信息论基础知识树

合集下载

信息论理论基础

信息论理论基础
i 1 M i j 1
N
M
j
) 1, p( xi | y j ) 1,
i 1 N
N
p( y
j 1
N
j
| xi ) 1, p( xi , y j ) 1
j 1 i 1
M j
M
(3)
p( x , y
i 1 i
) p( y j ), p( xi , y j ) p( xi )
H(x) 1
p 0
2013-10-26
1/2
1
22
3. 熵函数的性质
(1) 非负性 H(x) ≥0
H ( x ) - p( xi ) log p ( xi )
i 1 N
由于 0≤p(xi)≤1 所以 log p(xi) ≤0 因此有 H(x)≥0 (2) 对称性
H ( p1 , p2 ,... pn ) H ( pn , p1 , p2 ,... pn1 )
H (0.99, 0.1) H (0.5, 0.5)
H (0.25, 0.25, 0.25, 0.25)
H (0.99,0.01) H (0.5,0.5) H (0.25,0.25,0.25,0.25)
(1) 不确定程度与信源概率空间有关; (2) 若状态数相同,等概分布时不确定程度最大; (3) 等概分布时,状态数越多则不确定程度越大。
2.不确定性的度量——不确定程度
不确定程度可以直观理解为猜测某些随机事件的 难易程度。 【例】布袋中有100个小球,大小、重量、手感完 全相同,但颜色不同。从布袋中任取一球,猜测 其颜色。 A. 99个红球,1个白球; B. 50个红球,50个白球; C. 25个红球,25个白球,25个黑球,25个黄球。

信息论基础总复习

信息论基础总复习

2. 编码器 编码器是将消息变成适合于 信道传送的信号的设备。
信源编码器,提高传输效率
编码器
信道编码器,提高传输可靠性
3. 信道 信道是信息传输和存储的媒介。
4. 译码器 译码是编码的逆变换,分为 信道译码和信源译码。
5. 信宿 信宿是消息的接收者。
1.3 离散信源及其数学模型
信源是产生消息的源,根据X的不同情况,信源可分为以下
条件互信息
I(X ;Y|Z ) x y z p (x) ylo zp p (g (x x||z y z ))
I(X ;Y |Z ) H (X |Z ) H (X |Y )Z
I(X;Y)ZI(X;Y)I(X;Z|Y) I(X;Z)I(X;Y|Z)
连续随机变量的互信息
I(X;Y) 0 I (X ;Y ) I (Y; X ) I (X ;Y | Z) I (Y; X | Z) I(X;Z) I(X;Y) I (XY; Z) I (X ; Z) I (Y; Z | X )
说明: R(D)也称率失真函数。
对于离散无记忆信源,R(D)函数可写成
R (D )p m i jpDi n i1n jm 1p(xi)p(yj/xi)lop(p g y (jy/jx )i)
输入 xX
信道模型
输入 y Y
转移概率矩阵
p(y/ x)
图5-1-2 信道模型
5.1.2 信道容量
• 1.如何刻画DMC信道的容量 考虑一个DMC信道,其输入字符集是X={x0, x1,…,xq-1},输出字符集是Y={y0,y1,…, yQ-1},转移概率P(yj/xi). 若给定信道的转 移概率和对应于输入符号的概率分布p(xi), 则 DMC信道容量C为
• 这个表达式平均错误译码概率的最小值, 是把每一个yj对应的后验概率排除后再连 续求和。

(完整版)老师整理的信息论知识点

(完整版)老师整理的信息论知识点

Chp02知识点: 自信息量:1))(log )(i i x p x I -=2)对数采用的底不同,自信息量的单位不同。

2----比特(bit )、e----奈特(nat )、10----哈特(Hart ) 3)物理意义:事件i x 发生以前,表示事件i x 发生的不确定性的大小;事件i x 发生以后,表示事件i x 所含有或所能提供的信息量。

平均自信息量(信息熵):1))(log )()]([)(1i qi i i x p x p x I E x H ∑=-==2)对数采用的底不同,平均自信息量的单位不同。

2----比特/符号、e----奈特/符号、10----哈特/符号。

3)物理意义:对信源的整体的不确定性的统计描述。

表示信源输出前,信源的平均不确定性;信源输出后每个消息或符号所提供的平均信息量。

4)信息熵的基本性质:对称性、确定性、非负性、扩展性、连续性、递推性、极值性、上凸性。

互信息:1))()|(log)|()();(i j i j i i j i x p y x p y x I x I y x I =-=2)含义:已知事件j y 后所消除的关于事件i x 的不确定性,对信息的传递起到了定量表示。

平均互信息:1)定义:2)性质:联合熵和条件熵:各类熵之间的关系:数据处理定理:Chp03知识点:依据不同标准信源的分类: 离散单符号信源:1)概率空间表示:2)信息熵:)(log )()]([)(1i qi i i x p x p x I E x H ∑=-==,表示离散单符号信源的平均不确定性。

离散多符号信源:用平均符号熵和极限熵来描述离散多符号信源的平均不确定性。

平均符号熵:)...(1)(21N N X X X H NX H =极限熵(熵率):)(lim )(X H X H N N ∞>-∞= (1)离散平稳信源(各维联合概率分布均与时间起点无关的信源。

)(2)离散无记忆信源:信源各消息符号彼此互不相关。

信息论基础1~8

信息论基础1~8

信息论基础1~81 绪论与概览2 熵相对熵与互信息2.1 熵H(X)=−∑x∈X p(x)logp(x)H(X)=−∑x∈Xp(x)log⁡p(x)2.2 联合熵H(X,Y)=−∑x∈X∑y∈Y p(x,y)logp(x,y)H(X,Y)=−∑x∈X∑y∈Yp(x,y)log⁡p(x,y)H(Y|X)=∑x∈X p(x)H(Y|X=x)H(Y|X)=∑x∈Xp(x)H(Y|X=x)定理2.2.1(链式法则): H(X,Y)=H(X)+H(Y|X)H(X,Y)=H(X)+H(Y|X) 2.3 相对熵与互信息相对熵(relative entropy): D(p||q)=∑x∈X p(x)logp(x)q(x)=Eplogp(x)q(x)D(p||q)=∑x∈Xp(x)lo g⁡p(x)q(x)=Eplog⁡p(x)q(x)互信息(mutual information): I(X;Y)=∑x∈X∑y∈Y p(x,y)logp(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))I(X;Y) =∑x∈X∑y∈Yp(x,y)log⁡p(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))2.4 熵与互信息的关系I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)互信息I(X;Y)是在给定Y知识的条件下X的不确定度的缩减量I(X;Y)=H(X)+H(Y)−H(X,Y)I(X;Y)=H(X)+H(Y)−H(X,Y)2.5 熵,相对熵与互信息的链式法则定理 2.5.1(熵的链式法则): H(X1,X2,...,X n)=∑ni=1H(Xi|X i−1,...,X1)H(X1,X2,...,Xn)=∑i=1nH(Xi| Xi−1, (X1)定理 2.5.2(互信息的链式法则): I(X1,X2,...,X n;Y)=∑ni=1I(Xi;Y|X i−1,...,X1)I(X1,X2,...,Xn;Y)=∑i=1nI(Xi ;Y|Xi−1, (X1)条件相对熵: D(p(y|x)||q(y|x))=∑x p(x)∑yp(y|x)logp(y|x)q(y|x)=Ep(x,y)logp(Y|X)q( Y|X)D(p(y|x)||q(y|x))=∑xp(x)∑yp(y|x)log⁡p(y|x)q(y|x)=Ep(x,y)log⁡p (Y|X)q(Y|X)定理 2.5.3(相对熵的链式法则): D(p(x,y)||q(x,y))=D(p(x)||q(x))+D(p(y|x)||q(y|x))D(p(x,y)||q(x,y))=D( p(x)||q(x))+D(p(y|x)||q(y|x))2.6 Jensen不等式及其结果定理2.6.2(Jensen不等式): 若给定凸函数f和一个随机变量X,则Ef(X)≥f(EX)Ef(X)≥f(EX)定理2.6.3(信息不等式): D(p||q)≥0D(p||q)≥0推论(互信息的非负性): I(X;Y)≥0I(X;Y)≥0定理2.6.4: H(X)≤log|X|H(X)≤log⁡|X|定理2.6.5(条件作用使熵减小): H(X|Y)≤H(X)H(X|Y)≤H(X)从直观上讲,此定理说明知道另一随机变量Y的信息只会降低X的不确定度. 注意这仅对平均意义成立. 具体来说, H(X|Y=y)H(X|Y=y) 可能比H(X)H(X)大或者小,或者两者相等.定理 2.6.6(熵的独立界): H(X1,X2,…,X n)≤∑ni=1H(Xi)H(X1,X2,…,Xn)≤∑i=1nH(Xi)2.7 对数和不等式及其应用定理 2.7.1(对数和不等式): ∑ni=1ailogaibi≥(∑ni=1ai)log∑ni=1ai∑ni=1bi∑i=1nailog⁡aibi≥(∑i =1nai)log⁡∑i=1nai∑i=1nbi定理2.7.2(相对熵的凸性): D(p||q)D(p||q) 关于对(p,q)是凸的定理2.7.3(熵的凹性): H(p)是关于p的凹函数2.8 数据处理不等式2.9 充分统计量这节很有意思,利用统计量代替原有抽样,并且不损失信息.2.10 费诺不等式定理2.10.1(费诺不等式): 对任何满足X→Y→X^,X→Y→X^, 设Pe=Pr{X≠X^},Pe=Pr{X≠X^}, 有H(Pe)+Pe log|X|≥H(X|X^)≥H(X|Y)H(Pe)+Pelog⁡|X|≥H(X|X^)≥H(X|Y)上述不等式可以减弱为1+Pe log|X|≥H(X|Y)1+Pelog⁡|X|≥H(X|Y)或Pe≥H(X|Y)−1log|X|Pe≥H(X|Y)−1log⁡|X|引理 2.10.1: 如果X和X’独立同分布,具有熵H(X),则Pr(X=X′)≥2−H(X)Pr(X=X′)≥2−H(X)3 渐进均分性4 随机过程的熵率4.1 马尔科夫链4.2 熵率4.3 例子:加权图上随机游动的熵率4.4 热力学第二定律4.5 马尔科夫链的函数H(Yn|Y n−1,…,Y1,X1)≤H(Y)≤H(Y n|Y n−1,…,Y1)H(Yn|Yn−1,…,Y1,X1)≤H(Y)≤H(Yn|Yn−1,…,Y1)5 数据压缩5.1 有关编码的几个例子5.2 Kraft不等式定理5.2.1(Kraft不等式): 对于D元字母表上的即时码,码字长度l1,l2,…,l m l1,l2,…,lm必定满足不等式∑iD−li≤1∑iD−li≤15.3 最优码l∗i=−log Dpili∗=−logD⁡pi5.4 最优码长的界5.5 唯一可译码的Kraft不等式5.6 赫夫曼码5.7 有关赫夫曼码的评论5.8 赫夫曼码的最优性5.9 Shannon-Fano-Elias编码5.10 香农码的竞争最优性5.11由均匀硬币投掷生成离散分布6 博弈与数据压缩6.1 赛马6.2 博弈与边信息6.3 相依的赛马及其熵率6.4 英文的熵6.5 数据压缩与博弈6.6 英语的熵的博弈估计7 信道容量离散信道: C=maxp(x)I(X;Y)C=maxp(x)I(X;Y)7.1 信道容量的几个例子7.2 对称信道如果信道转移矩阵p(y|x)p(y|x) 的任何两行相互置换,任何两列也相互置换,那么称该信道是对称的.7.3 信道容量的性质7.4 信道编码定理预览7.5 定义7.6 联合典型序列7.7 信道编码定理7.8 零误差码7.9 费诺不等式与编码定理的逆定理7.10 信道编码定理的逆定理中的等式7.11 汉明码7.12 反馈容量7.13 信源信道分离定理8 微分熵8.1 定义h(X)=−∫Sf(x)logf(x)dxh(X)=−∫Sf(x)log⁡f(x)dx均匀分布 h(X)=logah(X)=log⁡a正态分布h(X)=1/2log2πeδ2h(X)=1/2log⁡2πeδ2 8.2 连续随机变量的AEP8.3 微分熵与离散熵的关系8.4 联合微分熵与条件微分熵8.5 相对熵与互信息8.6 微分熵, 相对熵以及互信息的性质。

第三章 信息论基础知识(Part2)

第三章 信息论基础知识(Part2)

信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。

狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。

实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。

广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。

第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。

创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。

1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。

1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。

1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。

1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。

信息论基础教学课件ppt信息论基础概述信息论基础概论

信息论基础教学课件ppt信息论基础概述信息论基础概论
33
§1.2.1 通信系统模型
例如,奇偶纠错 将信源编码输出的每个码组的尾补一个1或0 当传输发生奇数差错,打乱了“1”数目的奇偶性,就 可以检测出错误。
34
§1.2.1 通信系统模型
(a) 无检错
(b) 可检错 (奇校验) (c) 可纠错(纠一个错)
图1.4 增加冗余符号增加可靠性示意图
35
§1.2.1 通信系统模型
信源的消息中所包含的信息量 以及信息如何量度
核心 问题
29
§1.2.1 通信系统模型
编码器(Encoder)
编码器的功能是将消息变成适合于信道传输的信号 编码器包括:
信源编码器(source encoder) 信道编码器(channel encoder) 调制器(modulator)
信源编码器
信道编码器
调制器
功能:将编码器的输出符号变成适合信道传输的信号 目的:提高传输效率 信道编码符号不能直接通过信道输出,要将编码器的输 出符号变成适合信道传输的信号,例如,0、1符号变成 两个电平,为远距离传输,还需载波调制,例如,ASK, FSK,PSK等。
36
§1.2.1 通信系统模型
信道(channel)
13
§1.1.2 信息的基本概念
1949年,Weaver在《通信的数学》中解释香农的工 作时,把通信问题分成三个层次: 第一层:通信符号如何精确传输?(技术问题) 第二层:传输的符号如何精确携带所需要的含义?(语义问题) 第三层:所接收的含义如何以所需要的方式有效地影响行为? (效用问题)
14
§1.1.2 信息的基本概念
§1.1.2 信息的基本概念
信息的三个基本层次:
语法(Syntactic)信息 语义(Semantic) 信息 语用(Pragmatic)信息

信息论基础——总复习

信息论基础——总复习

8
0.48
14
1.68
16 5.292×2
16 5.76×2
16 5.76×6
数据压缩的好处
✓ 时间域压缩──迅速传输媒体信源 ✓ 频率域压缩──并行开通更多业务 ✓ 空间域压缩──降低存储费用 ✓ 能量域压缩──降低发射功率
数据压缩技术实现的衡量标准
压缩比要大 恢复后的失真小 压缩算法要简单、速度快 压缩能否用硬件实现
定义: I(x i;y j) lo p ( 1 x g i) lo p (x g i1 |y j) lo p (p x g ( ix |iy )j)
❖ 互信息量表示先验的不确定性减去尚存的不确定性,这就 是收信者获得的信息量;
❖ 互信息量可能为正数、负数、0;
平均互信息量
❖ 定义
I ( X ; Y ) j ip ( x i,y j) I ( x i; y j) j ip ( x i,y j) lo p ( p x ( ix |g iy ) j)
Shannon信息论:在噪声环境下,可靠地、安全 地、有效地传送信息理论
----狭义信息论
编码理论与技术
有效性编码:压缩信源的冗余,从而提高信息 的传输效率,主要是针对信源的统计性进行编 码,故也称为信源编码。 可靠性编码:一般增加信源的冗余,有以提高 信息传输的可靠性, 主要是针对信道的统计性 进行编码,故也称为信道编码 安全性编码:将信源的明文编码成密文,提高 通信的安全性。
改变模拟信道求平均互信息的最小值,实质上是选择一种 编码方式使信息传输率为最小。
什么是数据压缩
• 数据压缩就是在一定的精度损失条件下,以最 少的数码表示信源所发出的信号
信源
信源 编码
信道 编码

信息论基础教程

信息论基础教程

信息论基础教程信息论基础教程1. 什么是信息论•信息论是一门研究信息传输与处理的数学理论。

•信息论的概念由克劳德·香农于1948年提出。

2. 信息的定义与表示•信息是用来消除不确定性的东西。

•信息可以用概率来表示。

信息的定义•定义:信息是用来消除不确定性的核心内容。

•信息量的多少与不确定性的减少程度成正比。

信息的表示•使用比特(bit)作为计量单位。

•一个比特可以表示一个二进制信息(0或1)。

•信息量的大小与比特数目成正比。

•信息熵是衡量信息量的概念。

•能量守恒定律:信息熵不会减少,只会增加。

信息熵的计算公式•信息熵的计算公式为:H(X) = -Σp(x)log2p(x),其中p(x)为事件x发生的概率。

信息熵的含义•信息熵越大,信息量越多,不确定性越高。

•信息熵越小,信息量越少,不确定性越低。

4. 信道容量•信道容量是信息传输的极限。

•信道容量的计算需要考虑信道的带宽和信噪比。

信道容量的计算公式•信道容量的计算公式为:C = Blog2(1 + SNR),其中B为信道带宽,SNR为信噪比。

信道容量的含义•信道容量表示一个信道能够传输的最大信息量。

•信噪比越高,信道容量越大。

•香农定理是信息论的核心定理。

•香农定理给出了可靠传输信息的极限。

香农定理的表达式•香农定理的表达式为:C = Blog2(1 + SNR)。

香农定理的应用•香农定理可以用来优化通信系统的设计。

•香农定理可以用来判断信息传输的可靠性。

以上为信息论基础教程的概要,希望对你的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续随机变量集合平均 互信息
离散集与时间集之间的 互信息
信道:
离散无噪声信道及容量 离散对称信道及容量 一般信道容量计算 离散无记忆扩展信道 并联信道及容量 和信道及容量
离散信道
单符号离散 信道及容量
级联信道及 容量
多维矢量信 道及容量
波形信道
离散时间连续信道 加性噪声信道及容量
AWGN信道及容量 有色高斯噪声信道 数字调制系统信道容量

定理
率是真定理
离散
连续
离散信 源率失 真函数
连续信 源率失 真函数
离散率 失真函 数计算
连续率 失真函 数计算
离散信源
离散无记忆信源的熵 离散有记忆信源的熵 平稳马尔可夫信源的熵 信源效率与剩余度
信息的度量
自信息与 互信息 信息熵
平均互信 息
相对熵
连续信息与信源
连续随机变量集合的熵
离散时间高斯信源的熵


无失真信源编码定理
香农第一定理
有噪信道编码定理 香农第二定理
限失真信源编码定理 香农第三定理
信息熵
信源编码
定长码与 序列分组
定理
变长码与 异前置码
哈夫曼编 码与马氏
源编码
渐进均分 性与典型
序列
唯一可译 码准则率
最大后验 概率准则
最大似然 准则
线性分组 码
费诺不等 信道编码
相关文档
最新文档