滑移线理论及应用
7滑移线法全解

18.2 滑移线法slip field theory内容:滑移线法原理及应用。
重点:滑移线场slip field 的合理建立。
滑移线: 塑性变形物体内各质点的最大切应力迹线特点: 滑移线(成对出现,相互正交)→滑移线场适用范围:理想刚塑性材料的平面变形问题再适当推广满足条件:静力学+运动学(速度场条件)18.2.1 基本概念18.2.1.1 平面变形的应力⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒=+3212000000031σσεσσ231σσσ+=m塑变屈服时()K =-=3121max σστ莫尔圆为:⎪⎩⎪⎨⎧±=+=-=ωτωσσωσσ2cos 2sin 2sin k k k xym y m x ⎪⎩⎪⎨⎧-==+==k k m mm σσσσσσω32145时18.2.2 最大切应力迹线——滑移线变形平面xoy ,取点P 1及邻近点P 2,P 3,……P 61τ为P 1点最大切应力方向2τ为P 2点的(1τ为P 1P 2折线)当P 1P 2无限邻近时,曲线变为光滑曲线即滑移线。
α族,β族18.2.2.1 ωβα及.1)逆时针方向线组成顺时针方向族线西侧的最大切应力,.βα 图7-32)角方向成线为线4531σσβα3)()同坐标轴逆时针正轴正向为起始顺时针负角以,ox ω18.2.2.2 滑移线方程()()⎪⎩⎪⎨⎧-=+==族βωωωπctg tg tg dxdy dx dy 2Hencky 方程:ωσ~m平面应变应力平衡微分方程为:⎪⎩⎪⎨⎧=+=+∂∂∂∂∂∂∂∂00yxy x y y x x y xσττσ将屈服准则式代入有()⎪⎪⎩⎪⎪⎨⎧=--∂∂=+-∂∂∂∂∂∂∂∂∂∂02cos 2sin 20)2sin 2(cos 2yx m y x m k y k x ωωωωωωσωωσ 未知数:m σ,ω,但难求。
变换坐标系:取滑移线本身作坐标轴轴轴βα,注意:此坐标系具有当沿α线运动时β值不变,即坐标系轴是弯曲的!在α点无限近处有:0=ω αds dx = βds dy =αs x ∂∂=∂∂βs y ∂∂=∂∂0≠∂∂αωs 0≠∂∂βωs 因此变为:()线线βωσαωσββαα02)(02=∂∂+∂∂=∂∂-∂∂s k s s k s m m积分后得:()()⎩⎨⎧=+=-线线βηωσαξωσk k m m 22此式即汉基应力方程(Hencky )18.2.3 滑移线特性18.2.3.1 沿线特性沿α线:ωσ∆=∆k m 2 沿β线:ωσ∆-=∆k m 2证:设一条α线上有a 、b 两点ξωσξωσ=-=-b mb a ma k k 22 ()02=---∴b a mb ma k ωωσσωσ∆=∆∴k m 218.2.3.2 跨线特性()()⎩⎨⎧∆=∆∆=∆C B m D A m BC AD ,σσωω, 证明:先沿α线,A →B 有B B m A mA k K ωωσσ22-=-沿β线B →C 有:c mc B mB k k ωωσσ22+=+ ()c A B mA mc k ωωωσσ--=-∴22(a ) 再沿A →D (β1线)D mD A mA k k ωσσω22+=+D →C (沿线2α)c mc D mD k k ωωσσ22-=-()D C A mA mc k ωωωσσ22-+=-∴(b ) 由于a,b 式相等D B B A ωωωω+=+∴或:B c A D ωωωω-=-⎪⎭⎪⎬⎫-=-∆=∆mB mC mA mD BC AD σσσσωω:同理可证即上式即汉基第一定理即在滑移线网格中,若已知三个结点的m σ、ω值则第四个结点m σ、ω值可以求出。
滑移线理论及应用

证明:设α、β线上任一点的曲率半径分别为R α 、R β ,由 曲率半径的定义知:
1/ R / S 和 1/ R / S ΔSβ沿弧S α的变化率为:
d (S ) dS
d (R ) dS
R S
R
S
根据汉盖第一定理有,
d (S dS
)
R S
当曲线四边形单元趋近无限小时
tg
Am AB
沿β2线从点B→点C
pB 2kB pc 2kc
于是,得沿路径A→B→C和静水压力差
同理
PC PA 2k(A C 2B )
PC PA 2k(2D A C ) 由上两式可得
C B D A
同理
pC pB pD pA
二、汉盖第二定理
一动点沿某族任意一条滑移线移动时,过该动点起、始 位置的另一族两条滑移线的曲率变化量(如dRβ)等于该点 所移动的路程(如dSα)。 1
线的方向。
二、滑移线场绘制的数值计算方法
滑移线数值计算方法的实质是:利用差分方程近似代 替滑移线的微分方程,计算出各结点的坐标位置,建立滑 移线场,然后利用汉盖应力方程计算各结点的平均应力p 和角。
根据滑移线场块的邻接情况,滑移线场的边值有三类。
1)特征线问题 这是给定两条相交的滑移线为初始线,求作整个滑移线
滑移线的曲率变化量(如dRβ )等于该点所移动的路程(如dSα); • 同族滑移线必然有个相同的曲率方向。
§8.5 应力边界条件和滑移线场的绘制
一、应力边界条件
1)自由表面 塑性加工时塑性区可能扩展到自由表面,如平冲头压入半无限体工件(见
图 8-10a)。因为自由表面(设为 x 轴)上的法向应力( n y 0 )和切 应力( k 0 )。根据式(8-3),可知滑移线性边界点上的k 角和静水压力别
第4章 滑移线场理论

点起、始位置的另一族两条滑移线的曲率变化量 (如dRβ)等于该点所移动的路程(如dSα)。
11
4.3 塑性区应力边界条件:
自由表面
Principle of Metal Forming
12ቤተ መጻሕፍቲ ባይዱ
接触表面之:
摩擦切应力为零
摩擦切应力为某中间值
Principle of Metal Forming
13
摩擦切应力为最大值
7
由称Saint-Venant塑性流动方程
Principle of Metal Forming
8
4.2 滑移线的性质
4.2.1 H.Hencky方程 也称沿线特性,描述滑移线上各点的平均应力变化规律。
Principle of Metal Forming
由上式知,任一族中任一条滑移线上 两点的平均应力符合下列关系式:
一条滑移线(如β1或β2 )相交两点的倾角差和静水压力变化量均保
Principle of Metal Forming
持不变。
若单元三个节点角ω、σm知,则第四点知。 推论: 异族截区内,一直皆直。
10
4.2.3 H.Hencky第二定理
一动点沿某族任意一条滑移线移动时,过该动
Principle of Metal Forming
Principle of Metal Forming
14
4.2 常见的滑移线场类型
正交直线 1 ) 直 线 型
Principle of Metal Forming
2 ) 简 单 型
奇点
有心扇形:直线+圆弧 无心扇形:包络+渐开
15
3 ) 直 简 组 合 型
Principle of Metal Forming
7-2 滑移线速度场理论及应用

ω+dω
P2
vα ω
x
滑移线上邻近两点的速率分解
金属塑性成形原理
盖林格尔速度方程:
dv v d 0 (沿α线) dv vd 0 (沿β线)
(7-12)
此方程式给出了沿滑移线上速度分量的变化特性,它可确定塑性变形 区内的速度分布。
若 α 滑移线为直线,则
d 0, v 常数
直线滑移线场,
v 常数,v 常数
金属塑性成形原理
对于由两族 α与β 连续正交的曲线网络所 构成的滑移线场,则在速度平面上相应有一 由两族连续正交的速度矢端曲线网络所构成 的速度矢端图(速端图),即为速度场。
滑移线和速度矢端曲线之间的关系
金属塑性成形原理
2.几种速度间断线的速端图
(1)滑移线ab为速度间断直线 其一侧为刚性区(“-”) ,另一侧为塑性区(”+‘)。由于ab两侧分别具有同一
(7-10)
金属塑性成形原理
过P点取滑移线为坐标系,以滑移线α、β的切线代替x、y轴,则有:
x , y
x ,y
由于σα,σβ 是最大切应力所在平面上的正应力
m
代入(7-10)得:
0, 0
(7-11a)
d
dt
0 d
0
d
dt
0 d
0
(7-11b)
取滑移线为坐标系
速度,故在速度平面的速度矢端曲线分别归缩为一个点,其速端图如图所示。
a)速度间断直线
b)速端图
图7-22 速度间断直线及其速端图
金属塑性成形原理
(2)滑移线ab为速度间断曲线,两侧分别为刚性区与塑性区 刚性区一侧在速度平面上的速度矢端曲线归缩为一点,而塑性区一侧
滑移线理论及应用PPT课件

17
在同一族(例如a族)的两条滑移线(例如a 1和a 2线)与另 一族(例如β族)的任一条滑移线(例如β1和β2线)的两个 交点上,其切线夹角△ω与平均应力的变化△σm 均保持常数, 如下图所示:
对于图中的节点(1,1)、(1,2)、(2,1)、(2,2)有:
点P1,平面塑性变形时,
最大切应力成对出现,并
相交。
6
三、滑移线和ω 角规定
α 与β 滑移线规定
设α 与β 线构成右手坐标系,
设代数值最大的主应力σ1 作用线在第一与三象限,则:
α 线两侧最大切应力顺时针
方向。 β线两侧最大切应力逆
时针方向。
Hale Waihona Puke 或:σ1方向顺时针转45°得到α线
由σ1的方位线顺时针转45°到达的滑移线称α线,而由σ3线 的方位线顺时针转45°到达的滑移线称为β线。α线与β的方向
代入平面应变问题的微分平衡方程
x yx 0
x y
xy y 0
x y
11
m
x
2k c os2
x
sin2
y
0
m
x
2k s in2
x
cos2
y
0
取滑移线本身作为坐标轴,设为轴a和β轴。这样,滑移 线场中任何一点的位置,可用坐标值a和β表示。当沿着a坐标 轴从一点移动到另一点时,坐标值β不变,当然沿着坐标轴β 从一点移动到另一点时,坐标轴a也不变。
将xy坐标原点置于两条滑移线的交点a上,并使坐标轴x、 y分别与滑移线的切线x` 、y`重合。
滑移线名词解释

滑移线名词解释滑移线是指在流体力学中,流体流动时,流体中的某一点随着时间的推移而发生位置变化的线。
这个概念在飞行器设计中非常重要,因为滑移线可以用来描述飞行器的稳定性和控制性能。
在本文中,我们将详细解释滑移线的概念、特性和应用。
一、滑移线的概念滑移线是在流体力学中用来描述流体流动的一种线。
在飞行器设计中,滑移线通常指飞行器中心重心和气动中心之间的一条线。
当飞行器受到外界扰动时,它会发生滑移和偏航运动,滑移线的位置和方向可以用来描述飞行器的运动状态。
二、滑移线的特性1. 滑移线的位置滑移线的位置取决于飞行器的气动特性和重心位置。
在大多数情况下,滑移线位于飞行器的重心前方,因为气动中心通常在重心前面。
滑移线的位置可以通过实验和计算得出,对于不同的飞行器来说,滑移线的位置也不同。
2. 滑移线的方向滑移线的方向取决于飞行器的气动特性和机翼的布局。
在大多数情况下,滑移线与机翼的平面垂直,因为机翼产生的升力和阻力一般都在机翼平面内。
然而,对于某些机翼布局不规则的飞行器,滑移线的方向可能会产生变化。
3. 滑移线的稳定性滑移线的稳定性是指飞行器在受到外界扰动时,滑移线的位置和方向是否会发生变化。
在理想情况下,飞行器应该具有稳定的滑移线,即受到扰动时滑移线的位置和方向不会发生明显变化。
如果滑移线不稳定,飞行器就会变得难以控制,甚至容易失控。
三、滑移线的应用1. 飞行器稳定性分析滑移线可以用来分析飞行器的稳定性和控制性能。
通过测量飞行器的滑移线位置和方向,可以判断飞行器的稳定性是否良好,以及是否需要进行调整。
2. 飞行器控制设计滑移线还可以用来设计飞行器的控制系统。
通过控制飞行器的滑移线位置和方向,可以使飞行器保持稳定,避免发生滑移和偏航运动,从而提高飞行器的控制性能。
3. 飞行器改进设计滑移线还可以用来指导飞行器的改进设计。
通过分析飞行器的滑移线位置和方向,可以发现飞行器存在的问题和缺陷,从而提出改进措施,使飞行器更加稳定和安全。
第八章 滑移线理论及应用

(6)一点沿某族任意一条滑移线移动时,过该动 点起、始位置的另一族两条滑移线的曲率变化 量(如dRβ)等于该点所移动的路程(如dSα);
(7)同族滑移线必然有个相同的曲率方向。
§8.4 应力边界条件和滑移线场的绘制
一、应力边界条件
研究目的:寻找已知静水压力 p 和Φ角的点
二、汉盖第二定理
一动点沿某族任意一 条滑移线移动时,过 该动点起、始位置的
另一族两条滑移线的
曲率变化量(如dRβ)
等于该点所移动的路
程(如dSα)
R 1 S
R 1 S
同族滑移线必然具有相同的曲率方向
滑移线的几何性质
(1)滑移线为最大切应力等于材料屈服切应力为 k的迹线,与主应力迹线相交成π/4角; (2)滑移线场由两族彼此正交的滑移线构成,布
1 3
2
标轴Ox的夹角
1
xy
y -k p
x
Ⅱ
k sin 2 p k sin 2 k sin 2 p k sin 2
x m y m
k cos 2 k cos 2
xy
max k
2
B
yx
xy
p p cos x sin y 2k cos x sin y 0 沿 线的微分方程 p 2k 0或 ( p 2k ) 0 沿 线的微分方程 p 2k 0或 ( p 2k ) 0
n k n
二、滑移线场绘制的数值计算方法
滑移线场绘制的数值计算方法
(塑性成形力学)4滑移线场理论及应用

存在速度不连续线的速端图:
两条速度不连续线相交于一点附近的速度不连续量的矢量和为零。
4.6滑移线场的绘制
建立变形区内滑移线场通常是一个相当复杂的问题。
在给定的应力边界条件下,作滑移线场的方法: 1. 积分滑移线的微分方程; 2. 图解法; 3. 数值积分法。
相关规定:
1. 使单元体产生顺时针转效果的剪应力方向为α线,反之为β线;(例题)
2. 分别以α线和β线构成一右手坐标系时的横轴和纵轴,则代数值最大的主应力
σ1的作用线在穿过原点条件下是在第Ⅰ和第Ⅲ象限内;(例题)
3. α线各点的切线与所取的x轴的夹角为φ,逆时针转为正,顺时针转为负。
y
右手坐标系: 姆指指向α线正方向 食指指向β线正方向 中指指向自己
不少的塑性加工过程,由于变形区域 沿某一方向(z轴方向)的尺寸较大, 沿该方向的相对变形量很小,可近似 认为是平面变形问题。 如:薄板轧制 矩形件压缩
莫尔圆 (应力圆)
单辉祖,“材料力学教程”, 国防工业出版社,1982
-p
k
4.1.2 基本假设
各向同性的理想刚-塑性材料 变形抗力为常数 忽略热应力和惯性力等
(①+②)/2 (①-②)/4
① ②
式(4.25) 式(4.26)
式(4.27) 式(4.28)
4.5 滑移线场求解的应力边界条件和步骤
4.5.1 应力边界条件 4.5.2 滑移线求解的一般步骤
4.5.1 应力边界条件
常见边界: 工件与工具接触表面:σ、τ 自由表面
单辉祖,“材料力学教程”,国防工 业出版社,1982,P208
图1.28 理想刚-塑性材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.2 汉盖(Hencky)应力方程——滑移线的沿
线力学方程
推导:
有平面应变问题的微分平衡方程
x yx 0
x y
xy y 0
x y
将式(8-3)代入上式,得
p 2k cos2 2k si来自 2 0xxy
p 2k sin 2 2k cos2 0
y
x
y
整理得表达成
max k
0
1
2
面上任取一点P1,其
的,即 方向为
, (max) P1 P'2P'3P'4
沿
方向上取一点P2,其 方向为
,
依此取点a2,其 线方向为 ,依次连续取下去,
直至塑性变形区的边界为止……,最后获得一条折线
P1-P2-P3-P4……,称为 线。按正、负两最大切
应力相互正交的性质,由P点沿与 的垂直方向上,
3)混合问题
这是给定一条α线OA,和与之相交的另一 条不是滑移线的某曲线OB(可能是接触边 界线或变形区中的对称轴线)上倾角值
即在P点的
的,即 方向上取点,也可得
到一条折线
……,称为 线。
由图8-2可知,滑移线的微分方程为:
dy tg dx
对 线
对 线 dy tg( /) ctg
dx
图8-2 x-y坐标系与滑移经网络
滑移线理论法
滑移线理论法是一种图形绘制与数值计算相结合 的方法,即根据平面应变问题滑移线场的性质绘 出滑移线场,再根据精确平衡微分方程和精确塑 性条件建立汉盖(Hencky)应力方程,求得理想 刚塑性材料平面应变问题变形区内应力分布以及 变形力的一种方法。
滑移线场绘制的 数值计算方法
1)特征线问题
这是给定两条相交的滑移线为初始线,求 作整个滑移线网的边值问题,即所谓黎曼 (Riemann)问题。
2)特征值问题
x y x点这y 的是应已力知分一量条(不为、滑移、线的)边的界初A始B上值任,一 求作滑移线场的问题,即所谓柯西 (Cauchy)问题。
图8-1 平面应变问题应力状态的几何表示
平面应变问题
根据平面流动的塑性条件, max k
(对Tresca塑性条件
k T /2 ;
对Mises塑性条件
k T / 3
)
于是,由图8-1c的几何关系可知,有
y p k sin 2 x p k sin 2 xy k cos 2
式中 ——静水压力 p( m ( x y ) / 2) ——定义为最大切应力 max( k) 方向
根据塑性变形增量理论,平面塑性流动问题独立的应力分量
也只有三个( x 、 y 、 xy ),于是平面应变问题的最大切应力 为:
max ( 1 3 ) / 2
[(
x
y
) / 2]2
2 xy
绘制滑移线
对于理想刚塑材料,材料的屈服切应力k为常数。
因此塑性变形区内各点莫尔圆半径(即最大切应
力 )等于材料常数k。如图8-2所示,在x-y坐标平max 0
滑移线理论及应用
§8.1 平面应变问题和滑移线场 §8.2 汉盖(Hencky)应力方程——滑
移线的沿线力学方程 §8.3 滑移线的几何性质 §8.4 应力边界条件和滑移线场的绘制 §8.5 三角形均匀场与简单扇形场组合
问题及实例 §8.6 双心扇形场问题及实例
§8.1 平面应变问题和滑移线场
(a)塑性流动平面(物理平面),(b)正交曲线坐标系的应力特点,(c)应力莫尔圆
与坐标轴Ox的夹角。
平面应变问题
对于平面塑性流动问题,由于某一方向上的位移分量为零 (设duZ=0),故只有三个应变分量( d x 、d y 、d xy ),也称 平面应变问题。根据塑性流动法则,可知
Z 2 ( x y ) / 2 m p
式中, m 为平均应力;p称为静水压力。
一、汉盖第一定理 同族的两条滑移线与加族任意一条
滑移线相交两点的倾角差和静水压力 变化量均保持不变。 二、汉盖第二定理
一动点沿某族任意一条滑移线移动 时,过该动点起、始位置的另一族两 条滑移线的曲率变化量等于该点所移 动的路程
§8.4 应力边界条件和滑 移线场的绘制
应力边界条件 1)自由表面 2)光滑(无摩擦)接触表面 4)滑动摩擦接触表面 3)粘着摩擦接触表面
ab a b
pab pa pb
对 线取“+”号 对 线取“-”号
式中, pab 2k ab
上式表明,沿滑移线的静水压力差( pab )与滑移线 上相应的倾角差( ab )成正比。故式表明了滑移线的 沿线性质。
汉盖应力方程不仅体现了微分平衡方程,同时也满足 了塑性条件方程。
§8.3 滑移线的几何性质