放射性物质的来源、处理
放射性污染的类型和处理方法

放射性污染的类型和处理方法放射性污染是指含有放射性物质的环境污染,它对人类和生态环境产生严重影响。
下面将分别介绍放射性污染的类型和处理方法。
一、放射性污染的类型:1. 天然放射性污染:天然放射性污染是由地球内部存在的放射性同位素释放而来的。
例如,土壤和岩石中的铀、钍和钾在自然放射性衰变过程中产生放射性污染。
2. 人为放射性污染:人为放射性污染是由人类活动引起的放射性物质的释放。
例如,核电厂事故、核武器试验和放射性医疗废物排放等。
二、放射性污染的处理方法:1. 积极物理隔离:通过使用特殊材料等方法,将放射性物质进行有效地物理隔离,以防止其辐射泄漏。
例如,在核电厂中,使用厚实的混凝土墙壁和屏蔽材料进行辐射阻挡。
2. 污水处理:对于放射性污水,可以使用不同的方法进行处理。
一种常见的方法是利用离子交换树脂,通过吸附和交换过程将放射性物质从水中去除。
3. 土壤修复:对于受到放射性污染的土壤区域,可以利用土壤修复技术进行处理。
一种常用的修复方法是土壤剥离,即将受到污染的上层土壤剥离掉,然后用新的土壤填补。
4. 食物治理:对于放射性污染的食物,可以使用不同的方法进行处理。
一种常见的方法是利用食品加工技术,如真空干燥、辐照灭菌等,有效减少或去除放射性物质。
5. 核废料储存:对于放射性核废料,需要进行安全的储存和处理。
目前,常用的方法是将核废料转移到专门的地下储存设施,例如深层地下储存设施,以确保放射性物质不会对环境和人类造成危害。
6. 辐射监测和防护:对于辐射源,需要进行定期的辐射监测和防护措施。
例如,在核电厂和医疗机构等场所,需要使用辐射计监测辐射剂量,同时采取适当的防护措施,如穿戴防护服等,确保工作人员的安全。
三、综上所述:放射性污染是一种严重的环境问题,涉及到人类和生态环境的健康。
为了有效处理放射性污染,我们可以采取积极的物理隔离、污水处理、土壤修复、食物治理、核废料储存以及辐射监测和防护等措施。
通过这些方法的综合应用,我们可以减少放射性物质的泄漏和散播,保护环境和人类健康的安全。
放射性物质的名词解释

放射性物质的名词解释放射性物质是一种自然界或人工产生而具有放射性的物质。
放射性是指物质中的原子核在放射能量的同时发生变化,进而转化为不同的元素或同位素的过程。
尽管放射性物质在核能和医疗领域有着广泛应用,但其也具有潜在的安全风险。
本文将详细解释放射性物质的性质、来源和特点,以便更好地了解该类物质的本质。
一、放射性物质的性质放射性物质的性质可以通过几个关键特征来描述。
首先,放射性物质具有放射性衰变的趋势,即其原子核会以特定的速率进行衰变,释放出射线和粒子,同时变化为其他元素或同位素。
这种放射性衰变可分为α衰变、β衰变和γ衰变三种类型,每种类型都具有不同的特点和能量。
其次,放射性物质的辐射性使其对人体和环境具有潜在危害。
射线和粒子的能量可以对人体组织和细胞产生直接或间接的损害,包括导致基因突变和癌症发生。
因此,放射性物质必须在正确的环境下储存和处理,以最大程度地减少辐射对人类和生态系统的影响。
最后,放射性物质还具有半衰期这一重要概念。
半衰期是指放射性物质衰变为其初始原子数的一半所需的时间。
不同的放射性物质具有不同的半衰期,从几分钟到数亿年不等。
这意味着一些放射性物质的辐射持续时间非常短暂,而另一些则能在长时间内持续释放辐射。
二、放射性物质的来源放射性物质有两个主要的来源:自然界和人工产生。
自然界中存在许多具有放射性的同位素,如铀、钍和钾,它们都能自发地发生放射性衰变。
这些自然放射性物质广泛存在于土壤、水体和大气中,其辐射通常在一个可接受的范围内。
人类活动也会导致放射性物质的产生。
核能领域是最常见的人工放射性物质产生来源,包括核电站、核武器和放射性医疗用品。
核电站发电时会产生大量核废料,其中含有长寿命放射性同位素,需要特殊设施进行安全储存和处理。
此外,核武器的制造及核试验也会导致大量放射性物质的释放。
三、放射性物质的特点放射性物质具有几个与其特定性质密切相关的特点。
首先,放射性物质的辐射能够被探测和测量。
放射性废物的处理

题目放射性废物的处理最新进展姓名胡家刚班级地质0901摘要:环境污染是人类面临的一大公害,放射性污染对人类生命安全和地球上生物的生存有严重的威胁,所以特别为人们所关注。
和平利用原子能,为人类造福不浅,但是核废物处置不好,又将对人类是一大危害。
放射性废物如何处置为好,必须进行科学论证。
所以处理放射性废物的发展特别引起我们的关注,新方法新技术的引入将更好的处理这些废物所带来的问题。
关键词:放射性废物,新方法,处理1.放射性废物放射性废物为含有放射性核素或被放射性核素污染,其浓度或活度大于国家审管部门规定的清洁解控水平,并且预计不再利用的物质。
1.1放射性废物的来源大致可分为四类:1.1.1核燃料生产过程:主要包括铀矿开采、冶炼和燃料元件加工等。
1.1.2反应堆运行过程:反应堆中生成的大量裂变产物,一般情况下保留在燃料元件包壳内,当发生元件包壳破损事故时,会有少量裂变产物泄漏到冷却循环水中。
1.1.3核燃料后处理过程:大量裂变产物是核燃料后处理过程的主要废物。
1.1.4 其他来源核工业部门退役的核设施,核武器生产和试验以及其他使用放射性物质的部门如医院、学校、科研单位、工厂等产生的各种废物。
1.2放射性废物的分类1.2. 1 放射性废物radioactive waste为审管的目的,放射性废物为含有放射性核素或被放射性核素污染,其浓度或活度大于国家审管部门规定的清洁解控水平,并且预计不再利用的物质1.2.2 放射性气载废物 radioactive gaseous waste含有放射性气体和气溶胶,其放射性浓度超过国家审管部门规定的排放限值的气态废弃物。
1.2.3 放射性液体废物 radioactive liquid waste含有放射性核素,其放射性浓度超过国家审管部门规定的排放限值的液态废弃物。
1.2.4 放射性固体废物 radioactive solid waste含有放射性核素,其放射性比活度或污染水平超过国家审管部门规定的清洁解控水平的固态废弃物。
放射性物质的环境污染与防治措施

放射性物质的环境污染与防治措施一、放射性物质的环境污染放射性物质是指具有放射性活性的物质。
它们可以放出电子、中子、伽马射线等粒子或辐射,对人体造成严重危害。
因此,放射性物质的环境污染必须高度重视。
放射性物质主要来源于核能工业、放射性医疗、科研单位和自然环境。
其中,核能工业是放射性物质的主要来源。
核能工业生产过程中会产生各种放射性核素,如放射性碘、氡、铯、锶等。
这些物质可能会发生泄露或事故,导致环境污染。
二、放射性物质的环境防治措施为了保护环境和公众健康,必须采取有效措施来防止放射性物质的环境污染。
1.加强监测和控制放射性物质的环境污染需要通过监测系统来实现及时发现和控制。
应建立全面、准确、及时的放射性监测网络,对可能泄漏的地点进行24小时监测,确保污染源能够及时被发现,加强对放射性物质的定期监测和评估,严格控制污染物质的排放规律。
2.控制污染源核能工业是放射性物质的主要来源。
为了控制污染源,必须严格管理核能工业企业,加强技术人员的培训和资格认证,并建立一整套核安全制度和规范。
开展定期的核安全检查和审核工作,确保设备运行的安全可靠,遵守妥善处理放射性废物的相关规定。
3.加强处理和处置尽管我们已经控制了污染源,但是一旦放射性物质泄漏,必须迅速采取措施防止污染扩散。
对于以旧换新的旧设备,需要加强维护和管理,避免由于松散的组件导致漏气和泄漏。
对于事故造成的放射性废物,需要采取专业的处理与处置方法。
4.宣传教育与技术交流专业的宣传教育工作对于保护环境和增强公众意识尤其重要。
要加强法律法规及政策的宣传工作,推广放射性物质的环境防治技术,提高社会群众关注和自我保护意识。
三、结语近年来,激烈的社会竞争,人们心态日益浮躁,而经济建设需求、社会变革和科学技术的进步也增大了走向协作与合作的必要性。
在应对放射性物质的环境污染时,需要加强多边、区域和国际间的合作,共同制定环境保护计划和技术标准。
多措并举,建立完善的环境监控和预警机制,保障人类和自然环境的持续发展。
放射性废物的处理方法

放射性废物的处理方法一、概述1.放射性废物的产生放射性废物是指在生产和使用放射性物质过程中废弃并含有放射性的物质(如发射α、β、和γ射线的不稳定元素)或被放射性物质污染而又不能用简单的方法加以分离的废弃物。
放射性废物来源于以下三个方面:(1)核武器试验的沉降物在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸气和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其他的尘粒上,最后沉降到地面。
(2)核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,对周围环境带来一定程度的污染。
(3)医疗照射引起的放射性污染目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。
图1表示核废物的产生过程,核废物的主要来源是核燃料循环中和核设施退役中的各主要环节,核试验、核科学研究及应用也要产生一些核废物。
核燃料循环包括铀矿开采、加工、燃料制造、使用、乏燃料的后处理等环节。
核设施退役是指关闭不再使用的核设施(如燃料制造和加工厂、反应堆等)时所采取的措施,铀矿开采和燃料加工废物的产生从开采铀矿开始,矿石中铀的含量平均仅为0.2%,相应将遗留约25000t的废矿渣,即尾矿。
尾矿中含有的铀为原矿的5%~20%,含有的镭为原矿的93%~98%,此外还含有氡。
图1产生核废物的过程2.放射性废物的特征(1)按物理形态分类①固体放射性物品如钴,独居石等。
②晶粒状放射性物品如硝酸钍。
③粉末状放射性物品如夜光粉、铈钠复盐等。
④液体放射性物品如发光剂,医用同位素制剂磷酸二氢钠——32P等。
⑤气体放射性物品如氪85、氩41。
(2)按放出的射线类型分类①放出α、β、γ射线的放射性物品如镭226等。
②放出α、β射线的放射性物品如天然铀。
③放出β、γ射线的放射性物品如钴60。
放射性物质的危害及其预防措施

监测与评估的意义和作用
ห้องสมุดไป่ตู้
监测放射性物 质:了解放射 性物质的种类、 浓度、分布和
变化情况
评估危害程度: 评估放射性物 质对环境和人 类健康的危害
程度
制定预防措施: 根据监测和评 估结果,制定 有效的预防措
施
监测效果评估: 对预防措施的 效果进行评估, 及时调整和改
进
放射性物质的风 险与挑战
风险识别与评估
● 生物处理法
● 定义:利用生物体对放射性物质进行吸收和转化,从而降低放射性物质浓度的方法 ● 原理:通过微生物的代谢作用,将放射性物质转化为无害或低毒性的物质 ● 方法:包括活性污泥法、生物滤池法、生物炭法等 ● 优点:处理效果好,成本低,适用于处理低放射性废水
综合处理法
分类收集:将放射性物质按照种类进行分类收集,以便于后续处理
疾病的风险
免疫系统损伤: 降低免疫力, 增加感染和过
敏的风险
神经系统损伤: 影响大脑发育, 导致记忆力减 退、认知障碍
等
对环境的危害
破坏生态平衡:放射性物质会破坏 自然环境中的生态平衡,影响动植 物的生长和繁殖。
损害土壤:放射性物质会损害土壤, 导致土壤肥力下降,影响农作物的 生长和产量。
添加标题
种类:包括铀、 钍、镭等
分布:广泛存在 于土壤、空气、 水等环境中
释放途径:通过岩 石风化、火山喷发 等自然过程释放
人工放射性物质
核电站
核武器
核燃料循环
医学影像技术
核电站和核武器
核电站:利用核能发电的设施,核反应堆是核心部分 核武器:利用核裂变或核聚变反应释放巨大能量,制造毁灭性杀伤和破坏的武器 核电站和核武器都会产生放射性物质,对环境和人类健康造成危害 需要采取有效的预防措施,减少放射性物质对人类和环境的影响
食品中的放射性物质与食品安全

食品中的放射性物质与食品安全随着科技的进步和社会的发展,人们对食品安全问题的关注也日益提高。
除了传统的食品安全隐患,如农药残留和添加剂使用,现在人们还需要关注食品中的放射性物质。
放射性物质是指能够辐射出射线或粒子的物质,它们不仅可以对人体健康造成直接伤害,还可能对环境产生潜在的危害。
本文将探讨食品中的放射性物质对食品安全的影响以及防控措施。
一、放射性物质在食品中的来源放射性物质在自然界中广泛存在,同时也可以由人类活动产生。
在食品中,放射性物质的主要来源包括以下几个方面:1. 地壳和土壤:地壳中含有丰富的放射性元素,如铀、钍和钾等。
这些元素通过土壤进入植物,并最终被人类摄取。
2. 水体:水体中也可能含有放射性物质,尤其是一些地下水源。
饮用含有放射性物质的水可能会导致健康问题。
3. 大气沉降:气候变化和人类活动造成的核事故会导致放射性物质进入大气,并通过沉降作用进入土壤和水体,从而进入人们的食物链。
二、食品中的放射性物质对人体健康的危害放射性物质对人体健康的危害主要体现在两个方面:直接照射和摄入。
1. 直接照射:如果人们长时间暴露在放射性物质的强辐射环境下,可能会导致细胞损伤、癌症和遗传突变等健康问题。
2. 摄入:当人们摄入含有放射性物质的食物时,这些物质可能在体内存留并富集,进一步伤害人体器官和组织。
特别是放射性同位素镭-226和锕-228,它们被摄入体内后会导致骨癌和血癌等疾病。
三、食品中放射性物质的监测和控制为了确保食品安全,国家和地方政府以及相关部门都制定了一系列监测和控制放射性物质的举措。
1. 检测和监测:通过建立食品放射性物质的监测系统,对食品中的放射性元素进行检测以确保食品符合相应的安全标准。
这种监测可以涵盖食品生产过程中的原材料、农田土壤、水源以及最终的食品产品。
2. 控制和减少:针对食品中放射性物质的问题,相关部门和机构需要制定相应的控制措施,如限制特定地区食品的生产和销售,减少潜在的污染风险。
放射性废物的储存和处置法规与标准

各地政府采取一系列措施,如加强监管力度、完善监管机制、提高监管能力等,确保放 射性废物的安全管理和处置。
XX
PART 03
储存设施与要求
REPORTING
储存设施类型
01
02
03
中低放废物储存库
用于存放中低放射性废物 ,通常设计为地下或半地 下结构,以确保安全。
高放废物储存库
加强国际合作
加强与其他国家在放射性废物管理领域的合作,共同研究制定国际 通用的管理标准和技术规范。
面临的挑战及应对策略
01
技术挑战
放射性废物管理涉及复杂的技术问题,需要不断研发新技术、新方法。
应对策略包括加大科技研发投入,加强技术人才培养和引进等。
02 03
法规政策挑战
随着法规政策的不断调整和完善,企业需要不断适应新的管理要求。应 对策略包括加强法规政策学习,积极参与相关法规政策的制定和执行等 。
应用人工智能、大数据等先进技术,实现放射性 废物的智能化管理,提高管理效率和准确性。
法规政策调整趋势分析
强化法规标准
随着环保意识的提高,未来法规政策将更加注重放射性废物管理 的严格性和规范性,加强相关法规标准的制定和执行。
推动技术创新
政府将加大对放射性废物管理技术创新的支持力度,鼓励企业研发 新技术、新方法,提高废物管理水平。
社会认知挑战
公众对放射性废物的认知程度有限,需要加强相关宣传和教育。应对策 略包括开展公众宣传和教育活动,提高公众对放射性废物的认知和理解 。
XX
THANKS
感谢观看
REPORTING
XX
放射性废物的储存和 处置法规与标准
汇报人:XX
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、放射性的基本概念
某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。
物质的这种性质叫放射性。
2、放射性污染来源及分类
1)、核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。
2)、核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,能对周围环境带来一定程度的污染。
3)、医疗照射引起的放射性污染目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。
同位素治疗和诊断产生放射性污水。
放射性同位素在衰变过程中产生a-、β-和γ-放射性,在人体内积累而危害人体健康。
4)、其它各方面来源的放射性污染其它辐射污染来源可归纳为两类:一工业、医疗、军队、核舰艇,或研究用的放射源,因运输事故、遗失、偷窃、误用,以及废物处理等失去控制而对居民造成大剂量照射或污染环境;二是一般居民消费用品,包括含有天然或人工放射性核素的产品,如放射性发光表盘、夜光表以及彩色电视机产生的照射,虽对环境造成的污染很低,但也有研究的必要。
3、放射性对人体的危害
在大剂量的照射下,放射性对人体和动物存在着某种损害作用。
如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。
照射剂量在150rad以下,死亡率为零,但并非无损害作用,住往需经20年以后,一些症状才会表现出来。
放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。
4、放射性“三废”处理
放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。
而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。
1).放射性废水的处理
放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。
2).放射性废气的处理
(1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。
(2)实验室废气,通常是进行预过滤,然后通过高效过滤后再排出。
(3)燃料后处理过程的废气,大部分是放射性碘和一些惰性气体。
3)、放射性固体废物的处理和处置
放射性固体废物主要是被放射性物质污染而不能再用的各种物体
(1)焚烧(2)压缩(3)去污(4)包装
第7章放射性废水处理技术
7.1 放射性废水来源
放射性废水主要来自诊断、治疗过程中患者服用或注射放射性同位素后所产生的排泄物,分装同位素的容器、杯皿和实验室的清洗水,标记化合物等排放的放射性废水。
7.2 放射性废水的水质水量和排放标准
7.2.1 放射性废水浓度范围为3.7×102Bq/L~3.7×105Bq/L。
7.2.2 废水量为100~200L/床.d。
7.2.3 医院放射性废水排放执行新制定的《医疗机构污染物排放标准》规定:在放射性污水处理设施排放口监测其总α<1 Bq/L,总β<10 Bq/L。
7.3 放射性废水系统及衰变池设计
7.3.1 放射性废水应设置单独的收集系统,含放射性的生活污水和试验冲洗废水应分开收集,收集放射性废水的管道应采用耐腐蚀的特种管道,一般为不锈钢管道或塑料管。
7.3.2 放射性试验冲洗废水可直接排入衰变池,粪便生活污水应经过化粪池或污水处理池净化后再排入衰变池。
7.3.3 衰变池根据床位和水量设计或选用。
7.3.4 衰变池按使用的同位素种类和强度设计,衰变池可采用间歇式或连续式。
7.3.5 间歇式衰变池采用多格式间歇排放;连续式衰变池,池内设导流墙,推流式排放。
衰变池的容积按最长半衰期同位素的10个半衰期计算,或按同位素的衰变公式计算。
7.3.6 衰变池应防渗防腐。
7.4 监测和管理
7.4.1 间歇衰变池在排放前监测;连续式衰变池每月监测一次。
7.4.2 收集处理放射性污水的化粪池或处理池每半年清掏一次,清掏前应监测其放射性达标方可处置。
2 工程中通常采用的放射性废水衰变池
2.1 连续式衰变池
连续式衰变池的进水和出水都是连续的,池内设导流墙,推流式排放。
衰变池设计总容积为最长半衰期同位素10个半衰期放射性废水总排水量。
每一格均采用导流管,废水从池下部进入,上部排出,以防止短路,保证衰变效果。
连续式衰变池如图1所示。
图1 连续式衰变池示意图
2.2 间歇式衰变池
间歇式衰变池采用多格式间歇排放,一般可采用四格,并列布置,每格设计容积为最长半衰期同位素10个半衰期放射性废水总排水量的50%,亦即储存5个半衰期的放射性废水量。
间歇式衰变池如图2所示。
图2 间歇式衰变池示意图
间歇式衰变池进水管上设电磁阀,出水采用潜水泵压力排出。
运行时先关闭第二、三、四池进水管上的电磁阀,打开第一池进水管上的电磁阀,使废水进入第一池;待第一池达到设计液位后,打开第二池进水管上的电磁阀,关闭第一池进水管上的电磁阀,使废水进入第二池;按照相同的操作方法,使废水依次进入第三、四池。
待第四池开始进水时,第一池已经过10个半衰期,监测达标后即开动潜水泵排放。
待第四池达到设计液位后,重复向第一池进水,而第二池排水,依次循环。
进水管上的电磁阀和衰变池排水泵可以采用PLC可编程控制器自动控制。
在实际工程中,通常采用连续式衰变池,但在一些环境敏感地区,或废水经处理后排入天然水体
时,应尽量采用间歇式衰变池。
医院内应配置相应的监测设备,连续式衰变池应定期监测,间歇式衰变池应在排放废水前监测。
3 连续式衰变池与间歇式衰变池的优缺点
连续式衰变池具有池容积小,占地面积小,造价低,操作简单,不需或很少维护等优点,是工程中通常采用的方式。
其缺点是抗冲积能力差。
如果发生放射性物质泄漏等事故,废水中的放射性物质增加时,废水在衰变池中还未衰变到允许的排放浓度就不得不排出,会造成放射性污染事故。
间歇式衰变池的优点是抗冲积能力强,出水水质稳定可靠,如果发生放射性物质泄漏等事故,废水中的放射性物质增加时,可以通过延时排放来延长废水在衰变池中停留时间,确保废水衰变到允许的排放浓度后排出,避免造成放射性污染事故。
其缺点是衰变池容积较大,占地面积大,造价高,需要设控制阀门和水泵,控制相对复杂。
4 对连续式衰变池的改进
笔者根据间歇式和连续式衰变池在实际设计和运行中存在的问题,综合了二者的优点,对衰变池的设计作了部分改进,提出了一种带缓冲池的连续式衰变池。
该衰变池是在原连续式衰变池的基础上,增加一个缓冲池,如图3所示。
图3 改进后的连续式衰变池示意图
衰变池前三格设计总容积仍为最长半衰期同位素10个半衰期放射性废水总排水量,缓冲池容积可按最长半衰期同位素3-5个半衰期放射性废水排水量确定。
第三格与缓冲池之间的管道上设电磁阀,且该管道要比第三格的出水管低,缓冲池内设潜水泵。
运行过程中如检测发现某一时段出水中放射性物质超标,即打开电磁阀,使水进入缓冲池暂时储存,出水检测值达标时,关闭电磁阀,水从第三格排出。
储存在缓冲池中的水继续衰变至达标后,用水泵排出,缓冲池排空后,可以防备下一次事故的到来。
经过改进的衰变池,克服了间歇式和连续式的缺点,又兼有二者的优点。
从整体上看是连续运行,而缓冲池又是间歇式运行的,控制上也比间歇式简得多。
从造价和容积上看,比连续式衰变池要大一些,但比间歇式要小很多,而运行的可靠性要比连续式高得多。
某医院最常用的放射性同位素131I,其半衰期为8.04 d,放射性废水日均排水量为200 L/d,按照10个半衰期设计,约需要80 d的衰变时间。
3种放射性废水衰变池综合技术经济指标比较见表1。
表1 三种放射性废水衰变池综合技术经济指标比较
项目连续式衰变池间歇式衰变池带缓冲池的连续式衰变池
8-10万元20-25万元12-15万元
人民币人民币人民币
运行维护
达标排放率/% >96 >99 >99
笔者根据对该医院连续式衰变池改进前后各一年的检测数据进行跟踪分析,通过对衰变池排放口总α、总β值的对比发现,连续式衰变池经过改进后,不仅排放口总α、总β值超标排放的几率明显减小,而且总α、总β的最大值也有明显下降,达到了预期的效果。
图4 改进前后排放口总α值对比
图5 改进前后排放口总β值对比
通过以上比较可以看出,经过改进的带缓冲池的连续式衰变池,综合投资只比连续式衰变池有所增加,但是衰变池达标排放率却可以达到间歇式衰变池的处理效果,而日常运行维护费用却比间歇式衰变池节省。