数学建模大赛 货物运输问题
数学建模之运输问题

数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。
这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。
2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。
我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。
3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。
设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。
我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。
那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。
这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。
2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。
进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。
4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。
线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。
对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。
这些算法可以快速找到较好的解,但不能保证找到最优解。
常用的算法包括模拟退火算法、遗传算法等。
5. 应用领域运输问题在许多实际应用中都有广泛的应用。
例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。
数学建模送货线路设计问题 答案仅供参考

装订线第九届西安电子科技大学数学建模竞赛暨全国大学生数学建模竞赛选拔赛题目A (B)题剪切线通信工程学院第队送货路线设计问题1、问题重述现今社会网络越来越普及,网购已成为一种常见的消费方式,随之物流行业也渐渐兴盛,每个送货员需要以最快的速度及时将货物送达,而且他们往往一人送多个地方,请设计方案使其耗时最少。
现有一快递公司,库房在图1中的O点,一送货员需将货物送至城市内多处,请设计送货方案,使所用时间最少。
该地形图的示意图见图1,各点连通信息见表3,假定送货员只能沿这些连通线路行走,而不能走其它任何路线。
各件货物的相关信息见表1,50个位置点的坐标见表2。
假定送货员最大载重50公斤,所带货物最大体积1立方米。
送货员的平均速度为24公里/小时。
假定每件货物交接花费3分钟,为简化起见,同一地点有多件货物也简单按照每件3分钟交接计算。
现在送货员要将100件货物送到50个地点。
请完成以下问题。
1. 若将1~30号货物送到指定地点并返回。
设计最快完成路线与方式。
给出结果。
要求标出送货线路。
2. 假定该送货员从早上8点上班开始送货,要将1~30号货物的送达时间不能超过指定时间,请设计最快完成路线与方式。
要求标出送货线路。
3. 若不需要考虑所有货物送达时间限制(包括前30件货物),现在要将100件货物全部送到指定地点并返回。
设计最快完成路线与方式。
要求标出送货线路,给出送完所有快件的时间。
由于受重量和体积限制,送货员可中途返回取货。
可不考虑中午休息时间。
2、问题分析送货路线问题可以理解为:已知起点和终点的图的遍历问题的合理优化的路线设计。
图的遍历问题的指标:路程和到达的时间,货物的质量和体积,以及最大可以负载的质量和体积。
在路线的安排问题中,考虑所走的路程的最短即为最合理的优化指标。
对于问题二要考虑到所到的点的时间的要求是否满足题意即采用多次分区域的假设模型从而找出最优的解对于问题三则要考虑到体积和质量的双重影响,每次到达后找到达到最大的体积和质量的点然后返回,再依次分析各个步骤中可能存在的不合理因素达到模型的进一步合理优化得到最合理的解。
数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
数学建模,线性规划,运输为问题

X31 30.00000 0.000000
X32 20.00000 0.000000
X33 0.000000 3.000000
X34 0.000000 11.00000
X35 0.000000 23.00000
X36 0.000000 8.000000
X41 0.000000 7.000000
Objective value: 1620.000
Infeasibilities: 0.000000
Total solver iterations: 9
Variable Value Reduced Cost
X11 0.000000 14.00000
X12 0.000000 6.000000
X13 0.000000 4.000000
X55 0.000000 8.000000
X56 0.000000 32.00000
X64 30.00000 0.000000
X65 0.000000 3.000000
X66 0.000000 7.000000
Row Slack or Surplus Dual Price
1 1620.000 -1.000000
X42 0.000000 0.000000
X43 40.00000 0.000000
X44 0.000000 26.00000
X45 0.000000 16.00000
X46 0.000000 13.00000
X52 30.00000 0.000000
X53 0.000000 0.000000
X54 0.000000 21.00000
供应限制:x11+x12+x13+x14+x15+x16=20
货运列车编组运输问题-数学建模

西南财经大学数学建模竞赛货运列车编组运输问题货运列车编组运输问题摘要本次问题编程的目的是,在不同问题设定下,制定货运列车的最佳编组方案。
对于问题一:问题一是以运输货物数量最多、运输总重量最小为目标函数的双目标优化问题。
参考公司投资组合问题中为解决利润最大、风险最小而采用的有效前沿的方法,我们用MATLAB编程得到可行的装运方案,做出各方案的运输总重量和运输数量决定的散点图,得到类似的有效前沿,具体方案见4.2表二:对于问题二:问题二是下料问题,因此需要先确定可行的下料方式,即两种车厢可行的货物装载方式。
以每种装载方式的使用次数为决策变量,总使用次数最少为目标函数,建立整数线性规划模型求解。
用MATLAB解得:要将货物运输完毕,B,C,E分别为68、50、41件时使用的最少车厢数量为25,B,C,E分别为48,42,52件时使用的最少车厢数量为21,具体方案见5.2表三、表四。
对于问题三:由于上午、下午需要运输的集装箱数量是随机的,导致铁路部门的利润也是随机的,因此我们以铁路部门的平均日利润最大为目标函数,对上午、下午进行独立分析,构建概率模型,并用MATLAB求解,得到最佳编组方案:上午发的列车带41节Ⅰ型车厢、下午发的列车带38节Ⅰ型车厢。
对于问题四:我们参考图论模型中的dijkstra算法,将模型中的权重新定义为到各站点的收益,利用matlab软件找到收益最大的路线,尽可能满足这条路线上的需求量,然后去掉路线中除去起点和终点的点,再次运用程序计算利润最大的路线,重复以上过程到只剩下起点和终点。
得到最佳编组运输方案为:路线A-B1-C2-D2-E3-F运输3次分别带40、40、29节车厢;路线A-B2-C2-D1-E1-F 满载运输1次;路线A-B2-C4-D3-E3-F运输2次分别带40、2节车厢;路线A-B1-C1-D1-E2-F运输1次带27节车厢;路线A-B2-C3-D2-E2-F运输1次分别带29节车厢,此时铁路部门利润为449050元。
专题二运输规划问题建模

27
销地 产地 A1 A2 A3 销量 销地 产地 A1 A2
目标函数表示运输总费用,要求其极小化; 第一个约束条件的意义是由各产地运往某一销地的物品数 量之和等于该销地的销量;
第二个约束条件表示由某一产地运往销地的物品数量之和 等于该产地的产量;
第三个约束条件表示变量的非负条件。
5
设有三个电视机厂。生产同一种彩色电视机, 日生产能力分别是:50,60,50,供应四个 门市部,日销售量分别是:40,40,60,20 台,从各分厂运往个门市部的运费如表所示, 试安排一个运费最低的运输计划。
门市部 工厂
1 2 3 需求总计 1 9 7 6 40 2 12 3 5 40 3 9 7 9 60 4 6 7 11 20 供应总计 50 60 50
6
供求平衡的运输问题:供:50+60+50=160
需:40+40+60+20=160
数学模型
min z
i1
3
4
j1
c ij x ij
1 3 1 7 2
2 11 9 4 6
3 3 2 10 5
4 10 8 5 7
供应 7 4 9
25
(2)最优解的判别 判别的方法是计算非基变量即空格的检验数。当所有的非基 变量检验数全都大于等于 0 时为最优解。 ① 方法一:闭回路法
在给出调运方案的计算表上,从每一空格出发, 找一条闭回路。 它是以空格为起点,用水平线或垂直线向前划, 每碰到一数字格就转 90 度后继续前进。直到回到 起始空格处为止,(A1 , B1) 空格与(A1 , B4) 、 (A2 , B4) 和 (A2 , B1) 三个有数字的格构成一闭回路,如 此等等。 每个空格都存在唯一的闭回路。
全国大学生数学建模竞赛——运输问题(参考答案)

2003高教社杯全国大学生数学建模竞赛B 题参考答案注意:以下答案是命题人给出的,仅供参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
问题分析:本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。
运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现;第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从120710 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。
对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。
另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。
于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。
调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。
这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。
第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。
合理的假设主要有:1. 卡车在一个班次中不应发生等待或熄火后再启动的情况;2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即可,不进行排时讨论;3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量;4. 卡车可提前退出系统。
2023高教杯数学建模d题

2023高教杯数学建模d题
2023年高教社杯全国大学生数学建模竞赛D题:
题目:国际快递服务中的包裹配送决策
问题描述:
国际快递服务中,一个重要的决策是如何选择最优的配送路径。
在配送过程中,存在许多因素需要考虑,如运输成本、运输时间、交通状况、天气等。
因此,制定一个有效的配送策略是至关重要的。
任务要求:
1. 根据所给数据,分析影响配送成本的主要因素。
2. 基于所给数据,构建数学模型,预测未来一周内的每日最优配送路线。
3. 基于所建模型,给出一种有效的配送策略,以优化总成本并减少总运输时间。
4. 根据所建模型和策略,预测未来一个月的快递需求量,并给出相应的配送方案。
5. 针对所给策略和方案,分析其可能存在的风险,并提出相应的应对措施。
题目给出的数据:
1. 不同路线上的配送成本(单位:元/公里)。
2. 不同路线的长度(单位:公里)。
3. 不同路线的交通状况(用数值表示,数值越大交通状况越差)。
4. 不同路线的天气状况(用数值表示,数值越大天气状况越差)。
5. 每日的快递需求量。
注:数据量较大,具体数据可从配套的Excel文件中获取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。
我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。
针对问题一,我们在两个大的方面进行分析与优化。
第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。
第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。
最后得出耗时最少、费用最少的方案。
耗时为小时,费用为元。
针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。
我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。
耗时为小时,费用为元。
针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。
我们经过简单的论证,排除了4吨货车的使用。
题目没有规定车子不能变向,所以认为车辆可以掉头。
然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。
最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。
最后得出耗时最少、费用最省的方案。
耗时为小时,费用为。
一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。
路线是唯一的双向道路(如图1)。
货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。
每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。
运输车载重运费元/吨公里,运输车空载费用元/公里。
一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。
卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。
问题:1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。
2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度3、(1)如果有载重量为4吨、6吨、8吨三种运输车,载重运费都是元/吨公里,空载费用分别为,,元/公里,其他费用一样,又如何安排车辆数和调度方案(2)当各个公司间都有或者部分有道路直接相通时,分析运输调度的难度所在,给出你的解决问题的想法(可结合实际情况深入分析)。
图1唯一的运输路线图和里程数二、模型假设1)港口的容量足够大,多辆运输车同时到达港口时不会发生阻塞现象;2)多辆运输车可以在港口同时装车,不必等待;3)双向道路上没有塞车现象;4)8个公司之间没有优先级别,货运公司只要满足他们的需求量就可以;货车完成他们日常的送货任务之后,回到港口。
5)假设运输车不会因天气状况,而影响其行驶速度,和装载、卸载时间。
6)运输路不会影响运输车行驶速度。
7)运输车正常出车。
三、问题分析运输过程的最大特点是三种原料重量不同,分为大小件,当大小件同车,卸货时必须先卸小件,而且不允许卸下来的材料再装上车,要区别对待运输途中是否可以调头的费用。
在问题一中,运输途中不能调头,整个送货路线是一个环形闭合回路,如果沿着某一方向同时给多家公司送货时,运输车必须为距离港口近的公司卸下小件,为距离港口远的公司运送大件;而在问题二中,运输途中可以调头,可以首先为远处公司运送小件,在返回途中为距离较近的公司卸下大件。
从表面上看,这样运输能够节省车次,降低出车费用。
但我们通过分析,在本题中,载重调头运输并不能降低费用。
运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。
建立模型时,要注意以下几方面的问题:目标层:如果将调度车数、车次以及每车次的载重和卸货点都设为变量,模型中变量过多,不易求解。
由于各辆运输车之间相互独立,可以将目标转化为两个阶段的求解过程,第一阶段是规划车次阶段,求解车次总数和每车次的装卸方案;第二阶段是车辆调度阶段,安排尽量少的车辆数,每车次尽量满载,使总的运费最小。
约束层:(1)运输车可以从顺时针或者逆时针方向送货,要考虑不同方向时的载重用;(2)大小件的卸车顺序要求不同原料搭配运输时,沿途必须有序卸货;(3)每车次的送货量不能超过运输车的最大载重量;(4)满足各公司当日需求。
四、符号说明和名词约定五、建立模型一、问题一i.车次规划模型的分析车次规划阶段只涉及到载重费用、空载费用和港口出车费用。
运输途中不能掉头,所以每车次都是沿闭合回路绕圈行驶。
1)运输途中不能掉头,所以为某些公司送货时,运输车从港口出发,按顺时针方向沿闭合回路绕行,为其它公司送货时,按逆时针方向沿闭合回路绕行。
公司和港口之间存在顺时针距离和逆时针距离,如下表:析中给出的最佳运输路径进行货物的分配运输。
即若港口按顺时针和逆时针两个不同方向出发,根据货运里程短,④点为顺时针货运方向最远点,也是空载回港口的最近点,根据货运里程短,⑤点为逆时针货运方向最远点,也是空载回港口的最近点。
结论:在符合载重相对最大化情况下,①~④公司顺时针送货为最佳方案,⑤~⑧公司逆时针送货最佳方案。
如下图所示:2)根据3种原料的重量和运输车的最大运载量可以看出,A和C可以搭配运输,B和C可以搭配运输,而A与B不能同车运输。
不论是以顺时针方向送货还是以逆时针方向送货,当大小件搭配运输时,必须首先卸下小件,在后续公司卸下大件。
我们把这种特点总结如下:1、若在第j个公司卸下的是大件A,说明本车次的货物已经卸完,不能够再为后续公司运送小件C(A与B不能同车运输,更不可能有B);2、若在第j个公司卸下的是B,说明本车次的货物已经卸完,不能够再为后续公司运送小件C。
ii.模型建立基于以上约束条件建立如下模型:第一步:根据车载重相对最大化的基本思想。
可以分为两小步:分为两种满载方案:第1种为每个车次装载1单位A和2单位C;第2种是每个车次装载2个单位B。
并使每一车次在同一公司卸货。
满载运载方案如下表1:表1权,在保证满足各公司对A需求量条件下,1C与1A搭配满足载重相对最大化方法运输;第二批次运输,我们使B材料有优先运输权,在此次运输我们满足各公司尚缺B材料的量小于或等于2个单位;第三批次运输剩下所需的货物。
具体运输方式:首先优先考虑A货物的处理方法,可知1公司还需1个车次的1A和一个车次的1A1C,4公司还需要2个车次的1A,8公司还需要4个车次的1A和1个车次的1A1C;接着处理B货物,1公司和2公司共需要1个车次的2B,8公司和4公司共需要1个车次的2B;最后处理C货物,5、6、7公司共需要1个车次的6C。
由此可知共出车28次。
如下表2:表2所需运费及时间如下表3:表3运费最小是货运公司调度运输车的目标,运费包括派车固定成本、从港口出车成本、载重费用和空载费用。
最后经过模型的计算得到最少费用为:元,最少耗时为:小时。
二、 问题二i. 车次规划模型的分析两个定理的证明定理一、车辆当且仅当运完最后一件货物时才调头途中允许调头,运输车可以先为较远的公司送去小件原料,然后调头,为比较近的公司送去大件。
从表面上看,这样运输能够节省车次,降低出车费用。
但我们通过分析,在本题中,载重调头运输并不能降低费用。
证明过程如下:在上图中,记O 点为港口,N 、M 为两公司。
M 到港口的距离是S1,NM 两个公司之间的距离为S2。
假设将两种货物a 和b (重量分别为x 吨、y 吨),分别运往N 和M 两公司,现有两种运输方案:1.若先运货a 、b 到N ,将a 卸到N ,调头返回,将货物b 运往M ,那么a 必为C 原料(x =1),b 为A 或B (34y ≤≤),记运费用为f 12.若先单独运送货物a 到N ,返回港口后,再次出车,将货物b 运往M ,即出车两次,记运费用为f 2。
➢ 两种方案需要的车辆相同时,为比较两种运输方式费用的大小,两种运输的种类质量均相同,记:12f f f =-若f > 0恒成立,则载重调头送货不节省费用,通过数据处理提取函数: 因为 43y ≥≥ 并且N 、M 两公司在本题中的最小距离24s = 代入到 f 中,化简得到令 min 131.60.40f s =-< 得到 175s >而港口到所有公司最短路的最大值为29公里,所以min 0f >恒成立。
说明前一种花费较高。
➢ 方案二比方案一需要的车辆多时第二种方案是出车两次,运输时间较长,在8小时的工作时间内,可能会比调头载重运输时多安排车辆,派车费用增加。
我们考虑一种最差情况,因多运一次而增派一辆车,此时有得到 1s 29≥ 因为港口到所有公司的最短路径 129s ≤ 所以 min 0f ≥综上,载重调头运输花费较高。
证明了以运费用最小为目标时,车辆当且仅当运完最后一件货物时才调头。
定理一的推论:运载里程与空载里程相同(表四中的第28车次例外),且每次出车均不绕圈工作。
定理二、车辆载重行程是各公司到港口的最短路,且载重费用固定不变 在定理一的基础上,车辆当且仅当运完最后一件货才调头,且每次出车均不绕圈工作,那么每一单位的原料都可以由最短路径运至需货公司。
我们变换视角,从宏观的角度看去,对8个公司所需货物的数量分别乘以公司和港口的最短距离和载重单价(元/吨公里)就是将货物运至公司的载重费用,载重费用因子:货物的数量、公司和港口的最短距离、载重单价都是定值,因此,载重费用是固定不变的。
车次规划阶段只涉及到载重费用、空载费用和港口出车费用。
运输途中可以掉头,即货车可以送完货沿原路返回港口。
ii. 模型建立根据问题一约束条件:在符合载重相对最大化情况下,①~④公司顺时针送货为最佳方案,⑤~⑧公司逆时针送货最佳方案。
此结论也可以适用货车可以掉头的情况。
加上上面两个定理,数学模型与问题一几乎相同,只是空载路径不同。
故同样分为两步骤:第一步分为两种满载方案:第1种为每个车次装载1单位A和2单位C;第2种是每个车次装载2个单位B。
并使每一车次在同一公司卸货。
第二步我们采用批次运输方案:第一批次运输,我们使A材料有优先运输权,在保证满足各公司对A需求量条件下,C与A搭配满足载重相对最大化方法运输;第二批次运输,我们使B材料有优先运输权,在此次运输我们满足各公司尚缺B材料的量小于2个单位;第三批次运输剩下的货物。