2015上海春考数学试卷及答案
2015年上海市春季高考数学模拟试卷六

2015年上海市春季高考模拟试卷六一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.) 1、不等式304xx -≤+的解集是___________. 2、在ABC ∆中,角,,C A B 满足sin :sin :sin 1:2:7A B C =,则最大的角等于________. 3、若复数z 满足()2z i z =-(i 是虚数单位),则=z ____________. 4、已知全集U R =,集合{}{}0,,13,A xx a x RBx x x R =+≥∈=-≤∈,若()[]2,4U C A B =-,则实数a 的取值范围是___________. 5、从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中的概率是__________. 6、设直线1:20l ax y +=的方向向量是1d ,直线()2:140l x a y +++=的法向量是2n ,若1d 与2n 平行,则a =_________.7、若圆锥的侧面积为3π,底面积为π,则该圆锥的体积为__________. 8、若不等式101x x a>-+对任意x R ∈恒成立,则实数a 的取值范围是________.9、若抛物线22y px =的焦点与双曲线222x y -=的右焦点重合,则p =_________.10、设函数()()[)()36log 1,6,3,,6x x x f x x -⎧-+∈+∞⎪=⎨∈-∞⎪⎩的反函数为()1f x -,若119f a -⎛⎫= ⎪⎝⎭,则()4f a +=__________. 11、设()8,a Rx a ∈-的二项展开式中含5x 项的系数为7,则()2l i m nn a a a →∞+++=_________.12、已知定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=有3个不同的实数根123,,x x x ,则222123x x x ++=____________.二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2- 14、已知z 是复数,21,2z i i+=+-则z =( ) A . 1i - B . 2i + C . 12i - D . 3i + 15、不等式11xx <+的解集是( ) A . {}10x x -<< B . {},1x x R x ∈≠-且 C . R D . {}01x x << 16.已知,,i j k 表示共面的三个单位向量, i j ⊥,那么()()i k j k +⋅+的取值范围是( ) A . []3,3- B . []2,2- C . 21,21⎡⎤-+⎣⎦ D . 12,12⎡⎤-+⎣⎦17、已知函数()sin(3)f x x ϕ=+的图象关于直线23x π=对称,则ϕ的最小正值等于( ) A . 8π B . 4π C . 3π D . 2π18、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( ).A m αβα⊥⊂且 .B m αβα⊥且 .C m n n β⊥且 .D m n αβ⊥且19、5.甲、乙两个小组,甲组有3名男生2名女生,乙组有3名女生2名男生,从甲、乙两组中各选出3名同学,则选出的6人中恰有1名男生的概率等于( )A . 3100B . 4100C . 5100D . 610020、已知直线x y a +=与圆224x y +=交于,B A 两点,且OA OB OA OB +=-(其中O为坐标原点),则实数a 等于( ).A 2 .B 2- .C 22-或 .D 66-或21、已知曲线210x y ++=与双曲线2221(0)y x b b-=>的渐近线相切,则此双曲线的焦距等于( )A . 22B . 23C . 4D . 2522、对于定义在实数集R 上的函数()f x ,若()f x 与(1)f x +都是偶函数,则( ) A .()f x 是奇函数 B .(1)f x -是奇函数 C .(2)f x +是偶函数 D .(2)f x +是奇函数23、在直三棱柱111ABC A B C -中,12AA =,二面角11B AA C --的大小等于060,B 到面1AC 的距离等于3,1C 到面1AB 的距离等于23,则直线1BC 与直线1AB 所成角的正切值等于( ) A .7 B . 6 C . 5 D . 224、对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数:①()sin 2x f x π⎛⎫=⎪⎝⎭;②()221f x x =-;③()12x f x =-;④()()2log 22f x x =-. 其中存在唯一“可等域区间”的“可等域函数”为( ) .A ①②③ .B ②③ .C ①③ .D ②③④ 三、解答题25、(本题满分7分)设{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,试判断集合A 与集合B 的关系; (2)若B A ⊆,求实数a 组成的集合C .26、(本题满分7分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,向量()2s i n ,2c o s m B B = ,()3cos ,cos n B B =-,且1m n ⋅=-.(1)求角B ;(2)若2b =,求ABC ∆面积的最大值.27、(本题满分8分) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2,22PA AB AD ===,求 (1)PCD ∆的面积;(2)异面直线BC 与AE 所成角的大小. 28、(本题满分13分) 在数列{}n a 中,112a =-,()*1212,n n a a n n n N -=--≥∈,设n n b a n =+. (1)证明:数列{}n b 是等比数列; (2)求数列{}n nb 的前n 项和n T ; 29、(本题满分12分)抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B .(1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.PA BCDE30、(本题满分13分)设a 是实数,函数()42x xf x a=+-()x R ∈(1)求证:函数()f x 不是奇函数;(2)当0a ≤时,求满足()2f x a >的x 取值范围;(3)求函数()y f x =的值域(a 表示). 31、(本题满分18分)设()(),0P a b a b ⋅≠、(),2R a 为坐标平面xoy 上的点,直线OR (O 为坐标原点)与抛物线24y x ab=交于点Q (异于O ). (1)若对任意0ab ≠,点Q 在抛物线()210y mx m =+≠上,试问当m 为何值时,点P 在某一圆上,并求出该圆方程M ;(2)若点()(,)0P a b ab ≠在椭圆2241x y +=上,试问:点Q 能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3)对(1)中点P 所在圆方程M ,设A 、B 是圆M 上两点,且满足1OA OB ⋅=,试问:是否存在一个定圆S ,使直线AB 恒与圆S 相切.2015年春季高考模拟试卷2015年春季高考模拟试卷六参考答案1、()[),43,-∞-+∞;2、23π;3、2;4、(),4-∞-;5、12;6、23-;7、223π;8、()2,2-;9、4;10、2-;11、13-;12、5; 13-17、CABDD 18-24CACDC AB25、(1)由28150x x -+=得3x =或5x =,所以{}3,5A =.若15a =,得1105x -=,即5x =,所以{}5B =,故B A Ü. (2)因为{}3,5A =,又B A ⊆.①当B =∅时,则方程10ax -=无解,则0a =; ②当B ≠∅时,则0a ≠,由10ax -=,得1x a =,所以13a =或15a =,即13a =或15a = 故集合11035C ⎧⎫=⎨⎬⎩⎭,,.26、(1)【3π】(2)【 3】 27、(1)【23】(2)【 4π】28、(1)略(2)【222n n n T +=-】29、(1)【24y x =】(2)【2】(3)【3-】 30、(略)31、解:(1)222,4y x a aQ b b y xab ⎧=⎪⎪⎛⎫⇒⎨⎪⎝⎭⎪=⎪⎩, 代入22211a y mx m b b ⎛⎫=+∴=+ ⎪⎝⎭2220ma b b ⇒+-=当1m =时,点 (,)P a b 在圆:M ()2211x y +-=上(2)(),P a b 在椭圆2241x y +=上,即()2221a b += ∴可设1cos ,sin 2a b θθ==又2,a Q b b ⎛⎫ ⎪⎝⎭,于是2Q Q a x b y b ⎧=⎪⎪∴⎨⎪=⎪⎩222222242cos sin sin Q Q a y mx m m b b θθθ⎛⎫⎛⎫⎛⎫⎛⎫⇒-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222164cos 16sin sin m θθθ=-=(令4m =)∴点Q 在双曲线22416y x -=上 (3)圆M 的方程为()2211x y +-=设()()1122:,,,,,AB x ky A x y B x y λ=+由1OA OB ⋅=()()2222222211221122121111221x y x y y y y y y y +⋅+=--+⋅--+=⋅=⇒1214y y = 又()22111x y x ky ⎧+-=⎪⎨=+⎪⎩ ()()2221210k y k y λλ⇒++-+=,21222111421y y k k λλ∴==⇒=++又原点O 到直线AB 距离21d k λ=+ 12d ∴=,即原点O 到直线AB 的距离恒为12∴直线AB 恒与圆221:4S x y +=相切.。
2015年普通高等学校招生全国统一考试理科数学答案(上海卷)

2015年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð . 【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且【考点定位】复数相等,共轭复数 3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】4 【解析】2331636444a a a a ⋅=⇒=⇒= 【考点定位】正三棱柱的体积5、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【考点定位】抛物线定义6、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C -=-= 【考点定位】排列组合9、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .【答案】32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x x f x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】4【解析】由题意得:2()22x xf x -=+在[0,2]上单调递增,值域为1[,2]4,所以()1f x -在1[,2]4上单调递增,因此()()1y f x f x -=+在1[,2]4上单调递增,其最大值为1(2)(2)22 4.f f -+=+=【考点定位】反函数性质11、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E =(元). 【答案】0.213、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且 ()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边CB 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DFC ⊥A 于F ,则D DF E⋅= . 【答案】1615-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B【考点定位】复数概念,充要关系16、已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112D .132【答案】D 【解析】133313(cossin )(43)()332222OB OA i i i i ππ=⋅+=+⋅+=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根【考点定位】不等式性质 18、设(),n n n x y P 是直线21nx y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A .1- B .12- C .1 D .2 【答案】A【考点定位】极限三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015上海春考数学试卷及答案

2015上海春考数学试卷及答案2015年上海市春季高考数学试卷(学业水平考试)2015.1一. 填空题(本大题共12题,每题3分,共36分)1. 设全集为{1,2,3}U =,{1,2}A =,若集合则U C A =;2. 计算:1ii+= ;(其中i 为虚数单位) 3. 函数sin(2)4y x π=+的最小正周期为 ; 4. 计算:223lim 2n n n n→∞-=+ ;5. 以(2,6)为圆心,1为半径的圆的标准方程为 ; 6. 已知向量(1,3)a =,(,1)b m =-,若a b⊥,则m =;7. 函数224y xx =-+,[0,2]x ∈的值域为 ;8. 若线性方程组的增广矩阵为0201ab ⎛⎫⎪⎝⎭,解为21x y =⎧⎨=⎩,则a b += ;9. 方程lg(21)lg 1x x ++=的解集为 ;A. 3(,)4-∞ B.2(,)3-∞ C.2(,)(1,)3-∞+∞D.2(,1)316. 下列函数中,是奇函数且在(0,)+∞上单调递增的为( )A. 2y x= B.13y x= C.1y x -=D.12y x-=17. 直线3450x y --=的倾斜角为( )A. 3arctan 4B. 3arctan 4π- C. 4arctan3D.4arctan3π-18. 底面半径为1,母线长为2的圆锥的体积为( )A.2π B. C. 23πD.19. 以(3,0)-和(3,0)为焦点,长轴长为8的椭圆方程为( ) A. 2211625x y += B.221167x y += C.2212516x y +=D.221716x y +=20. 在复平面上,满足|1|||z z i -=+(i 为虚数单位)的复数z 对应的点的轨迹为( )A. 椭圆B. 圆C. 线段D. 直线 21. 若无穷等差数列{}na 的首项1a>,公差0d <,{}na 的前n 项和为nS ,则( )A. nS 单调递减 B.nS 单调递增C. nS 有最大值 D.nS 有最小值22. 已知0a >,0b >,若4a b +=,则( ) A.22a b +有最小值 B.有最小值C. 11a b+有最大值 D.有最大值 23. 组合数122mm m nn n CC C --++*(2,,)n m m n N ≥≥∈恒等于( )A. 2m n C + B.12m n C ++ C. 1m n C +D.11m n C ++24. 设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中,a b R ∈,下列说法正确的是( )A.对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B. 对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C. 存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D. 存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三. 解答题(本大题共5题,共8+8+8+12+12=48分)25. 如图,在正四棱柱中1111ABCD A B C D -,1AB =,1D B 和平面ABCD 所成的角的大小为,求该四棱柱的表面积;26. 已知a 为实数,函数24()x ax f x x++=是奇函数,求()f x 在(0,)+∞上的最小值及取到最小值时所对应的x 的值;27. 某船在海平面A 处测得灯塔B 在北偏东30︒方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距多少海里(精确到0.1海里)?B 在船的什么方向(精确到1︒)?28. 已知点1F 、2F 依次为双曲线2222:1x y C a b-=(,0)a b >的左右焦点,126F F=,1(0,)B b -,2(0,)B b ;(1)若a =以(3,4)d =-为方向向量的直线l 经过1B ,求2F 到l 的距离;(2)若双曲线C 上存在点P ,使得122PB PB⋅=-,求实数b 的取值范围;29. 已知函数2()|22|x f x -=-(R)x ∈;(1)解不等式()2f x <; (2)数列{}na 满足()naf n =*(N )n ∈,nS 为{}na 的前n 项和,对任意的4n ≥,不等式 12nnS ka +≥恒成立,求实数k 的取值范围;附加题一. 选择题(本大题共3题,每题3分,共9分) 1. 对于集合A 、B ,“A B ≠”是“A B A B⊂≠”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2. 对于任意实数a 、b ,2()a b kab-≥均成立,则实数k 的取值范围是( ) A. {4,0}- B. [4,0]- C.(,0]-∞D.(,4][0,)-∞-+∞3. 已知数列{}na 满足413nn n n a a a a ++++=+()n N *∈,那么( ) A.{}n a 是等差数列 B.21{}n a -是等差数列C.2{}n a 是等差数列 D.3{}n a 是等差数列二. 填空题(本大题共3题,每题3分,共9分) 4. 关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 ;5. 已知圆心为O ,半径为1的圆上有三点A 、B 、C,若7580OA OB OC ++=,则||BC =;6. 函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 ;三. 解答题(本大题12分)7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f xg xh x =⋅,则称()f x 是()g x 的“()h x 关联函数”(1)已知()sin f x x =,()cos g x x =,是否存在定义域为R 的函数()h x ,使得()f x 是()g x 的“()h x 关联函数”?若存在,写出()h x 的解析式;若不存在,说明理由; (2)已知函数()f x 、()g x 的定义域为[1,)+∞,当[,1)x n n ∈+()n *∈N 时,()f x =12sin 1n xn--,若存在函数1()h x 及2()h x ,使得()f x 是()g x 的“1()h x 关联函数”,且()g x 是()f x 的“2()h x 关联函数”,求方程()0g x =的解;参考答案一. 填空题1. {3};2. 1i-;3. π;4.0.5;5. 22-+-=; 6. 3;7. [3,4];(2)(6)1x y8. 2;9. {2};10. 84;11. 320;12. 221=-;y x二. 选择题13. D;14. A;15. D;16. B;17. A;18. D;19. B;20. D;21. C;22. A;23. A;24. A;三. 解答题25. 8;26. 0f x=;x=,min()4a=,227.4.2BC ≈海里,南偏东46︒;28.(1) 3.6d =;(2)b ≥29.(1)4x <;(2)2514k ≤;附加题1. C ;2. B ;3. D ;4.; 5.; 6.,10()1,01x x f x x -<<⎧=⎨<<⎩;7.(1)不存在,定义域不为R ;(2)2x π=;。
2015年普通高等学校招生全国统一考试理科数学上海卷pdf版

的最小值
为
.
14.在锐角三角形 ΑΒC 中,tan Α =1 ,D 为边 ΒC 上的点,∆ΑΒD 与 ∆ΑCD 的面积分别 2
为 2 和 4 .过 D 作 DΕ ⊥ ΑΒ 于 Ε , DF ⊥ ΑC 于 F ,则 DΕ ⋅ DF =
.
二、选择题(本大题共有 4 题,满分 20 分.)每题有且只有一个正确答案,考 生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得 5 分,否则一 律得零分.
(1)设 Α ( x1, y1 ) , C ( x2 , y2 ) ,用 Α 、 C 的坐标表示点 C 到直线 l1 的距离,并证明
=S 2 x1 y1 − x2 y1 ;
(2)设
l1
与
l2
的斜率之积为
−
1 2
,求面积
S
的值.
22.(本题满分 16 分)本题共有 3 个小题.第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小 题满分 6 分.
甲的路线是 ΑΒ ,速度为 5 千米/小时,乙的路线是 ΑCΒ ,速度为 8 千米/小时.乙到达 Β 地 后原地等待.设 t = t1 时乙到达 C 地.
(1)求 t1 与 f (t1 ) 的值;
(2)已知警员的对讲机的有效通话距离是 3 千米.当 t1 ≤ t ≤ 1 时,求 f (t ) 的表达式,并判
在
3 8
,1
上的最大值是
3 8
41 ,不超过 3.
21.证:(1)直线 l1 : y1x − x1 y = 0 ,点 C 到 l1 的距离 d =
y1x2 − x1 y2 x12 + y12
、
| AB |= 2 | AO |= 2 x12 + y12 ,
2015年数学春考+答案

2015年上海市春季高考数学试卷(学业水平考试)2015.01一、填空题(每小题3分,满分36分)1.设全集为{}1,2,3U =,{}1,2A =,若集合则U A =ð________.2.计算:1ii+=________(其中i 为虚数单位). 3.函数sin 24y x π⎛⎫=+ ⎪⎝⎭的最小正周期为_______.4.计算:223lim 2n n n n→∞-=+_______.5.以()2,6为圆心,1为半径的圆的标准方程为_______.6.已知向量()1,3a = ,(),1b m =-,若a b ⊥ ,则m =_______.7.函数[]224,0,2y x x x =-+∈的值域为_______.8.若线性方程组的增广矩阵为0201a b ⎛⎫⎪⎝⎭,解为21x y =⎧⎨=⎩,则a b +=_______. 9.方程()lg 21lg 1x x ++=的解集为_______.10.在921x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为_______.11.用数字组成无重复数字的三位数,其中奇数的个数为_______(结果用数值表示).12.已知点()1,0A ,直线:1l x =-,两个动圆均过点A 且与l 相切,其圆心分别为1C 、2C ,若动点M 满足22122C M C C C A =+,则M 的轨迹方程为_______. 二、选择题(每小题3分,满分36分)13.若0a b <<,则下列不等式恒成立的是( ) A.11a b> B. a b -> C. 22a b > D. 33a b <14. 函数()21y x x =≥的反函数为( ) A.()1y x x =≥ B. ()1y x x =-≤- C. ()0y x x =≥ D. ()0y x x =-≤15.不等式2301xx ->-的解集为( ) A. 3,4⎛⎫-∞ ⎪⎝⎭ B. 2,3⎛⎫-∞ ⎪⎝⎭ C. ()2,1,3⎛⎫-∞+∞ ⎪⎝⎭D. 2,13⎛⎫⎪⎝⎭16.下列函数中,是奇函数且在()0,+∞上单调递增的为( ) A. 2y x = B. 13y x =C. 1y x -=D. 12y x -=17.直线3450x y --=的倾斜角为( ) A.3arctan4B. 3arctan 4π-C. 4arctan3 D. 4arctan 3π-18.底面半径为1,母线长为2的圆锥的体积为( ) A. 2πB. 3πC.23π D.33π 19.以()3,0-和()3,0为焦点,长轴长为8的椭圆方程为( )A.2211625x y +=B. 221167x y +=C. 2212516x y +=D. 221716x y +=20.在复平面上,满足1i z z -=+(i 为虚数单位)的复数z 对应的点的轨迹为( ) A.椭圆B.圆C.线段D.直线21.若无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则( ) A. n S 单调递减 B. n S 单调递增C. n S 有最大值D. n S 有最小值22.已知0a >,0b >,若4a b +=,则( ) A.22a b +有最小值B. ab 有最小值C.11a b+有最大值 D.1a b+有最大值23. 组合数()12*22,,N m m m n n n C C C n m m n --++≥≥∈恒等于( )A. 2m n C +B. 12m n C ++C. 1mn C + D. 11m n C ++24.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>其中,R a b ∈,下列说法正确的是( )A.对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B. 对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C. 存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D. 存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三、解答题(共5大题,满分48分) 25. (本题满分8分)如图,在正四棱柱中1111ABCD A B C D -,1AB =,1D B 和平面ABCD 所成的角的大小为32arctan 4,求该四棱柱的表面积.26.(本题满分8分)已知a 为实数,函数()24x ax f x x++=是奇函数,求()f x 在()0,+∞上的最小值及取到最小值时所对应的x 的值.27.(本题满分8分)某船在海平面A 处测得灯塔B 在北偏东30 方向,与A 相距6.0海里.船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距多少海里(精确到0.1海里)?B 在船的什么方向(精确到1 )? ABCD1A 1B 1C 1D28. (本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知点1F 、2F 依次为双曲线()2222:1,0x y C a b a b-=>的左右焦点,126F F =,()10,B b -,()20,B b(1)若5a =,以()3,4d =-为方向向量的直线l 经过1B ,求2F 到l 的距离;(2)若双曲线C 上存在点P ,使得122PB PB ⋅=-,求实数b 的取值范围.29.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数()()222R x f x x -=-∈ (1)解不等式()2f x <;(2)数列{}n a 满足()()*N n a f n n =∈,n S 为{}n a 的前n 项和,对任意的4n ≥,不等式12n n S ka +≥恒成立,求实数k 的取值范围.2015年上海市普通高中学业水平考试 数学卷(附加题)1.对于集合A 、B ,“A B ≠”是“A B A B ⊂≠⋂⋃”的( )(A)充分非必要条件 (B )必要非充分条件 (C)充要条件 (D )既非充分又非必要条件 2.对于任意实数a 、b ,2()a b kab -≥均成立,则实数k 的取值范围是( )(A) {}4,0- (B )[]-4,0 (C) ](0-∞, (D )][(40-∞-∞ ,,+)3.已知数列{}n a 满足413n n n n a a a a ++++=+(n N *∈),那么( )(A) {}n a 是等差数列 (B ){}21n a -是等差数列 (C) {}2n a 是等差数列 (D ){}3n a 是等差数列 二、填空题(本大题满分9分)本大题共有3小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得0分.4.关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 .5.已知圆心为O ,半径为1的圆上有三点A 、B 、C ,若7580OA OB OC ++=,则BC = .6.函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 .三、解答题(满分12分)解答本题必须在答题纸相应编号的规定区域内写出必要的步骤.对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f x g x h x =⋅,则称()f x 是()g x 的“()h x 关联函数”。
2015年普通高等学校招生统一考试上海市理数卷(含答案)

2015年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U AB =ð .2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 4.若正三棱柱的所有棱长均为a ,且其体积为163,则a = .5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .7.方程()()1122log 95log 322x x ---=-+的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .10.设()1fx -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 .11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).13.已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值为 .14.在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= .二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 16.已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532C .112D .13217.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 18.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-( )A .1-B .12-C .1D .2 三、解答题(本大题共有5题,满分74分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A=,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.20.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分如图,A ,B ,C 三地有直道相通,5AB =千米,C 3A =千米,C 4B =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是C A B ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上得最大值是否超过3?说明理由.21.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明11212S x y x y =-; (2)设1l 与2l 的斜率之积为12-,求面积S 的值. 22.(本题满分16分)本题共有3个小题.第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知数列{}n a 与{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2mM∈-. 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =. (1)验证()sin 3xh x x =+是以π6为周期的余弦周期函数;(2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =;(3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T .上海数学(理工农医类)参考答案一、(第1题至第14题) 1.}{1,4 2.1142i + 3.16 4.4 5.2 6.3π7.2 8.120 9.32yy x =± 10.4 11.45 12.0.2 13.8 14. 1615-二、(第15至18题) 题号 15 16 17 18 代号BDBA三、(第19至23题)19. 解:如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1)、C 1(0,2,1)、E(2,1,0)、F (1,2,0)、C (0、2、0)、D (0,0,1).因为)0,2,2(11-=C A,(1,1,0)EF =-, 所以11//EF AC , 因此直线1AC与EF 共面, 即,1A 、1C 、F 、E 四点共面.设平面EF C A 11的法向量为(,,)n u v w =, 则n ⊥EF ,n ⊥1FC ,又(1,1,0)EF =-,1FC =(1,0,1)-,故0,u .0,u v v w u w -+=⎧==⎨-+=⎩解得取u=1,则平面EF C A 11 的一个法向量n =(1,1,1).又1(0,2,1)CD =-, 故111515||CD n CD n ⋅=-⋅因此直线1CD 与平面FE C A 11所成的角的大小1515arcsin . 20. 解:(1)138t =, 设乙到C 时甲所在地为D ,则AD=158千米。
2015年普通高等学校招生全国统一考试数学(文)上海卷

2015年普通高等学校招生全国统一考试数学(文)上海卷一、填空题(共14小题;共70分)1. 函数f x=1−3sin2x的最小正周期为.2. 设全集U=R.若集合A=1,2,3,4,B=x2≤x≤3,则A∩∁U B=.3. 若复数z满足3z+z=1+i,其中i为虚数单位,则z=.4. 设f−1x为f x=x2x+1的反函数,则f−12=.5. 若线性方程组的增广矩阵为23c101c2解为x=3,y=5,则c1−c2=.6. 若正三棱柱的所有棱长均为a,且其体积为163,则a=.7. 抛物线y2=2px p>0上的动点Q到焦点的距离的最小值为1,则p=.8. 方程log29x−1−5=log23x−1−2+2的解为.9. 若x,y满足x−y≥0,x+y≤2,y≥0,则目标函数f=x+2y的最大值为.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11. 在2x+1x 6的二项展开式中,常数项等于(结果用数值表示).12. 已知双曲线C1,C2的顶点重合,C1的方程为x24−y2=1.若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.13. 已知平面向量a,b,c满足a⊥b,且a,b,c=1,2,3,则a+b+c的最大值是.14. 已知函数f x=sin x.若存在x1,x2,⋯,x m满足0≤x1<x2<⋯<x m≤6π.且f x1−f x2+f x2−f x3+⋯+f x m−1−f x m=12(m≥2,m∈N∗),则m的最小值为.二、选择题(共4小题;共20分)15. 设z1,z2∈C,则“ z1,z2均为实数”是“ z1−z2是实数”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件16. 下列不等式中,与不等式x+8x2+2x+3<2解集相同的是 A. x+8x2+2x+3<2B. x+8<2x2+2x+3C. 1x+2x+3<2x+8D. x2+2x+3x+8>1217. 已知点A的坐标为43,1,将OA绕坐标原点O逆时针旋转π3至OB,则点B的纵坐标为 .A. 332B. 532C. 112D. 13218. 设P n x n,y n是直线2x−y=nn+1n∈N∗与圆x2+y2=2在第一象限的交点,则极限lim n→∞y n−1x n−1= A. −1B. −12C. 1D. 2三、解答题(共5小题;共65分)19. 如图,圆锥的顶点为P,底面圆心为O,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,已知PO=2,OA=1,求三棱锥P−AOC的体积,并求异面直线PA与OE 所成角的余弦值.20. 已知函数f x=ax2+1x,其中a为常数.(1)根据a的不同取值,判断函数f x的奇偶性,并说明理由;(2)若a∈1,3,判断函数f x在1,2上的单调性,并说明理由.21. 如图,O,P,Q三地有直道相通,OP=3千米,PQ=4千米,OQ=5千米.现甲、乙两警员同时从O地出发匀速前往Q地,经过t小时,他们之间的距离为f t(单位:千米).甲的路线是OQ,速度为5千米/小时,乙的路线是OPQ,速度为8千米/小时.乙到达Q地后在原地等待.设t=t1时,乙到达P地;t=t2时,乙到达Q地.(1)求t1与f t1的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤t2时,求f t的表达式,并判断f t在t1,t2上的最大值是否超过3 ?说明理由.22. 己知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A,B和C,D.记△AOC的面积为S.(1)设A x1,y1,C x2,y2.用A,C的坐标表示点C到直线l1的距离,并证明S= 12x1y2−x2y1;(2)设l1:y=kx,C33,33,S=13,求k的值.(3)设l1与l2的斜率之积为m,求m的值,使得无论l1与l2如何变动,面积S保持不变.23. 已知数列a n与b n满足a n+1−a n=2b n+1−b n,n∈N∗.(1)若b n=3n+5,且a1=1,求a n的通项公式;(2)设a n的第n0项是最大项,即a n≥a n(n∈N∗),求证:b n的第n0项是最大项;(3)设a1=3λ<0,b n=λn(n∈N∗),求λ的取值范围,使得对任意m,n∈N∗,a n≠0,且a ma n ∈16,6.答案第一部分1. π2. 1,43. 14+12i4. −235. 166. 47. 28. 29. 310. 12011. 24012. x24−y24=113. 3+【解析】当c与向量a+b方向相同时,a+b+c有最大值.当c=1时,a+b+c的最大值为1+22+32=1+13.当c=2时,a+b+c的最大值为2+2+32=2+10.当c=3时,a+b+c的最大值为3+2+22=3+5.平方后比较它们的大小知,a+b+c的最大值为3+5.14. 8【解析】首先由正弦函数的性质知f x i−f x i+1≤2,i=1,2,⋯,m−1,所以12≤2m−1,得到m≥7.若m=7,意味着等号同时取到,故x i+1−x i≥π,i=1,2,⋯,6,从而有x7−x1≥6π,而此时只能有x1=0,故f x2−f x1≤1<2,矛盾,所以m>7.当x1=0,x8=π,x2=π2,x3=3π2,x4=5π2,⋯,x7=11π2时,满足要求,故m的最小值为8,第二部分15. A16. B 17. D 【解析】设B x,y,OA的倾斜角为α,且OA=7,所以sinα=17,cosα=437,所以OB的倾斜角为α+π3,所以sin α+π3=y7,解得y=132.18. A 【解析】当n→+∞时,直线2x−y=nn+1→2x−y=1与圆x2+y2=2在第一象限的交点无限靠近点1,1,而y n−1x n−1是P n x n,y n与点1,1之间的斜率,其值无限接近于圆x2+y2=2在点1,1处切线的斜率,可求斜率为−1,所以limn→∞y n−1x n−1=−1.第三部分19. V P−AOC=13×12×2=13.因为AC∥OE,所以∠PAC为异面直线PA与OE所成的角或其补角.由PO=2,OA=OC=1,得PA=PC=5,AC=2.在△PAC中,由余弦定理得cos∠PAC=1010,故异面直线PA与OE所成角的余弦值为1010.20. (1)f x的定义域为x x≠0,x∈R,关于原点对称.f−x=a−x2+1−x =ax2−1x,当a=0时,f−x=−f x,故f x为奇函数,当a≠0时,由f1=a+1,f−1=a−1,知f−1≠f1,且f−1≠−f1,f x既不是奇函数也不是偶函数.(2)设1≤x1<x2≤2,则f x2−f x1=ax22+1x2−ax12−1x1=x2−x1 a x1+x2−1x1x2,由1≤x1<x2≤2,得x2−x1>0,2<x1+x2<4,1<x1x2<4,−1<−1x1x2<−14,又1<a<3,所以2<a x1+x2<12,得a x2+x1−1x1x2>0,从而f x2−f x1>0,即f x2>f x1,故当a∈1,3时,f x在1,2上单调递增.21. (1)t1=38.记乙到P时甲所在地为R,则OR=158千米.在△OPR中,PR2=OP2+OR2−2OP⋅OR cos∠O,所以f t1=PR=3841(千米).(2)t2=78.如图建立平面直角坐标系,设经过t小时,甲,乙所在位置分别为M,N.当t∈38,78时,M3t,4t,N3,8t−3,f t=3t−32+−4t+32=25t2−42t+18,f t在38,78上的最大值是f38=3418,不超过3.22. (1)直线l1:y1x−x1y=0,点C到l1的距离d=1212x1+y1因为OA= x1212,所以S=12 OA ⋅d=12x1y2−x2y1.(2)由y=kx,x2+2y2=1.得x12=11+2k2.由(1)得S=12x1y2−x2y1=13x1−3⋅kx1=3 k−1 61+2k2由题意,得3 k−61+2k2=13,解得k=−15或−1.(3)设l1:y=kx,则l2:y=mkx,设A x1,y1,C x2,y2.由y=kx,x2+2y2=1,得x12=11+2k2,同理x22=11+2mk 2=k2k2+2m2.由(1),得S=1x1y2−x2y1=1x1⋅mx2−x2⋅kx1=12⋅k2−mk⋅x1x2=k2−m21+2k2⋅ k2+2m2整理得8S2−1k4+4S2+16S2m2+2m k2+8S2−1m2=0.由题意知,S与k无关,则8S2−1=0,4S2+16S2m2+2m=0,得S2=1 ,m=−1 .所以m=−12.23. (1)由b n+1−b n=3,得a n+1−a n=6,所以a n是首项为1,公差为6的等差数列,故a n的通项公式为a n=6n−5,n∈N∗.(2)由a n+1−a n=2b n+1−b n,得a n+1−2b n+1=a n−2b n,所以a n−2b n为常数列,a n−2b n=a1−2b1,即a n=2b n+a1−2b1,因为a n≥a n,n∈N∗,所以2b n0+a1−2b1≥2b n+a1−2b1,即b n≥b n,故b n的第n0项是最大项.(3)因为b n=λn,所以a n+1−a n=2λn+1−λn,当n≥2时,a n=a n−a n−1+a n−1−a n−2+⋯+a2−a1+a1=2λn−λn−1+2λn−1−λn−2+⋯+2λ2−λ+3λ=2λ2+λ.当n=1时,a1=3λ,符合上式,所以a n=2λn+λ.因为a1=3λ<0,且对任意n∈N∗,a1a n ∈16,6,故a n<0,特别地,a2=2λn+λ<0,于是λ∈ −12,0.此时对任意n∈N∗,a n≠0.当−12<λ<0时,a2n=2λ2n+λ>λ,a2n−1=−2λ2n−1+λ<λ,由指数函数的单调性知,a n的最大值为a2=2λ2+λ<0,最小值为a1=3λ.由题意a ma n 的最大值及最小值分别为a1a2=32λ+1及a2a1=2λ+13.由2λ+13>16及32λ+1<6,解得−14<λ<0.综上所述,λ的取值范围为 −14,0.。
2015年上海市春季高考数学模拟试卷六

2015年上海市春季高考模拟试卷六一、填空题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.) 1、不等式304xx -≤+的解集是___________. 2、在ABC ∆中,角,,C A B 满足sin :sin :sin 1:2:7A B C =,则最大的角等于________. 3、若复数z 满足()2z i z =-(i 是虚数单位),则=z ____________. 4、已知全集U R =,集合{}{}0,,13,A xx a x RBx x x R =+≥∈=-≤∈,若()[]2,4U C A B =-,则实数a 的取值范围是___________. 5、从甲、乙、丙、丁四个人中任选两名志愿者,则甲被选中的概率是__________. 6、设直线1:20l ax y +=的方向向量是1d ,直线()2:140l x a y +++=的法向量是2n ,若1d 与2n 平行,则a =_________.7、若圆锥的侧面积为3π,底面积为π,则该圆锥的体积为__________. 8、若不等式101x x a>-+对任意x R ∈恒成立,则实数a 的取值范围是________.9、若抛物线22y px =的焦点与双曲线222x y -=的右焦点重合,则p =_________.10、设函数()()[)()36log 1,6,3,,6x x x f x x -⎧-+∈+∞⎪=⎨∈-∞⎪⎩的反函数为()1f x -,若119f a -⎛⎫= ⎪⎝⎭,则()4f a +=__________. 11、设()8,a Rx a ∈-的二项展开式中含5x 项的系数为7,则()2l i m nn a a a →∞+++=_________.12、已知定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=有3个不同的实数根123,,x x x ,则222123x x x ++=____________.二、选择题:(本大题共12小题,每小题3分,共36分.请将答案填入答题纸填空题的相应答题线上.)13、设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2- 14、已知z 是复数,21,2z i i+=+-则z =( ) A . 1i - B . 2i + C . 12i - D . 3i + 15、不等式11xx <+的解集是( ) A . {}10x x -<< B . {},1x x R x ∈≠-且 C . R D . {}01x x << 16.已知,,i j k 表示共面的三个单位向量, i j ⊥,那么()()i k j k +⋅+的取值范围是( ) A . []3,3- B . []2,2- C . 21,21⎡⎤-+⎣⎦ D . 12,12⎡⎤-+⎣⎦17、已知函数()sin(3)f x x ϕ=+的图象关于直线23x π=对称,则ϕ的最小正值等于( ) A . 8π B . 4π C . 3π D . 2π18、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( ).A m αβα⊥⊂且 .B m αβα⊥且 .C m n n β⊥且 .D m n αβ⊥且19、5.甲、乙两个小组,甲组有3名男生2名女生,乙组有3名女生2名男生,从甲、乙两组中各选出3名同学,则选出的6人中恰有1名男生的概率等于( )A . 3100B . 4100C . 5100D . 610020、已知直线x y a +=与圆224x y +=交于,B A 两点,且OA OB OA OB +=-(其中O为坐标原点),则实数a 等于( ).A 2 .B 2- .C 22-或 .D 66-或21、已知曲线210x y ++=与双曲线2221(0)y x b b-=>的渐近线相切,则此双曲线的焦距等于( )A . 22B . 23C . 4D . 2522、对于定义在实数集R 上的函数()f x ,若()f x 与(1)f x +都是偶函数,则( ) A .()f x 是奇函数 B .(1)f x -是奇函数 C .(2)f x +是偶函数 D .(2)f x +是奇函数23、在直三棱柱111ABC A B C -中,12AA =,二面角11B AA C --的大小等于060,B 到面1AC 的距离等于3,1C 到面1AB 的距离等于23,则直线1BC 与直线1AB 所成角的正切值等于( ) A .7 B . 6 C . 5 D . 224、对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数:①()sin 2x f x π⎛⎫=⎪⎝⎭;②()221f x x =-;③()12x f x =-;④()()2log 22f x x =-. 其中存在唯一“可等域区间”的“可等域函数”为( ) .A ①②③ .B ②③ .C ①③ .D ②③④ 三、解答题25、(本题满分7分)设{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,试判断集合A 与集合B 的关系; (2)若B A ⊆,求实数a 组成的集合C .26、(本题满分7分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,向量()2s i n ,2c o s m B B = ,()3cos ,cos n B B =-,且1m n ⋅=-.(1)求角B ;(2)若2b =,求ABC ∆面积的最大值.27、(本题满分8分) 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2,22PA AB AD ===,求 (1)PCD ∆的面积;(2)异面直线BC 与AE 所成角的大小. 28、(本题满分13分) 在数列{}n a 中,112a =-,()*1212,n n a a n n n N -=--≥∈,设n n b a n =+. (1)证明:数列{}n b 是等比数列; (2)求数列{}n nb 的前n 项和n T ; 29、(本题满分12分)抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B .(1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.PA BCDE30、(本题满分13分)设a 是实数,函数()42x xf x a=+-()x R ∈(1)求证:函数()f x 不是奇函数;(2)当0a ≤时,求满足()2f x a >的x 取值范围;(3)求函数()y f x =的值域(a 表示). 31、(本题满分18分)设()(),0P a b a b ⋅≠、(),2R a 为坐标平面xoy 上的点,直线OR (O 为坐标原点)与抛物线24y x ab=交于点Q (异于O ). (1)若对任意0ab ≠,点Q 在抛物线()210y mx m =+≠上,试问当m 为何值时,点P 在某一圆上,并求出该圆方程M ;(2)若点()(,)0P a b ab ≠在椭圆2241x y +=上,试问:点Q 能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3)对(1)中点P 所在圆方程M ,设A 、B 是圆M 上两点,且满足1OA OB ⋅=,试问:是否存在一个定圆S ,使直线AB 恒与圆S 相切.2015年春季高考模拟试卷2015年春季高考模拟试卷六参考答案1、()[),43,-∞-+∞;2、23π;3、2;4、(),4-∞-;5、12;6、23-;7、223π;8、()2,2-;9、4;10、2-;11、13-;12、5; 13-17、CABDD 18-24CACDC AB25、(1)由28150x x -+=得3x =或5x =,所以{}3,5A =.若15a =,得1105x -=,即5x =,所以{}5B =,故B A Ü. (2)因为{}3,5A =,又B A ⊆.①当B =∅时,则方程10ax -=无解,则0a =; ②当B ≠∅时,则0a ≠,由10ax -=,得1x a =,所以13a =或15a =,即13a =或15a = 故集合11035C ⎧⎫=⎨⎬⎩⎭,,.26、(1)【3π】(2)【 3】 27、(1)【23】(2)【 4π】28、(1)略(2)【222n n n T +=-】29、(1)【24y x =】(2)【2】(3)【3-】 30、(略)31、解:(1)222,4y x a aQ b b y xab ⎧=⎪⎪⎛⎫⇒⎨⎪⎝⎭⎪=⎪⎩, 代入22211a y mx m b b ⎛⎫=+∴=+ ⎪⎝⎭2220ma b b ⇒+-=当1m =时,点 (,)P a b 在圆:M ()2211x y +-=上(2)(),P a b 在椭圆2241x y +=上,即()2221a b += ∴可设1cos ,sin 2a b θθ==又2,a Q b b ⎛⎫ ⎪⎝⎭,于是2Q Q a x b y b ⎧=⎪⎪∴⎨⎪=⎪⎩222222242cos sin sin Q Q a y mx m m b b θθθ⎛⎫⎛⎫⎛⎫⎛⎫⇒-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222164cos 16sin sin m θθθ=-=(令4m =)∴点Q 在双曲线22416y x -=上 (3)圆M 的方程为()2211x y +-=设()()1122:,,,,,AB x ky A x y B x y λ=+由1OA OB ⋅=()()2222222211221122121111221x y x y y y y y y y +⋅+=--+⋅--+=⋅=⇒1214y y = 又()22111x y x ky ⎧+-=⎪⎨=+⎪⎩ ()()2221210k y k y λλ⇒++-+=,21222111421y y k k λλ∴==⇒=++又原点O 到直线AB 距离21d k λ=+ 12d ∴=,即原点O 到直线AB 的距离恒为12∴直线AB 恒与圆221:4S x y +=相切.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年上海市春季高考数学试卷(学业水平考试)
2015.1
一. 填空题(本大题共12题,每题3分,共36分)
1. 设全集为{1,2,3}U =,{1,2}A =,若集合则U C A = ;
2. 计算:
1i
i
+= ;
(其中i 为虚数单位) 3. 函数sin(2)4
y x π
=+
的最小正周期为 ;
4. 计算:22
3
lim 2n n n n
→∞-=+ ; 5. 以(2,6)为圆心,1为半径的圆的标准方程为 ; 6. 已知向量(1,3)a =,(,1)b m =-,若a b ⊥,则m = ; 7. 函数2
24y x x =-+,[0,2]x ∈的值域为 ; 8. 若线性方程组的增广矩阵为0201a b ⎛⎫
⎪
⎝⎭,解为2
1
x y =⎧⎨=⎩,则a b += ; 9. 方程lg(21)lg 1x x ++=的解集为 ; 10. 在9
21()x x
+
的二项展开式中,常数项的值为 ; 11. 用数字组成无重复数字的三位数,其中奇数的个数为 ;(结果用数值表示) 12. 已知点(1,0)A ,直线:1l x =-,两个动圆均过点A 且与l 相切,其圆心分别为1C 、2C ,若动点M 满足22122C M C C C A =+,则M 的轨迹方程为 ;
二. 选择题(本大题共12题,每题3分,共36分) 13. 若0a b <<,则下列不等式恒成立的是( ) A.
11
a b
> B. a b -> C. 22a b > D. 33a b <; 14. 函数2
(1)y x x =≥的反函数为( )
A. y =(1)x ≥
B. y =(1)x ≤-
C. y =(0)x ≥
D. y =(0)x ≤
15. 不等式
2301
x
x ->-的解集为( )
A. 3(,)4-∞
B. 2(,)3-∞
C. 2(,)
(1,)3-∞+∞ D. 2
(,1)3
16. 下列函数中,是奇函数且在(0,)+∞上单调递增的为( ) A. 2
y x = B. 13
y x = C. 1
y x -= D. 12
y x -=
17. 直线3450x y --=的倾斜角为( ) A. 3arctan
4 B. 3arctan 4π- C. 4arctan 3 D. 4arctan 3
π- 18. 底面半径为1,母线长为2的圆锥的体积为( )
A. 2π
B.
C.
23
π
D. 19. 以(3,0)-和(3,0)为焦点,长轴长为8的椭圆方程为( )
A.
2211625x y += B. 221167x y += C. 2212516x y += D. 22
1716
x y += 20. 在复平面上,满足|1|||z z i -=+(i 为虚数单位)的复数z 对应的点的轨迹为( ) A. 椭圆 B. 圆 C. 线段 D. 直线
21. 若无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则( ) A. n S 单调递减 B. n S 单调递增 C. n S 有最大值 D. n S 有最小值 22. 已知0a >,0b >,若4a b +=,则( )
A. 2
2
a b +有最小值 B.
C.
11
a b +有最大值 D. 有最大值
23. 组合数122m m m n n n C C C --++*
(2,,)n m m n N ≥≥∈恒等于( )
A. 2m n C +
B. 12m n C ++
C. 1m n C +
D. 1
1m n C ++
24. 设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,2
1{|0}Q x x x b =++>,
22{|20}Q x x x b =++>,其中,a b R ∈,下列说法正确的是( )
A.对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集
B. 对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集
C. 存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集
D. 存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集
三. 解答题(本大题共5题,共8+8+8+12+12=48分)
25. 如图,在正四棱柱中1111ABCD A B C D -,1AB =,1D B 和平面ABCD 所成的角的大
小为,求该四棱柱的表面积;
26. 已知a 为实数,函数24
()x ax f x x
++=是奇函数,求()f x 在(0,)+∞上的最小值及取
到最小值时所对应的x 的值;
27. 某船在海平面A 处测得灯塔B 在北偏东30︒
方向,与A 相距6.0海里,船由A 向正北方向航行8.1海里到达C 处,这时灯塔B 与船相距多少海里(精确到0.1海里)?B 在船的什么方向(精确到1︒
)?
28. 已知点1F 、2F 依次为双曲线22
22:1x y C a b
-=(,0)a b >的左右焦点,126F F =,
1(0,)B b -,2(0,)B b ;
(1)若a =
(3,4)d =-为方向向量的直线l 经过1B ,求2F 到l 的距离;
(2)若双曲线C 上存在点P ,使得122PB PB ⋅=-,求实数b 的取值范围;
29. 已知函数2
()|22|x f x -=-(R)x ∈;
(1)解不等式()2f x <;
(2)数列{}n a 满足()n a f n =*
(N )n ∈,n S 为{}n a 的前n 项和,对任意的4n ≥,不等式
1
2
n n S ka +
≥恒成立,求实数k 的取值范围;
附加题
一. 选择题(本大题共3题,每题3分,共9分) 1. 对于集合A 、B ,“A B ≠”是“A
B A B ⊂≠”的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分也非必要条件
2. 对于任意实数a 、b ,2
()a b kab -≥均成立,则实数k 的取值范围是( ) A. {4,0}- B. [4,0]- C. (,0]-∞ D. (,4][0,)-∞-+∞ 3. 已知数列{}n a 满足413n n n n a a a a ++++=+()n N *
∈,那么( ) A. {}n a 是等差数列 B. 21{}n a -是等差数列 C. 2{}n a 是等差数列 D. 3{}n a 是等差数列
二. 填空题(本大题共3题,每题3分,共9分)
4. 关于x 的实系数一元二次方程2
20x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平 面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 ;
5. 已知圆心为O ,半径为1的圆上有三点A 、B 、C ,若7580OA OB OC ++=,则
||BC = ;
6. 函数()f x 与()g x 的图像拼成如图所示的“Z ”字形 折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,
(1,1)C --,(0,1)D -五个点,若()f x 的图像关于
原点对称的图形即为()g x 的图像,则其中一个函数 的解析式可以为 ;
三. 解答题(本大题12分)
7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f x g x h x =⋅,则称()f x 是()g x 的“()h x 关联函数”
(1)已知()sin f x x =,()cos g x x =,是否存在定义域为R 的函数()h x ,使得()f x 是
()g x 的“()h x 关联函数”?若存在,写出()h x 的解析式;若不存在,说明理由;
(2)已知函数()f x 、()g x 的定义域为[1,)+∞,当[,1)x n n ∈+()n *
∈N 时,()f x =
12sin 1n x
n
--,若存在函数1()h x 及2()h x ,使得()f x 是()g x 的
“1()h x 关联函数”,且()g x 是()f x 的“2()h x 关联函数”,求方程()0g x =的解;
参考答案
一. 填空题
1. {3};
2. 1i -;
3. π;
4. 0.5;
5. 2
2
(2)(6)1x y -+-=; 6. 3; 7. [3,4]; 8. 2; 9. {2}; 10. 84; 11. 320; 12. 2
21y x =-;
二. 选择题
13. D ; 14. A ; 15. D ; 16. B ; 17. A ; 18. D ; 19. B ; 20. D ; 21. C ; 22. A ; 23. A ; 24. A ;
三. 解答题 25. 8;
26. 0a =,2x =,min ()4f x =; 27. 4.2BC ≈海里,南偏东46︒
;
28.(1) 3.6d =;(2)b ≥ 29.(1)4x <;(2)2514
k ≤; 附加题
1. C ;
2. B ;
3. D ;
4. ;
5.
6. ,10
()1,01x x f x x -<<⎧=⎨<<⎩
;
7.(1)不存在,定义域不为R ;(2)2
x π
=
;。