抗癌药物的新靶点-端粒及端粒酶抑制剂的研究进展

合集下载

端粒、端粒酶研究及应用进展

端粒、端粒酶研究及应用进展
正是本文研究和探讨的目的。本文作者希望通过本次研 究 ,能 够 让 我 国 的 学 者 和 研 究 者 对 国 际 上 端 粒 和 端 粒 酶 研 究 现 状 加 深 认 识 ,获 得 最 新 的 信 息 ,为 我 国 的 相 关 研 究 提 供一些帮助。
关键词:端 粒 ;端 粒 酶 ;研 究 现 状 ;未 来 展 望
疗和延缓衰老。
了 TC除A些B1以蛋外白Y具来有自以于前美未国知斯的坦功福大能学。这医些学新院的的发研现究对人于员以还后确的定
端 粒 酶 成 分 的 确 定 和 端 粒 酶 的 制 造 ,端 粒 酶 活 性 珠 激 活 和 抵 制 药
需要着重研究端粒与肿瘤的关系。了解是什么原因激活了癌细胞
的 端 粒 酶 ,导 致 了 在 正 常 人 体 细 胞 中 产 生 了 端 粒 酶 活 性衰 老 ,抗 癌 的 药 品 。 3.2端粒与肿瘤的关系
端 粒 酶 的 结 构 和 成 份 ,并 了 解 如 何 制 造 和 激 活 它 的 活 性 ,而这将
众 所 周 知 ,恶性肿瘤细胞中具有较高活性的端粒酶,它能维
有助于医学界制造出抑制和激活端粒酶的药物,帮助癌症患者治 持癌细胞端粒的长度,使其无限制扩增。因此下一阶段的研究还
典现卡:端罗粒斯酶卡逆大转学录等酶组T成ER的T国与际端科粒研长小度组及又功发能现有了关新,T成E果RT,在他癌们症发
发 展 中 具 有 关 键 作 用 ,这 一 研 究 虽 然 未 能 查 明 其 具 体 机 制 ,但是
经 过 这 一 步 的 发 现 ,该 研 究 结 果 有 望 成 为 抑 制 癌 细 胞 新 靶 点 。我
科技论文与案例交流
161
端 粒 、端粒酶研究及应用进展
韦伟 (西 华 师 范 大 学 西 南 野 生 动 植 物 资 源 保 护 教 育 部 重 点 实 验 室 西 华 师 范 大 学 生 命 科 学 学 院 四 川 南 充 637009)

端粒端粒酶研究及应用进展

端粒端粒酶研究及应用进展

端粒\端粒酶研究及应用进展作者:朱军丁建强冯云来源:《中国医药科学》2012年第07期[摘要] 端粒、端粒酶在维持生命遗传信息稳定、调控细胞生命周期中具有重要作用,端粒酶通过维持端粒的长度,使细胞永生化,为抗衰老提供了光明前景,同时也为肿瘤治疗提供了新的希望。

研究端粒、端粒酶在肿瘤监测中的作用及研发端粒酶抑制剂作为治疗肿瘤的创新药物已成为近年医学研究的热点。

本研究通过查阅相关文献,对端粒、端粒酶研究及应用进展做一综述。

[关键词] 端粒;端粒酶;肿瘤;衰老[中图分类号] Q75 [文献标识码] A [文章编号] 2095-0616(2012)07-59-03端粒及端粒酶的研究已成为近年医学领域研究的热点。

这不仅因为它们具有维持生物遗传信息稳定、调控细胞生命周期的重要功能,还由于端粒及端粒酶的行为异常与多种人类肿瘤及遗传性疾病密切相关。

在这些疾病中端粒可表现出缺失、融合及序列缩短等异常,而这些异常又可能受端粒酶的调控。

1 端粒、端粒酶的发现上世纪初,著名遗传学家McClintock B[1]与Muller HJ[2]发现:染色体的稳定性和完整性是由染色体的末端来维持的。

基于此发现,Muller HJ将其命名为“telomere”,此定义来源于希腊词根“末端”(telos)及“部分”(meros)的组合。

20世纪60年代,Hayflick研究发现:经过体外培养的正常人成纤细胞的复制过程并非细胞的死亡过程,而只是细胞群中的大部分细胞在经历了数次分裂增殖后停滞在了某个特定状态,仅仅是基因表达方式发生了某些改变,细胞群大部分细胞仍保持其代谢活性,由此,Hayflick在世界上首次提出了细胞衰老的表征:即细胞在一定条件下的“有限复制力”。

同时Hayflick还提出了一个大胆的猜测,即细胞内存在某种控制细胞分裂次数的控制器,类似于我们使用的“时钟”。

为验证自己的猜想,Hayflick做了大量的细胞核移植实验验证了自己的猜想,并发现这种“钟”位于细胞核染色体的末端,于是将其命名为端粒[3]。

端粒酶抑制剂

端粒酶抑制剂

端粒酶抑制剂在肿瘤治疗中的最新研究进展摘要:端粒酶是一种特殊的逆转录酶,能以自身的 RNA为模板,反转录成端粒的重复单元TT AGGG加到人染色体末端,阻止端粒随细胞分裂而缩短,使细胞绕过衰老途径成为永生化细胞,导致人类肿瘤的发生。

以端粒酶为靶点,可以有多种治疗途径,本文主要介绍了端粒酶抑制剂的研究现状及新进展,重点对新型G ‐四联体稳定剂类端粒酶抑制剂、逆转录酶抑制剂及其他新型端粒酶抑制剂的研究进展进行介绍。

关键词:端粒酶抑制,G‐四联体,逆转录酶抑制剂,肿瘤,研究进展The newest research progress of the telomerase inhibitorsin cancer therapyKeywords:telomerase inhibitors,G-quadrplex DNA,Reverse transcriptase inhibitors,Tumor,research progress引言:端粒酶作为一种负责延长端粒的核蛋白逆转录酶,对于细胞染色体的稳定性和细胞活性的维持有重要作用,端粒酶的活性在正常组织中被抑制,而在恶性肿瘤细胞中其阳性率可达 84% ~95%,人体绝大部分恶性肿瘤的发生发展过程与端粒酶活性有非常紧密的联系,针对这一现象,并结合端粒酶本身的特点,人们开发出端粒酶抑制剂,应用不同端粒酶抑制剂针对端粒酶的不同组分及作用途径进行破坏或阻断,从而抑制端粒酶活性最终限制肿瘤的生长及发展,这是近年来国内外学者积极探索的一个方向。

1端粒与端粒酶概述端粒是位于真核细胞染色体末端的一种特殊结构,由DNA片段和蛋白组成,其主要功能是维护染色体的完整性,端粒长度随着有丝分裂逐渐缩短,当缩短至不能维护染色体稳定时,则导致细胞凋亡。

人端粒是染色体末端的一段富含GC 的重复序列,其生物学功能主要有:①保护染色体末端完整性;②参与染色体的定位和复制,保证细胞的正常分化与繁殖;③与细胞凋亡和永生化关系密切[1],在细胞分裂过程中,染色体末端逐渐缩短(图 1、2),当端粒缩短至l隔界值(4kb)以下时细胞趋向凋亡。

端粒酶

端粒酶

端粒酶抑制剂用于肿瘤治疗的研究新进展近年来,肿瘤细胞永生化的“端粒—端粒酶学说”已为越来越多的研究结果所证实。

端粒酶是唯一的一种以自身RNA序列为模板将端粒重复序列复制添加到染色体3′末端的核蛋白酶。

许多研究结果表明:人类85%~90%的肿瘤细胞的端粒酶活性呈阳性,端粒酶的激活及端粒长度的稳定与肿瘤、衰老的发生和发展有密切关系,针对端粒酶基因的调控可以通过抑制端粒酶的活性来抑制肿瘤的生长并促进其凋亡,具有对肿瘤细胞特异性的作用,是肿瘤靶向治疗的一个新的研究方向。

本文中对端粒、端粒酶的结构和功能,端粒酶活性的调控,端粒酶与肿瘤和衰老的关系,端粒酶抑制剂的最新研究进展以及在肿瘤等疾病治疗中的应用前景进行综述和分析,为进一步开发天然来源的端粒酶抑制剂、研发肿瘤靶向治疗新药提供参考。

1.端粒与端粒酶1.1端粒端粒(T elomers)为真核细胞染色体末端的一种特殊结构,由端粒DNA和端粒蛋白质组成,其DNA 含有大量的TTAGGG n串联重复结构,其功能是完成染色体末端的复制,防止染色体融合、重组和降解,起着保护染色体末段的作用。

端粒是线性DNA,它的末端会随周期性的复制而逐渐缩短。

Muller1于1938年首次发现这一结构并将其命名为端粒(T elomers)。

由于末端复制问题,细胞每分裂1次,端粒就缩短50~100,当端粒缩短到临界长度时,细胞就会出现衰老以致死亡,因此在正常真核细胞中,端粒可被看成是“生命的时钟”或“有丝分裂的计数器”2。

1.2端粒酶端粒酶(T elomerase) 是一种由RNA和蛋白质组成的特异核糖核酸蛋白复合体,具有逆转录的酶活性,能以自身的RNA为模板5’-CUAACCCUAAC-3’通过逆转录合成端粒重复序列并连接到染色体末端以补偿细胞分裂时端粒的缩短,使细胞获得无限增殖能力3。

端粒酶的主要功能是:①通过自身的RNA 模板、催化亚单位和辅助蛋白将端粒DNA 添加到染色体的末端;②维持和平衡端粒序列长度;③修复断裂的染色体末端4。

端粒端粒酶研究进展

端粒端粒酶研究进展

端粒端粒酶研究进展端粒是染色体末端的一段DNA序列,它起到保护染色体稳定性和完整性的作用。

然而,由于染色体在每次细胞分裂时会缩短一段,当端粒长度过短时,染色体会发生异常,并最终导致细胞老化和死亡。

端粒酶则是一种重要的酶,它能够补充并保持端粒的长度稳定。

近年来,对于端粒和端粒酶的研究取得了许多重要的进展。

首先,科学家们对于端粒和端粒酶的结构和功能进行了深入的研究。

端粒由重复的TTAGGG序列组成,这些序列会通过端粒酶的作用被补充。

端粒酶主要由两个亚基组成:一个叫做端粒酶反转录酶TERT,另外一个则是端粒酶RNA(TERC)。

TERT具有酶的活性,而TERC则是TERT的模板,用于合成新的端粒DNA。

端粒酶通过不断循环地合成新的端粒DNA来补充端粒的长度,从而延长染色体的寿命。

其次,研究表明端粒和端粒酶在癌症中具有重要的作用。

在正常细胞中,端粒的长度会随着细胞的分裂而缩短,从而限制了细胞的生命周期。

然而,在肿瘤细胞中,端粒酶的活性会显著增加,导致细胞端粒的长度不断维持,并且细胞可以无限制地分裂。

这种增强的端粒酶活性对于肿瘤细胞的免疫逃逸、增殖和转移等方面起着重要的作用。

因此,端粒酶已成为癌症治疗的一个重要靶点,研究人员已经开始开发端粒酶抑制剂,以抑制肿瘤的生长和扩散。

此外,最近的研究发现,端粒和端粒酶在衰老过程中也发挥了重要的作用。

随着年龄的增长,端粒长度会逐渐缩短,从而引发细胞衰老和组织功能下降。

研究人员尝试通过增强端粒酶的活性来抑制细胞衰老,以延长寿命和改善老年病的发生率。

实验证据显示,通过增加端粒酶的表达或给予端粒酶活性的药物可以有效地抑制细胞衰老。

这些发现为老年病的治疗和延长寿命提供了新的研究方向。

总之,端粒和端粒酶在细胞衰老、癌症等疾病方面的研究进展迅速。

研究人员们对于端粒和端粒酶的结构和功能有了更深入的了解,并且逐渐揭示了它们在疾病中的重要作用。

未来的研究将继续深入探究端粒和端粒酶的调控机制,并开发出更具针对性的治疗手段,为人类健康的维护做出更大的贡献。

抗肿瘤药物几个新靶点的研究进展

抗肿瘤药物几个新靶点的研究进展

抗肿瘤药物几个新靶点的研究进展目的探讨抗肿瘤药物几个新靶点的研究进展。

方法分别对端粒酶、DNA 甲基转移酶、缺氧诱导因子以及基质金属蛋白酶进行分析。

结果通过这四个靶点的研究发现,多靶点药物的研究尤其适用于肿瘤治疗,能确保药物抗肿瘤作用的有效性和持久性。

结论在抗肿瘤药物的研究中应当加速靶向药物的发展,为肿瘤的治疗提供新的途径,开发出效果更好的抗肿瘤新药,使人类征服癌症不再遥不可及,不再是天方夜谭。

标签:癌症;新靶点;端粒酶;甲基转移酶;缺氧诱导因子;基质金属蛋白酶;多靶点药物肿瘤细胞的生长和分裂速度高于正常细胞,且往往可转移到其他组织。

据WHO的统计数字,2007年全球新确诊的肿瘤患者多达1200万人,而过去几年来全球每年死于癌症的患者高达700万人以上。

这一数字已与死于急性心血管病的人数非常接近。

超过70%的癌症死亡发生在低收入和中等收入国家,预计到2080年将有1200万人死于癌症。

中国卫生部的统计资料显示:目前中国每年新生肿瘤患者总数约2127万人左右,其中,恶性肿瘤现有患者约148.5万左右[1]。

目前,由于对肿瘤特性及化疗药相互作用的了解,化疗已变成标准疗法,单用或者与其他方法联用,但是化疗药物在杀伤肿瘤细胞的同时,也会损害正常细胞和免疫细胞。

因此,患者治疗中普遍会有恶心、呕吐、脱发、中性粒细胞减少等副作用。

至今为止,几乎对癌症的治疗几乎没有很好的方法,所以加快研发抗肿瘤效果更好的新药也是刻不容缓。

这些年来,抗肿瘤药物关注的靶标大多集中于把肿瘤细胞杀死,但部分未杀死的细胞和几乎难以杀死的肿瘤”干细胞”(或者称为肿瘤起始细胞)仍旧存活,这些细胞会在传统治疗后,再次转变为肿瘤导致抗肿瘤化疗药物,对化疗产生耐药性、复发和转移。

如何将这部分癌细胞杀死是治疗癌症的一大难关。

近年来,人们对于根据肿瘤的特异性靶点而研发的抗肿瘤药物已逐渐普遍关注,因为这类药选择性高、毒性低。

本文就端粒酶、甲基转移酶及缺氧诱导因子、基质金属蛋白酶等几个抗肿瘤新靶点和目前研究较多的多靶点抗肿瘤药物做一简述。

端粒酶作为肿瘤标志物的研究进展

端粒酶作为肿瘤标志物的研究进展
端粒酶的作用机制
端粒酶通过延长端粒序列来增加染色体稳定性,从而维持细胞寿命。在正常细胞中,随着细胞分裂次数的增加 ,端粒序列逐渐缩短,当端粒缩短至一定程度时,细胞进入复制停滞期或凋亡。而在肿瘤细胞中,端粒酶的表 达水平较高,能够维持端粒序列的长度,使肿瘤细胞逃避正常的细胞衰老和死亡过程。
端粒酶与肿瘤的关系
端粒酶活性可以预测肿瘤的预后,为患者和医生提供参 考。
04
端粒酶作为肿瘤标志物的 前景和挑战
提高检测灵敏度和特异性
总结词
提高端粒酶作为肿瘤标志物的检测灵敏度和特异性是 关键的挑战之一。这需要深入研究端粒酶的生物学机 制和肿瘤细胞中端粒酶的表达调控机制,以发现更特 异和敏感的检测方法。
详细描述
目前,已经有一些基于端粒酶的肿瘤标志物检测方法 ,如端粒酶活性检测、端粒酶RNA检测等。但是,这 些方法的灵敏度和特异性还需要进一步提高。例如, 一些非肿瘤疾病或良性疾病中也可能出现端粒酶活性 升高的情况,这会给诊断带来一定的干扰。因此,开 发出更特异和敏感的检测方法是非常重要的。
感谢您的观看
THANKS
《端粒酶作为肿瘤标志物的 研究进展》
2023-10-29
目 录
• 端粒酶概述 • 端粒酶的检测方法 • 端粒酶作为肿瘤标志物的应用 • 端粒酶作为肿瘤标志物的前景和挑战
01
端粒酶概述
端粒酶的生物学作用
端粒酶的组成
端粒酶是由RNA和蛋白质组成的复合体,其中RNA为模板,提供端粒重复序列,蛋白质为催化酶,促进端粒 DNA合成。
端粒酶研究的历史与现状
端粒酶的发现
20世纪80年代,科学家们发现了端粒酶,并认识到其在维持染色体稳定性和细胞寿命中的重要作用。
端粒酶作为肿瘤标志物的研究

端粒及端粒酶的研究进展

端粒及端粒酶的研究进展

生物化学与生物物理进展PROGRESS IN BIOCHEMISTRY ANDBIOPHYSICS1999年 第26卷 第5期 Vol.26 No.5 1999端粒及端粒酶的研究进展任建国 周军 戴尧仁摘要 端粒是染色体末端独特的蛋白质-DNA结构,在保护染色体的完整性和维持细胞的复制能力方面起着重要的作用.端粒酶则是由RNA和蛋白质亚基组成的、能够延长端粒的一种特殊反转录酶.端粒长度和端粒酶活性的变化与细胞衰老和癌变密切相关.端粒结合蛋白可能通过调节端粒酶的活性来调节端粒长度,进而控制细胞的衰老、永生化和癌变.研制端粒酶的专一性抑制剂在肿瘤治疗方面有着广阔的前景.关键词 端粒,端粒酶,衰老,永生化,癌变学科分类号 Q50Progress in the Studies of Telomere and Telomerase.REN Jian-Guo, ZHOU Jun, DAI Yao-Ren(Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084,China).Abstract Telomeres are unique DNA-protein complexes at the terminals of chromosomes that play a critical role in protecting chromosomal integrity and in maintaining cellular replicative potential. Telomerase is a specialized reverse transcriptase, composed of both RNA and protein subunits, that elongates telomeric repeats. The changes in telomere length and telomerase activity are closely linked to cell aging and carcinogenesis. Telomere binding-protein may regulate telomere length by regulating telomerase activity, and then control cell aging, immortalization and carcinogenesis.The development of specific telomerase inhibitors will have broad prospect in the aspect of tumor therapy.Key words telomere, telomerase, aging, immortalization,carcinogenesis 近年来,有关端粒及端粒酶的研究异常活跃,许多新的结构和功能的发现使之成为生物学和医学关注的热点.本文拟对端粒及端粒酶的最新进展予以阐述.1 端粒(telomere) 端粒是真核细胞内染色体末端的蛋白质-DNA结构,其功能是完成染色体末端的复制,防止染色体免遭融合、重组和降解[1~3].从单细胞的有机体到高等的动植物,端粒的结构和功能都很保守.1.1 端粒DNA 大多数有机体的端粒DNA由非常短而且数目精确的串联重复DNA排列而成,富含鸟嘌呤.个别种类的端粒DNA重复单元很长.此外,果蝇的端粒结构非常新颖,重复序列是一个可互换的因子.端粒的DNA序列多种多样,其功能不需要独特的序列来维持.尽管在许多物种中端粒DNA有相当大的变化,但仍可在进化关系非常远的生物中发现相同的端粒序列,如所有的脊椎动物、原生动物锥虫及几种粘菌和真菌都有相同的端粒序列T2AG3.其他情况下,尽管不同的有机体有不同的端粒序列,但彼此总有明显的相关性. 端粒DNA的平均长度因物种而异.在人中大约15 kb,在大鼠中可长达150 kb,在小鼠中一般在5~80 kb之间变化,而在尖毛虫中却只有20 bp.在所有的有机体中,端粒DNA的长度总是波动变化的.酵母的端粒DNA在200到400 bp间随遗传或营养状态的改变而改变.四膜虫和锥虫等有机体的端粒长度在对数期会持续增加.相反,在人体中,随着细胞的持续分裂,端粒会缓慢缩短.1.2 端粒结合蛋白 目前对端粒结合蛋白还了解甚少.在酵母中,端粒的主要结合蛋白是Rap1p,在体外以很高的亲和性与端粒上的许多识别位点相结合.研究表明,Rap1p与端粒长度的调节有关,Marcand等[4]认为Rap1p能够阻止端粒酶接近端粒从而负调节端粒的长度.相反,Ray等[5]的研究结果表明Rap1p可以在端粒周围通过聚集端粒酶或提高端粒酶活性而延长端粒.编码尖毛虫端粒小体蛋白的基因和RAP1的基因没有相似的序列. 该蛋白的结合需要单链的T4G4T4G4尾.同Rap1p不同的是,此蛋白仅限于同染色体的末端相结合,故称之为末端专一性DNA结合蛋白.此外,在爪蟾提取物中也检测到末端专一性结合活性.因此末端限制性结合蛋白可能是端粒染色质的一个普通特性. 在人中已经鉴定出两个端粒重复序列结合蛋白(telomeric repeat-binding factor,TRF).TRF1是一个60 ku的同源二聚体双链TTAGGG重复序列结合蛋白,包含一个Myb型的C端螺旋-转折-螺旋区和一个DNA结合折叠的同源区,N端是酸性疏水区[6].另一个端粒结合蛋白是TRF2,它与TRF1很相似,所不同的是其N端碱性很强[7].两种蛋白在体外都专一性地与双链TTAGGG重复序列结合,在体内则位于端粒.人的hTRF与Rap1p 没有同源性.长期过表达TRF1将导致端粒逐渐地和过程性地变短.该过程可能通过抑制端粒酶活性而实现.TRF2则可以防止染色体末端相互融合[2].最近,Kim等[8]在水稻中也鉴定出三个TTAGGG专一性结合蛋白复合物.这些复合物对双链DNA及富含胞嘧啶的单链序列无亲和性.其功能目前仍不清楚.2 端粒酶(telomerase) 端粒酶是一种自身携带模板的反转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒寡核苷酸片段.其活性取决于它的RNA和蛋白质亚基[9].Prescott等发现酵母的端粒酶至少包含两个功能性相互作用的RNA分子,两者都可充当DNA聚合作用的模板,端粒酶至少包含两个活性位点.端粒酶除了具有反转录活性外,还具有核酸内切酶的活性[10].小腔游仆虫中有活性的端粒酶复合物的分子质量大约是230 ku,含有一个约66 ku的RNA亚基及两个123 ku和43 ku的蛋白质亚基,大亚基专一性地和端粒DNA底物结合.端粒酶的主要功能是维持染色体末端的端粒序列,从而抵消因细胞分裂而导致的端粒DNA的消耗.最近发现,端粒酶另外一个重要的功能就是合成串联重复的TTAGGG序列,为TRF2提供结合位点,防止染色体的末端融合[2]. 端粒酶的RNA亚基是合成端粒DNA的模板,对于端粒酶的结构和催化活性都十分重要.四膜虫端粒酶RNA有159个核苷酸,模板区为5′-CAACCCCAA-3′.人端粒酶RNA有455个核苷酸,模板区为5′-CUAACCCUAAC-3′.不同种类的纤毛虫,其端粒酶RNA长度在148~209之间变化,其中9~15个核苷酸具有种的专一性,与特定种类的端粒DNA序列互补.端粒酶RNA重要序列缺乏保守性,但都有保守的二级结构.这对于保持端粒酶的活性极为重要.端粒酶RNA的基因已经在纤毛虫、酵母、小鼠、人等生物中得到了克隆.将突变的RNA基因导入细胞后发现这些改变的序列在端粒DNA中出现,表明端粒酶的RNA决定了端粒DNA的序列.在酵母或乳酸菌中,缺失单拷贝的端粒酶RNA 基因会导致端粒缩短和细胞死亡.这些证据表明模板RNA对端粒酶的活性至关重要. Romero等和McCormick-Graham等推导出一个端粒酶RNA的二级结构模型:从5′到3′方向包含四个保守的双螺旋,双螺旋Ⅰ是最保守的区域,双螺旋Ⅱ、 Ⅲ、Ⅳ是茎环结构,这些保守的茎环通常是蛋白质结合区域.在双螺旋Ⅱ与Ⅲ之间存在模板序列,其上游的保守序列5′-(CU)GUCA-3′限制了模板区的5′边界.在双螺旋Ⅳ中有一个结构上保守的GA结,有助于蛋白质的识别与结合.最近研究表明,模板区的位置因物种而异.Autexier等[11]为了阐明端粒酶中RNA亚基的功能,将一系列缺失或替换一定数量碱基的RNA与野生型端粒酶蛋白质亚基进行酶的重构,研究了RNA特殊二级结构区域对端粒酶活性的影响. 当5′端和茎环Ⅰ、Ⅱ和Ⅳ中的残基缺失或替换时,端粒酶的活性降至野生型的15%~35%.表明这些结构对端粒酶的活性很重要.缺失5′端大于11以上的残基时酶活性完全丧失.说明一些重要的序列或结构上的相互作用都发生在这一区域.有趣的是,影响端粒酶RNA潜在假结的突变、缺失整个茎环Ⅲ和替换茎环Ⅳ中的GA 结,并不明显影响酶的活性. 端粒酶的蛋白质成分不如RNA亚基研究得那样清楚.在过去几年里,端粒酶的催化亚基已经在酵母[12,13]、原生动物[12]和人[14]中分离出来.该蛋白质亚基的功能区与已知的反转录酶(reverse transcriptase, RT)在序列和功能上有明显的相似性,故称为端粒酶反转录酶(telomerase reverse transcriptase, TRT).酵母的Est1p是一个77 ku的多肽,专一性地与RNA亚基结合.缺失该基因,细胞会产生如同缺失端粒酶RNA亚基一样的表型. Weinrich等发现在端粒酶特殊的保守区和RT组分中,单个氨基酸的改变会降低或消除端粒酶的活性,直接证明hTRT是端粒酶的催化蛋白组分.在四膜虫中,发现两个端粒酶相关的蛋白质p80和p95.p80专一性地和端粒酶RNA结合,而p95则可和G链引物交联.在人和啮齿类动物中,已发现p80的同源物[15].从小腔游仆虫中纯化的端粒酶中发现另外两个蛋白质p123和p43,这两个蛋白质似乎与p80和p95没有相关性[12].p123包含有RT组分,是酵母Est2p的同源物[12].Est2p的RT组分对于体内、体外端粒DNA的合成是必需的.Est2p/p123在真核生物中很保守,在反转录酶的进化树上代表一个很早的分支[13].目前,仍然不清楚的是生物界里是否存在两类端粒酶,一类依赖于p80和p95;另一类依赖于p123/Est2p. 端粒酶的特殊性使端粒酶活性的测定在研究中显得尤为重要.早期的测定方法是通过测定细胞提取物将端粒重复片段加到一个合成的寡聚脱氧核苷酸引物3′端的能力进行的.但由于哺乳动物细胞端粒酶含量低,又有干扰现象,故难度较大.Kim等[16]建立了灵敏、快速、高效的端粒重复序列扩增法(TRAP),以后又在引物方面作了改进.此后人们又相继建立了荧光法、原位端粒重复片段扩增法及TRAP与闪烁技术联用的SPA法等敏感的检测手段,在医疗检测中得到了迅速的应用.3 端粒及端粒酶与衰老和癌变的关系3.1 端粒及端粒酶与衰老的关系 越来越多的证据表明端粒长度控制着衰老进程,端粒缩短是触发衰老的分子钟. 在大多数正常的人体细胞中并不能检测到端粒酶的活性,端粒随细胞分裂每次丢失50~200个碱基.Cooke等认为,这是由于正常的人体细胞中端粒酶未被活化,导致了端粒DNA缩短的缘故.保护性端粒酶的减少可能最终制约了细胞的增殖能力.当几千个碱基的端粒DNA丢失后,细胞就停止分裂而衰老.端粒及端粒酶涉及衰老最有力的证据是Bodnar等的工作.Bodnar等[17]将人的端粒酶基因导入正常的细胞中,使得端粒酶异常表达.活化的端粒酶导致端粒序列异常延长,细胞旺盛增殖,细胞寿命大大延长.这一结果首次为端粒钟学说提供了直接的证据.3.2 端粒酶活化与肿瘤 在正常的人体细胞中,端粒程序性地缩短限制了转化细胞的生长能力,这很可能是肿瘤形成的一个抑制机制.端粒酶的重新表达在细胞永生化及癌变过程中起着重要的作用.有人甚至认为表达端粒酶的正常细胞更易癌变.人们在代表不同肿瘤类型的大约1 000多个活检样品中发现大约85%的样品呈端粒酶阳性反应.相反,90%以上的邻近正常组织却是端粒酶阴性.从而将这个酶与永生化和肿瘤的形成密切联系在一起!端粒酶活性与肿瘤的这种特殊关系使之在诊断与治疗方面具有重要的应用价值[18,19].对端粒酶活性的抑制可能对某些类型的肿瘤来说是一个很有意义的治疗方法[20].3.3 衰老和肿瘤发生的分子机制 细胞衰老和癌变与端粒及端粒酶的关系可以表述如下:端粒的数量控制着细胞的增殖能力,是细胞内的分裂钟.端粒酶在生殖细胞系中维持端粒的长度,随着细胞的发育端粒酶活性受到抑制,端粒持续变短.当正常人体细胞的端粒缩短至一定程度时,启动阻止细胞分裂的信号,细胞开始衰老死亡,此即所谓的Hayflick界限(M1期).另外一些细胞由于癌基因、抑癌基因等的突变逃逸M1期,获得一定的额外增殖能力,进入第二死亡期(M2).此时端粒酶仍为阴性,端粒进一步缩短.大部分细胞达到极限而死亡,生存下来的细胞具有无限增殖的能力,端粒酶重新活化,成为永生细胞.在肿瘤形成过程中,端粒的延长是一个重要的甚至是一个必要的步骤! 既然端粒异常缩短后会触发细胞衰老和癌变,那么细胞一定有某种方式监测端粒的长度变化并用这些信息来调节端粒酶的活性,从而将这些重复序列加到染色体的末端.研究酿酒酵母时,发现端粒重复序列结合蛋白Rap1p负调节端粒的延长.最近van Steensel等[21]与Cooper等[22]分别在酵母和人中发现一个新的端粒重复序列结合蛋白,同样阻止端粒的延长.Cooper等[22]在粟酒裂殖酵母中克隆了Taz1p的基因,此蛋白质与端粒DNA的双链结合.值得注意的是,尽管粟酒裂殖酵母,酿酒酵母和人的端粒重复序列不同,Taz1p、Rap1p和TRF1这三个端粒序列结合蛋白却有相似的DNA结合区(类Myb型).在这个结合区以外,Taz1p与TRF1几乎没有同源性,与Rap1p就根本没有同源性.然而,taz1+基因的突变与Rap1p碳末端平头突变却有相似的表型,即端粒片段大大延长.这些新的工作表明端粒长度的调节机制是高度保守的. 细胞究竟是怎样调节端粒的长度的呢?van Steensel等[21]首次报道了人端粒结合蛋白(TRF1)的功能性研究,并提出端粒长度的调节机制.在端粒酶阳性的肿瘤细胞系HI1080中,长期过表达TRF1导致端粒逐渐的和持续性的缩短.相反,当TRF1负显性突变后,失去与端粒DNA结合的功能,最终诱导了端粒的延长.证明TRF1是端粒延长的一个抑制因子,负反馈调节端粒的长度.由于在可检测的水平上并不影响端粒酶的表达,因此,van Steensel等认为TRF1与端粒DNA结合后,顺式抑制端粒酶的活性,从而控制端粒的长度.根据这些结果,他们提出一个简单的端粒长度调节模型:与端粒重复片段结合的TRF1的数量可以调节端粒酶.野生型蛋白的加入,增加了端粒上TRF1的数量,从而为端粒酶提供了一个负信号.然而,通过负显性突变使TRF1功能缺失,却导致端粒酶的活化和端粒的延长.总之,这些研究表明,端粒重复序列的双链结合蛋白负调节端粒的延长.Shore[23]指出:细胞内可能存在一个感受染色体末端重复序列结合蛋白数量的机制,当这个数量超过一定的界限后,就产生一个信号阻止由端粒酶引起的端粒延长,或者,此信号可以活化缩短端粒重复片段的核苷降解或重组的过程.去除重复片段结合位点的不完全复制或降解事件,将消除对端粒酶的抑制.目前,人们还不清楚上述信号是如何产生与传导的.Ku等发现一些细胞周期抑制剂、DNA损伤因子、TopⅡ抑制剂均不能抑制端粒酶的活性,相反,一些蛋白激酶C(protein kinase C, PKC)的抑制剂却能大大地降低端粒酶的活性.究其原因一方面可能因为PKC的失活使得活化端粒酶表达的效应分子不能活化,另一方面PKC可能在体内直接调节端粒酶的活性.c-myc是细胞增殖与凋亡的一个中心调节子,c-myc的表达严格依赖于分裂信号,被生长抑制信号或分化信号所抑制.Fujimoto等发现抑制c-myc的表达能够抑制端粒酶的活性,表明原癌基因c-myc对于端粒酶的调节是必需的.Mandal等发现在HeLa细胞中过表达Bcl-2导致端粒酶的活性增加5~10倍.Maxwell等的结果却表明端粒酶的活性不受P53的过量表达及凋亡的影响.这些证据表明端粒酶活性的调节是一个复杂的过程,它与细胞内一系列信号识别与传导有关系,其详细的调节机制还有待进一步的研究.3.4 端粒假说遇到的挑战 最近的研究表明,端粒酶的活化并非肿瘤细胞中的独特现象,许多正常增殖的细胞中也观察到了端粒酶的活化.Starling等、Kipling等及Broccoli等在小鼠中的研究结果表明,端粒缩短同衰老和肿瘤间并没有密切的联系.在正常人的口腔角化细胞的衰老过程中,也未观察到端粒的缩短.Blasco等[1]通过基因敲除使小鼠中的端粒酶RNA基因缺失,导致端粒酶的活性丧失.发现在快速增殖的器官中,细胞由于缺乏端粒酶而凋亡[3].但丧失端粒酶活性的细胞在培养中能够永生化、被病毒癌基因转化及在裸鼠中形成肿瘤.在某些肿瘤去分化的过程中端粒酶活性也未受到抑制.研究小鼠皮肤乳头状瘤的结果表明,端粒酶的活性与增殖率没有密切联系.总之,澄清这些例外的事实需要更加深入细致的研究,以期找到一个合理的解释. 总之,端粒和端粒酶在衰老和癌变中的作用使得人们对研究前景充满信心.对端粒和端粒酶深入细致的研究将有助于清楚地阐明衰老和肿瘤的机理,为在实践中抗衰老和治疗肿瘤提供新的理论基础.目前关于端粒及端粒酶的研究主要集中在以下几个方面:a.端粒酶的结构和功能.b.端粒酶的纯化和激活机制.c.寻找端粒酶的专一性抑制剂及其在抗癌中的应用.d.端粒的高级结构及结合蛋白的作用机理.这几个方面仍需进一步的探索.衰老和癌变无疑都是多因素作用的结果,但端粒和端粒酶很可能在其中扮演重要的角色.作者单位:清华大学生物科学与技术系,北京 100084参考文献1 Blasco M A, Lee H W, Hande M P, et al. Telomere shortening and tumor-formation by mouse cells lacking telomerase RNA. Cell, 1997, 91(1):25~342 van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell, 1998, 92(3):401~4133 Lee H W, Blasco M A, Gottlieb G J, et al. Essential role of mouse telomerase in highly proliferative organs. Nature, 1998, 392(6676):569~5744 Marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science, 1997, 275(5302): 986~9905 Ray A, Runge K W. The C-terminus of the major yeast telomere binding-protein Rap1p enhances telomere formation. Mol Cell Biol, 1998, 18(3):1284~12956 Bianchi A, Smith S, Chong L, et al. TRF1 is a dimer and bends telomeric DNA. EMBOJ,1997, 16(7):1785~17947 Bilaud T, Brun C, Ancelin K, et al. Telomeric localization of TRF2, a novel human telobox protein. Nature Genet, 1997, 17(2):236~2398 Kim J H, Kim W T, Chung I K. Rice proteins that bind single-stranded G-rich telomere DNA. Plant Mol Biol, 1998, 36(5):661~6729 Nakamura T M, Cech T R. Reversing time:origin of telomerase. Cell, 1998, 92(5):587~590 10 Greene E C, Bednenko J, Shippen D E. Flexible positioning of the telomerase-associated nuclease leads to preferential elimination of nontelomeric DNA. Mol Cell Biol, 1998, 18(3):1544~155211 Autexier C, Greider C W. Mutational analysis of tetrahymena telomerase RNA: identification of residues affection telomerase activity in vitro. Nucl Acids Res, 1998, 26(3):787~79512 Lingner J, Hughes T R, Shevchenko A, et al. Reverse-transcriptase motifs in the catalytic subunit of telomerase. Science, 1997, 276(5312):561~56713 Nakamura T M, Morin G B, Chapman K B, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277(5328):955~95914 Meyerson M, Counter C M, Eaton E N, et al. Hest2, the putative human telomerase catalytic subunit gene, Is Up-regulated in tumor-cells and during immortalization. Cell, 1997, 90 (4):785~79515 Harrington L, Mcphail T, Mar V, et al. A Mammalian telomerase-associated protein. Science, 1997,275(5302): 973~97716 Kim N W, Piatyszek M A, Prowse R K, et al. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193):2011~201517 Bodnar A G, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science, 1998, 279(5349):349~35218 Hoos A, Hepp H H, Kaul S, et al. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast-cancer. Int J Cancer, 1998, 79(1):8~1219 Kyo S, Takaura M, Tanaka M, et al. Telomerase activity in cervical cancer is quantitatively distinct from that in its precursor lesions. Int J Cancer, 1998,79(1):66~7020 Hoos A, Hepp H H, Kaul S, et al. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer, 1998, 79(1):8~1221 Vansteensel B, Delange T. Control of telomere length by the human telomeric protein Trf1. Nature, 1997, 385(6618):740~74322 Cooper J P, Nimmo E R, Allshire R C, et al. Regulation of telomere length and function by aMyb-domain protein in fission yeast. Nature, 1997, 385(6618): 744~74723 Shore D. Telomeres-different means to common ends. Nature, 1997, 385(6618): 676~677收稿日期: 1998-07-07, 修回日期: 1998-09-25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档