日常变压器
变压器分为单相变 压器和三相变压器,右 图为单相变压器,主要 应用电磁感应原理,使 N1N2两线圈内的磁通量 发生改变,从而使线圈 内的电流发生改变。
安培未能足够重视这一转瞬即逝的实验现象,痛失 了一项重大的科学发现,原因何在?
这是因为他把分子电流假说看得极为重要,他完 全被自己的理论禁锢起来了。
解放思想,实事求是
法拉第发现的电磁感应使人们对电 和磁内在联系的认识更加完善,宣告 了电磁学作为一门统一学科的诞生, 为电磁学的发展作出了重大贡献。
1.利用磁场产生电流的现象叫电磁感 应现象
《电磁感应现象》课件

4. 分析结果
根据记录的数据,分析电磁感应 现象中产生的电动势大小和方向 与磁场变化的关系,验证法拉第 电磁感应定律。
5. 清理实验现场
实验结束后,关闭电源,拆解电 路,整理实验器材。
05
电磁感应现象的意义与影响
对现代电力工业的影响
发电
发电机利用电磁感应原理将机械 能转化为电能,为现代电力工业
提供源源不断的能源。
智能电网
智能电网的建设需要大量应用电磁感应技术,实 现高效、安全、可靠的电力传输和分配。
3
交通领域
未来交通工具如电动汽车、高速磁悬浮列车等将 大量应用电磁感应技术,提高运行效率和安全性 。
学生自我评估与反馈
学生应自我评估对本课程内容的掌握程度,是否理解了电磁感应现象的基本概念和法拉第电磁感应定律的原理 。
用于测量感应电流的大小 和方向。
导线
连接电源、线圈、电流计 和磁铁。
实验步骤与观察
2. 启动实验
打开电源,逐渐增加磁场强度或 改变磁场方向,观察灵敏电流计 的读数变化。
1. 连接电路
将电源、线圈、电流计和磁铁按 照电路图正确连接,确保线路接 触良好。
3. 记录数据
在实验过程中,记录不同磁场强 度和方向下,感应电流的大小和 方向变化。
输电
高压输电线路利用电磁感应原理 将电能高效地传输到各个角落,
满足人们的电力需求。
配电
配电系统利用电磁感应原理实现 电能的分配和管理,保障电力供
应的稳定性和可靠性。
对现代电子工业的影响
电子设备
各种电子设备如电视、电脑、手机等 都离不开电磁感应的应用,如变压器 、电感器等。
通信技术
无线通信和光纤通信技术利用电磁感 应原理实现信息的传输和处理,极大 地促进了现代电子工业的发展。
电磁感应优秀课件

自感系数
电磁感应
对于一个任意的回路
L
d dt
d dI
dI dt
L
L
dI dt
L dΨ Ψ dI I
自感(系数)的物理意义:
① L dΨ Ψ dI I
在数值上等于回路中通过单位电流时, 通过自身回路所包围面积的磁通链数。
电磁感应
②
L
d
dt
d( LI ) L dI I dL
解: r R E涡 • dl L
B
•
dS
t
S
分布。 E
L E涡dl
S
B dS t
dB
R L E
d
t
E r
0
B E
E涡
2r
dB dt
r 2
E涡
r 2
dB dt
方向:逆时针
电磁感应
r R
L E涡 •
dl
S'
B t
•
dS
在圆柱体外,由于
l H • dl NI
H 2r NI
H NI 2r
I
R2 R1
B NI
2r
d
B
•
dS
NI
hdr
2r
h
r dr
电磁感应
d
B
•
dS
NI
hdr
2r
d
NIh 2
R2
R1
dr r
NIh ln( R2 )
2
R1
N N 2Ih ln( R2 )
2
R1
L
N 2h
ln(
R2
)
I 2
R1
电磁感应
电磁感应现象及应用-课件

摆动
不摆动
开关闭合,
滑动变阻器触片滑动
摆动
开关断开瞬间
摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在
螺线管中时,没切割磁感线,无电流产生。
新知讲解
二、产生感应电流的条件
实验: 探究感应电流产生的条件
导体切割磁感线
改变了闭合电路在磁场中的面积
磁铁插入或拔出
中有没有感应电流? 为什么?
课堂练习
5.如图所示,把矩形闭合线圈放在匀强磁场中,线圈平面与磁感线平行,
下面能使线圈产生感应电流的是( C )
a
A. 线圈沿磁感线方向移动
B. 线圈沿垂直磁感线方向做移动
C. 线圈以ab边为轴匀速转动
D. 线圈以bc边为轴匀速转动
课堂小结
1.利用磁场产生电流的现象叫电磁感应, 产生的电流叫感应电流。
课堂练习
3.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲),然
后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么
?
课堂练习
4.矩形线圈ABCD位于通电长直导线附近,线圈与导线在同一个平面内,
线圈的两个边与导线平行。在这个平面内,线圈远离导线移动时,线圈中有没
有感应电流? 线圈和导线都不动,当导线中的电流I逐渐增大或减小时,线圈
磁铁的运动情况
表针的摆动情况
插入瞬间
摆动
拔出瞬间
摆动
停在线圈中
不摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在
不摆动
开关闭合,
滑动变阻器触片滑动
摆动
开关断开瞬间
摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在
螺线管中时,没切割磁感线,无电流产生。
新知讲解
二、产生感应电流的条件
实验: 探究感应电流产生的条件
导体切割磁感线
改变了闭合电路在磁场中的面积
磁铁插入或拔出
中有没有感应电流? 为什么?
课堂练习
5.如图所示,把矩形闭合线圈放在匀强磁场中,线圈平面与磁感线平行,
下面能使线圈产生感应电流的是( C )
a
A. 线圈沿磁感线方向移动
B. 线圈沿垂直磁感线方向做移动
C. 线圈以ab边为轴匀速转动
D. 线圈以bc边为轴匀速转动
课堂小结
1.利用磁场产生电流的现象叫电磁感应, 产生的电流叫感应电流。
课堂练习
3.如图所示,磁场中有一个闭合的弹簧线圈。先把线圈撑开(图甲),然
后放手,让线圈收缩(图乙)。线圈收缩时,其中是否有感应电流? 为什么
?
课堂练习
4.矩形线圈ABCD位于通电长直导线附近,线圈与导线在同一个平面内,
线圈的两个边与导线平行。在这个平面内,线圈远离导线移动时,线圈中有没
有感应电流? 线圈和导线都不动,当导线中的电流I逐渐增大或减小时,线圈
磁铁的运动情况
表针的摆动情况
插入瞬间
摆动
拔出瞬间
摆动
停在线圈中
不摆动
实验结论: 磁铁插入和拔出的瞬间,螺线管中的
每一线圈都切割磁感线,有电流产生;磁铁停在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)开关断开的瞬间,观察指针有没有偏转? 如何偏转?
(4)开关总是闭合的,滑动变限器也不动, 观察指针有没有偏转?如何偏转?
(5)开关总是闭含的,但迅速移动滑动变阻 器的滑片,观察指针有没有偏转?如何偏转?
插入视频
操作
现象
开关闭合瞬间
有电流产生
开关断开瞬间
有电流产生
开关闭合时,滑动变阻 器不动
无电流产生
乙 磁通量变小
分析归纳总结
结论:只要穿过闭合电路的磁通量变化,闭 合电路中就有感应电流产生。
“磁生电”的确是一种在Leabharlann 化、运 动的过程中才能出现的效应。
课堂小结
一、电磁感应 1.磁通量:穿过闭合回路的磁感线的条数φ。
φ= BS——不要求掌握。 2.电磁感应产生的电流叫做感应电流。 3.闭合电路的一部分导体在磁场中做切割磁感
想一想:这个结论是不是普遍适用的呢?
演示3
进一步探究感应电流与磁通量变化的关系。
1.实验仪器:学生电源、电键、滑动变 阻器、小螺线管A、大螺线管B、电流表。
2.实验过程: (1)将小螺线管A套在大螺线管B中;将 大螺线管B和电流表连接;将学生电源、电键、 滑动变阻器、小螺线管A连接。
(2)开关闭合的瞬间,观察指针有没有偏转? 如何偏转?
分析2
演示实验2中,磁 体相对线圈运动,线 圈内磁场发生变化, 变强或者变弱(线圈 面积不变),有电流 产生;当磁体在线圈 中静止时,线圈内磁 场不变化,无电流产 生。
甲 磁场变强 乙 磁场变弱
分析3
演示实验3中,通、 断电瞬间,变阻器滑 动片快速移动过程中, 线圈A中电流变化, 导致线圈B内磁场发 生变化,变强或者变 弱(线圈面积不变), 有电流产生;当线圈 A中电流恒定时,线 圈内磁场不变化,无 甲 磁通量变大 电流产生。
电磁感应现象优秀课件
1831年圣诞节的前夕,一次科学报告会上, 法拉第当众表演了一个实验。
一个铜盘的轴和铜盘的边缘分别连在“电 流计”的两端,法拉第摇动手柄使铜盘在磁极 之间旋转,“电流计”的指针随之摆动,这是 最早的发电机。
当时在场的一位贵妇人取笑地问:“先生, 您发明的这个玩意儿有什么用呢?”法拉第平 静地反问:“夫人,新生的婴儿有什么用呢?”
后来,发电机这个新生的“婴儿”,果然 成长为一个改变世界面貌的“巨人”,它开辟 了人类社会的电气化时代。
奥斯特在1820年发现的电流磁效应,使整 个科学界受到了极大的震动,它证实电现象与 磁现象是有联系的。探究电与磁关系的崭新领 域,突然洞开在人们面前,激发了科学家们的 探索热情。一个接一个的新发现,象热浪一样 冲击欧洲大陆,也激励着英国的科学界。
导体棒的 表针的摆动 导体棒的 表针的摆动
运动
方向
运动
方向
向右平动
向左
向后平动 不摆动
向左平动
向右
向上平动 不摆动
向前平动 不摆动 向下平动 不摆动
结论:只有左右平动时,导体棒切割磁感线, 有电流产生,前后平动、上下平动,导体棒都不 切割磁感线,没有电流产生。
演示2
向线圈中插入磁铁,把磁铁从线圈中拔 出。
电能生磁,磁能生电吗?
一、划时代的发现
电能生磁,磁能生电吗? 安培、科拉顿的遗憾
英国科学家法拉第敏
锐地觉察到,磁与电流之
间应该有联系。他在
1822年的日记中写下了
“由磁产生电”的设想。
他做了多次尝试,经历了
一次次失败,但他坚信电
与磁有联系,经十年努力,
终于发现磁能生电。
法拉第,英国
物理学家、化学家
磁铁的 运动
N极插 入线圈 N极停 在线圈
中 N极从 线圈中 抽出
表针 的摆 动方
向
向右
不摆 动
向左
磁铁的 运动
S极插 入线圈 S极停 在线圈
中 S极从 线圈中 抽出
表针 的摆 动方
向
向左
不摆 动
向右
通过前面两个实验,我们可以得到什么 结论?
只有磁铁相对线圈运动时,才有电流产 生。磁铁相对线圈静止时,没有电流产生。
1831年,法拉第终于发 现了电磁感应现象:把两个 线圈绕在一个铁环上,一个 线圈接电源,另一个线圈接 “电流表”,当给一个线圈 通电或断电的瞬间,在另一 个线圈上出现了电流。他在 1831年8月29日的日记中写 下了首次成功的记录。
法拉第用过的线圈
1.电磁感应:
回想初中所学的结论:闭合电路的一部分 导体在磁场中做切割磁感线运动 时,导体中 就产生电流。物理学中把这类现象叫做电磁感 应。
开关闭合时,迅速移动 变阻器的滑片
有电流产生
结论:只有当线圈A中电流变化时,线圈B中 才有电流产生。
为了说清楚产生 电磁感应的条件,要 用到一个物理量—— 磁通量φ。
定义:穿过闭
合回路的磁感线的条 数。
φ= B S 不要求掌握
(1)闭合导体回路的面积与垂直穿过它的磁 感应强度的乘积。
(2)公式:Ф=B•S。 (3)单位:韦伯(Wb) 1Wb=1T•1m2=1V•s (4)物理意义:磁通量表示穿过一个闭合电 路的磁感线条数。
如图所示:把磁铁的某一个磁极向线圈 中插入,从线圈中拔出,或静止地放在线圈 中。观察电流表的指针。
实验过程:
(1)将螺线管和电流表连接。 (2)N极插入线圈的过程中,观察指针有没 有偏转?如何偏转? (3)N极停在线圈中,观察指针有没有偏转? 如何偏转? (4)N极从线圈中抽出的过程中,观察指针 有没有偏转?如何偏转? (5)S极插入线圈的过程中,观察指针有没有 偏转?如何偏转? (6)S极停在线圈中,观察指针有没有偏转? 如何偏转? (7)S极从线圈中抽出的过程中,观察指针有 没有偏转?如何偏转?
对于同一个平面,当它跟磁场方向垂直时, 磁场越强,穿过它的磁感线条数越多,磁通量就 越大。当它跟磁场方向平行时,没有磁感线穿过 它,则磁通量为零。
(5)磁场变化、面积变化都会引起磁通量的 变化。
分析1
演示实验1中,部分导体切割磁感线,闭合 电路所围面积发生变化(磁场不变化),有电 流产生;当导体棒前后、上下平动时,闭合电 路所围面积没有发生变化,无电流产生。
2.感应电流:
由电磁感应产生的电流叫做感应电流。
演示1
电磁感应现象的发现为完整的电磁学理论奠定 了基础,奏响了电气化时代的序曲。我们今天正在 享受着电磁感应给人类带来的各种恩惠。
在什么条件下能够产生电磁感应? 如图导体左右平动,前后运动、上下运动。 观察电流表的指针:
动画:电磁感应现象演示实验
向里运动 向外运动
(4)开关总是闭合的,滑动变限器也不动, 观察指针有没有偏转?如何偏转?
(5)开关总是闭含的,但迅速移动滑动变阻 器的滑片,观察指针有没有偏转?如何偏转?
插入视频
操作
现象
开关闭合瞬间
有电流产生
开关断开瞬间
有电流产生
开关闭合时,滑动变阻 器不动
无电流产生
乙 磁通量变小
分析归纳总结
结论:只要穿过闭合电路的磁通量变化,闭 合电路中就有感应电流产生。
“磁生电”的确是一种在Leabharlann 化、运 动的过程中才能出现的效应。
课堂小结
一、电磁感应 1.磁通量:穿过闭合回路的磁感线的条数φ。
φ= BS——不要求掌握。 2.电磁感应产生的电流叫做感应电流。 3.闭合电路的一部分导体在磁场中做切割磁感
想一想:这个结论是不是普遍适用的呢?
演示3
进一步探究感应电流与磁通量变化的关系。
1.实验仪器:学生电源、电键、滑动变 阻器、小螺线管A、大螺线管B、电流表。
2.实验过程: (1)将小螺线管A套在大螺线管B中;将 大螺线管B和电流表连接;将学生电源、电键、 滑动变阻器、小螺线管A连接。
(2)开关闭合的瞬间,观察指针有没有偏转? 如何偏转?
分析2
演示实验2中,磁 体相对线圈运动,线 圈内磁场发生变化, 变强或者变弱(线圈 面积不变),有电流 产生;当磁体在线圈 中静止时,线圈内磁 场不变化,无电流产 生。
甲 磁场变强 乙 磁场变弱
分析3
演示实验3中,通、 断电瞬间,变阻器滑 动片快速移动过程中, 线圈A中电流变化, 导致线圈B内磁场发 生变化,变强或者变 弱(线圈面积不变), 有电流产生;当线圈 A中电流恒定时,线 圈内磁场不变化,无 甲 磁通量变大 电流产生。
电磁感应现象优秀课件
1831年圣诞节的前夕,一次科学报告会上, 法拉第当众表演了一个实验。
一个铜盘的轴和铜盘的边缘分别连在“电 流计”的两端,法拉第摇动手柄使铜盘在磁极 之间旋转,“电流计”的指针随之摆动,这是 最早的发电机。
当时在场的一位贵妇人取笑地问:“先生, 您发明的这个玩意儿有什么用呢?”法拉第平 静地反问:“夫人,新生的婴儿有什么用呢?”
后来,发电机这个新生的“婴儿”,果然 成长为一个改变世界面貌的“巨人”,它开辟 了人类社会的电气化时代。
奥斯特在1820年发现的电流磁效应,使整 个科学界受到了极大的震动,它证实电现象与 磁现象是有联系的。探究电与磁关系的崭新领 域,突然洞开在人们面前,激发了科学家们的 探索热情。一个接一个的新发现,象热浪一样 冲击欧洲大陆,也激励着英国的科学界。
导体棒的 表针的摆动 导体棒的 表针的摆动
运动
方向
运动
方向
向右平动
向左
向后平动 不摆动
向左平动
向右
向上平动 不摆动
向前平动 不摆动 向下平动 不摆动
结论:只有左右平动时,导体棒切割磁感线, 有电流产生,前后平动、上下平动,导体棒都不 切割磁感线,没有电流产生。
演示2
向线圈中插入磁铁,把磁铁从线圈中拔 出。
电能生磁,磁能生电吗?
一、划时代的发现
电能生磁,磁能生电吗? 安培、科拉顿的遗憾
英国科学家法拉第敏
锐地觉察到,磁与电流之
间应该有联系。他在
1822年的日记中写下了
“由磁产生电”的设想。
他做了多次尝试,经历了
一次次失败,但他坚信电
与磁有联系,经十年努力,
终于发现磁能生电。
法拉第,英国
物理学家、化学家
磁铁的 运动
N极插 入线圈 N极停 在线圈
中 N极从 线圈中 抽出
表针 的摆 动方
向
向右
不摆 动
向左
磁铁的 运动
S极插 入线圈 S极停 在线圈
中 S极从 线圈中 抽出
表针 的摆 动方
向
向左
不摆 动
向右
通过前面两个实验,我们可以得到什么 结论?
只有磁铁相对线圈运动时,才有电流产 生。磁铁相对线圈静止时,没有电流产生。
1831年,法拉第终于发 现了电磁感应现象:把两个 线圈绕在一个铁环上,一个 线圈接电源,另一个线圈接 “电流表”,当给一个线圈 通电或断电的瞬间,在另一 个线圈上出现了电流。他在 1831年8月29日的日记中写 下了首次成功的记录。
法拉第用过的线圈
1.电磁感应:
回想初中所学的结论:闭合电路的一部分 导体在磁场中做切割磁感线运动 时,导体中 就产生电流。物理学中把这类现象叫做电磁感 应。
开关闭合时,迅速移动 变阻器的滑片
有电流产生
结论:只有当线圈A中电流变化时,线圈B中 才有电流产生。
为了说清楚产生 电磁感应的条件,要 用到一个物理量—— 磁通量φ。
定义:穿过闭
合回路的磁感线的条 数。
φ= B S 不要求掌握
(1)闭合导体回路的面积与垂直穿过它的磁 感应强度的乘积。
(2)公式:Ф=B•S。 (3)单位:韦伯(Wb) 1Wb=1T•1m2=1V•s (4)物理意义:磁通量表示穿过一个闭合电 路的磁感线条数。
如图所示:把磁铁的某一个磁极向线圈 中插入,从线圈中拔出,或静止地放在线圈 中。观察电流表的指针。
实验过程:
(1)将螺线管和电流表连接。 (2)N极插入线圈的过程中,观察指针有没 有偏转?如何偏转? (3)N极停在线圈中,观察指针有没有偏转? 如何偏转? (4)N极从线圈中抽出的过程中,观察指针 有没有偏转?如何偏转? (5)S极插入线圈的过程中,观察指针有没有 偏转?如何偏转? (6)S极停在线圈中,观察指针有没有偏转? 如何偏转? (7)S极从线圈中抽出的过程中,观察指针有 没有偏转?如何偏转?
对于同一个平面,当它跟磁场方向垂直时, 磁场越强,穿过它的磁感线条数越多,磁通量就 越大。当它跟磁场方向平行时,没有磁感线穿过 它,则磁通量为零。
(5)磁场变化、面积变化都会引起磁通量的 变化。
分析1
演示实验1中,部分导体切割磁感线,闭合 电路所围面积发生变化(磁场不变化),有电 流产生;当导体棒前后、上下平动时,闭合电 路所围面积没有发生变化,无电流产生。
2.感应电流:
由电磁感应产生的电流叫做感应电流。
演示1
电磁感应现象的发现为完整的电磁学理论奠定 了基础,奏响了电气化时代的序曲。我们今天正在 享受着电磁感应给人类带来的各种恩惠。
在什么条件下能够产生电磁感应? 如图导体左右平动,前后运动、上下运动。 观察电流表的指针:
动画:电磁感应现象演示实验
向里运动 向外运动