开关电源中软开关技术的应用分析

开关电源中软开关技术的应用分析
开关电源中软开关技术的应用分析

开关电源中软开关技术的应用分析

发表时间:2018-07-18T16:07:04.763Z 来源:《科技中国》2018年1期作者:严骅[导读] 摘要:软开关技术是目前开关电源领域中的研究重点,软开关技术的诞生进一步推动了通信电源领域的发展,并在生活、生产实践中得到了广泛的应用,让人们享受到了更加便捷的生产和生活方式。本文针对开关电源中软开关技术的概念进行解读,并针对其具体的应用展开分析。

摘要:软开关技术是目前开关电源领域中的研究重点,软开关技术的诞生进一步推动了通信电源领域的发展,并在生活、生产实践中得到了广泛的应用,让人们享受到了更加便捷的生产和生活方式。本文针对开关电源中软开关技术的概念进行解读,并针对其具体的应用展开分析。

关键词:开关电源;软开关技术;应用

科学技术的发展也带动了开关电源技术的革新,目前,越来越多的人倾向体积小,轻便的开关电源,这是开关电源的一个发展趋势。软开关技术就是在这样的背景下的发展起来的,它符合现代人要求开关电源体积小,质量轻的特点,是一种新型的技术,已经广泛的应用于的各个领域。同时软开关技术还提升了开关电源的质量和使用效率。

一、软开关电源的概述

软开关技术是一种新型的电源技术,它更加符合环保和节能的理念,是开关电源的一次创新。软开关技术的工作原理其实比较简单,就是在电压为零的时候,开关管是通着的,当电流为零的时候,开关管是关闭的,这样就可以有效的保护开关,避免在多次的开关中,因为电流及电压的变化而造成损害。同时,软开关的电路结构也发生了改变,增加了小电感、电容等原件,可以有效的降低开关损耗和噪音,让开关的工作环境更加安全。

在传统的通信电源中,常常会出现空开跳开、模块不均流、保险管断开、防雷器故障、整流模块退出的问题,而软开关技术的应用则有效解决了这一问题。与传统的开关相比,软开关设备体型小,在以往的通信电源中,电容、滤波电感、变压器的重量与体积占据着交稿的比例,降低了电路效率,容易引发电磁干扰问题,而软开关的体积小,就很好的解决了上述难题。软开关技术在开关过程中,理想状态下,软开关过程是电流或电压先降低零,电压或电流再缓慢上升到断态值,所以,开关损耗近似为零。

二、软开关电路的分类

1、准谐振开关电路

准谐振开关电路在各个领域已经有了广泛的应用,这种电路在没有电压的情况下可以正常的使用,在没有电流的情况下就会关闭,可以避免开关受到强电流的刺激。准谐振开关电路是一种变频电源,其中的输出的电压和频率成正比。这种电路情况比较复杂,但是它的效率高,损耗小,是一种比较受欢迎的开关电路。

2、ZVS-PWM开关电路

这种电路也是现阶段经常使用的一种电路,它有诸多的优点,首先ZVS--PWM开关电路的消耗功率比较低,但是效率很高,因此它是一个性价比较高的产品。其次ZVS--PWM开关电路的工作频率也比较高,可以承担长时间的作业。但是这种电路也有一定的弊端,就是在断开开关的时候,里面的电压会瞬间升高,比输入电压高一倍多,会对电路的运行产生不利的影响。

3、ZCT-PWM转换电路

ZCT-PWM转换电路是ZVS-PWM开关电路的延伸,它对ZVS-PWM开关电路的缺点做出了处理,让原先的电路模式转变为零电流转换电路,就避免了开关断开时,电压激增的问题,让电路变得更安全,更有利于使用。

三、开关电源中软开关技术的应用分析

1、磁性元器件多功能化

首先,在软开关工作的时候,产生高频损耗及大量热能的现象经常发生,这是由于在软开关工作的过程中,会有高频的电流流过,产生较大的振幅,从而导致损耗和热能的发生。为了有效的避免这一情况,可以采用空心线圈电感,这样在增大线圈的同时也可以降低损耗。其次,在软开关的使用过程中,一般用变压器代替转换电路,这样可以显著的提升变压器的功效。最后,体积小,质量轻是开关电源发展的趋势,为了有效的减小体积,可以去除里面的直流偏磁,为了保证软开关电源的使用效果不受影响,要加入磁性元件,让各个元件之间相互配合完成工作。

2、逆变器中软开关的应用

逆变器是直流电与交流电的转换电路,在生活中有很广泛的应用,但是逆变器的损耗较大,还会出现浪涌,对于元件会产生一定的损伤,软开关的应用可以很好的解决这一问题,让逆变器在更安全的环境中工作。太阳能电池、燃料电池等是我们在生活中经常用到的产品,它们产生的直流电压也受到高频逆变器的控制从而产生正弦电压,在逆变器中采用软开关技术,可以更好的进行这一操作。

软开关技术也可以应用到电动机的驱动中,在电动机的运行过程中,一般运用传感器进行各种参数的读取,各项电流的检测,将软开关技术应用到电动机的驱动中,可以更好的促进电动机的发展。

3、谐振变换器的应用

谐振变换器已经有多年的发展历史,从上世纪 70年代被研发出来以后,谐振变换器一直被广泛的应用于各个领域。谐振变化器是指负载着谐振的变换器,它是根据PWM变换器的工作原理发展起来的,可以分为并联谐振变换器和串联谐振变换器两种。工作的原理是利用负载谐振对开关中的电流进行处理,达到软开关的要求。这种变化器受负载的影响很大,因此要对负载进行合适的选取。

综上所述,软开关技术在各个领域中已经有了广泛的应用,并且取得了较高的效果,在今后对电源开关进行设计时,可以充分的考虑软开关技术。但是软开关毕竟还是一种新型的电源开关,还存在着一些问题,我们要加大软开关技术的研究,充分挖掘软开关技术的优良性能,让其更好的为我们服务。

参考文献:

[1] 米保全,姜毅龙,李许军. 基于ICE2A165的反激式开关电源设计与实现[J]. 自动化应用. 2017(06)

[2] 李晴平,赵梦恋. 一种绿色模式开关电源控制芯片设计[J]. 电子技术. 2017(06)

开关电源类产品设计的安全规范(标准版)

开关电源类产品设计的安全规 范(标准版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0679

开关电源类产品设计的安全规范(标准版) 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压

电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的 限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分:用球压试验测试非金属材料构成产品的耐热方法。 2.9IEC61140-1997:防电击保护设备和安装的一般要求。 2.10IEC60227-1997:额定电压450V/750V及以下PVC绝缘电缆。 3.标记和说明

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

开关电源技术规格书

开关电源技术规格书 Switching Power Supply Specification 型号Model: 1305AC 拟制(Editor) :段家贵 审核(Verifier) : 批准(Approver) : 版本(Edition) :1305 1、总则Introduction 该款电源参考intel提出的ATX12V V2.31标准设计制造,额定输出功率90W。 。 The Power Supply was designed reference Intel Power Supply Design Guide ATX12V 2.31. Rated output total power is90W. 2、电气特性Electrical 2.1、 2.2、直流精度 [鍵入文字]

注:当+12V处于峰值电流负载时,输出电压范围为±10%。 Note: At +12VDC peak loading, regulation at the +12V outputs can go to ±10%. 2.3、直流功率分布Typical Power Distribution 2.4、 注意:1、噪声与纹波的测试带宽为10Hz~20MHz; 2、在测试噪音与纹波期间,用一个0.1UF瓷片电容和10UF的电解电容并接在输出端上。 Note: 1、Ripple and noise are defined as periodic or random signals over a frequency band of 10Hz to 20 MHz. 2、Measurements shall be made with an oscilloscope with 20 MHz of bandwidth. Outputs should be bypassed at the connector with a 0.1μF ceramic disk capacitor and a 10 μF electrolytic capacitor to simulate system loading. 2.5、电源效率Efficiency 在25℃下,直流输入11.4V-12.6V 、Intel规定的满负载条件下,电源效率不小于80%。 The efficiency of the power supply should be greater than or equal to 80%, at nominal input voltage of DC 11.4V-12.6V input, under the load conditions defined in the form factor specific sections of intel PSDG, at 25℃。

开关电源测试规范

开关电源测试规范 By ZGQ 一、概述 本文主要阐述了开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。下面是开关电源一些测试项目: 1.功能(Functions)测试: ·电压调整率测试(Line Regulation Test) ·负载调整率测试(Load Regulation Test) ·输出纹波及噪声测试(Output Ripple & Noise Test) ·功率因数和效率测试(Power Faction & Efficiency Test) ·能效测试(Energy Efficiency Test) ·上升时间测试(Rise Time Test) ·下降时间测试(Fall Time Test) ·开机延迟时间测试(Turn On Delay Time Test) ·关机保持时间测试(Hold Up Time Test) ·输出过冲幅度测试(Output Overshoot Test) ·输出暂态响应测试(Output Transient Response Test) 2.保护动作(Protections)测试: ·过电压保护(OVP, Over Voltage Protection) ·短路保护(Short Circuit Protection) ·过电流保护(OCP, Over Current Protection) 3.安全(Safety)规格测试: ·输入电流、漏电电流等 ·耐压绝缘: 电源输入对地,电源输出对地;电路板线路须有安全间距。 ·温度抗燃:零组件需具备抗燃之安全规格,工作温度须於安全规格内。 ·机壳接地:需於0.1欧姆以下,以避免漏电触电之危险。 ·变压输出特性:开路、短路及最大伏安(VA)输出 ·异常测试:散热风扇停转、电压选择开关设定错误 4.电磁兼容(Electromagnetic Compliance)测试: 5.可靠性(Reliability)测试: 6.其他测试: 二、电气特性(Electrical Specifications)测试

基于TOPSwitch的开关电源设计

基于TOPSwitch Ⅱ的开关电源设计 1 引言 功率开关管、PWM控制器和高频变压器是开关电源必不可少的组成部分。传统的开关电源一般均采用分立的高频功率开关管和多引脚的PWM集成控制器,例如采用UC3842+MOSFET是国内小功率开关电源中较为普及的设计方法。 90年代以来,出现了PWM/MOSFET二合一集成芯片,他大大降低了开关电源设计的复杂性,减少了开关电源设计所需的时间,从而加快了产品进入市场的速度。 二合一集成控制芯片多采用3脚,4脚,5脚,7脚和8脚封装,其中美国功率集成公司于97年推出的三端脱线式TOPSwitch Ⅱ系列二合一集成控制器件,是该类器件的代表性产品。 2 TOPSwitch Ⅱ器件简介 TOPSwitch系列器件是三端脱线式PWM开关(Three-terminal Off-line PWM Swtich)的英文缩写。TOPSwitch 系列器件仅用了3个管脚就将脱线式开关电源所必需的具有通态可控栅极驱动电路的高压N沟道功率的MOS场效应管,电压型PWM控制器,100kHz高频振荡器,高压启动偏置电路,带隙基准,用于环路补偿的并联偏置调整器以及误差放大器和故障保护等功能全部组合在一起了。 TOPSwitch Ⅱ系列器件是TOPSwitch的升级产品,同后者相比,内部电路做了许多改进,器件对于电路板布局以及输

入总线瞬变的敏感性大大减少,故设计更为方便,性能有所增强。其型号包括TOP221-TOP227,内部结构如图1所示[1]。 TOPSwitch Ⅱ是一个自偏置、自保护的电流-占空比线性控制转换器。由于采用CMOS工艺,转换效率与采用双集成电路和分立元件相比,偏置电流大大减少,并省去了用于电流传导和提供启动偏置电流的外接电阻。 漏极连接内部MOSFET的漏极,在启动时,通过内部高压开关电流源提供内部偏置电流。 源极连接内部MOSFET的源极,是初级电路的公共点和基准点。 控制极误差放大电路和反馈电流的输入端。在正常工作时,由内部并联调整器提供内部偏流。系统关闭时,可激发输入电流,同时也是提供旁路、自动重启和补偿功能的电容连接点。 控制电压控制极的电压V c给控制器和驱动器供电或提供偏压。接在控制极和源极之间的外部旁路电容C T,为栅极提供驱动电流,并设置自动恢复时间及控制环路的补偿。在正常工作(输出电压稳定)时,反馈控制电流给V c供电,并

开关电源基础介绍

(開關電源設計技術) 一、 關電源的用途 開關電源體積小、重量輕、轉換效率高,因此它被廣泛應用於電腦、通信設備、控制裝置及家用電器等電子設備中; 二、 開關電源的分類 按轉換方式可分為: ①交流/直流(AC/DC) ②直流/直流(DC/DC) ③直流/交流(DC/AC) 三大類 按變換器的基本形式可分為:①單端反激式 ②單端正激式 ③推挽式 ④橋式 ⑤半橋式 三、R.C.C變換器(Ringing Choke Converter) 1.此變換器廣泛應用於50W以下的開關電源中,它不需要自激振盪電路,結構簡單,由輸入電壓與輸出電流改變頻率。 2.工作過程: 在VT1導通TON期間,變換器TR1初級從輸入側蓄積能量,在下一次VT1截止TOFF期間, 變換器初級蓄積能量釋放給輸出負載。TOFF結束時變換器初級電壓從自由振盪返回到0V,這個電壓通過基極繞組加到開關電晶體VT1的基極,因此電晶體VT1觸發導通,進入下一個工作週期。

3.電路特點: ①改變基極電位可改變其TON/TOFF時間(占空比D) ②改變占空比D可改變輸出電流和電壓 ③占空比D較大,IC(VT1集電極電流) 較小,但VCE較高; ④占空比D較小,IC(VT1集電極電流) 較大,但VCE較低; ⑤占空比 D=TON(導通時間)/ T(工作週期); ⑥改便輸入電壓與輸出電流可改變工作頻率; ⑦電路成本低,實用於50W以下的開關電源設計。 四、單端正激式變換器 1. 工作原理: 交流輸入電壓經過線路濾波器,再通過橋式一次整流與電容平滑濾波後變為直流電壓,此直流電壓加到開關元件上變為脈衝狀的直流電壓,此直流電壓通過高頻變壓器隔離並可變換成任意大小的直流電壓,再經二極體進行二次整流與電容平滑後變為直流輸出電壓,直流輸出電壓的一部分通過比較電路與基準電壓進行比較,其誤差電壓通過通/斷時間比例控制電路,控制開關元件的通斷時間,從而調整輸出直流電壓。

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

一种基于软开关三电平DCDC开关电源的研制.pdf

目前,开关电源正朝着高频、高效、环保等方向发展。与传统拓扑结构相比,三电平变换器由于具有开关管电压应力为输入直流电压的一半,适合输入电压较高的场合,输出电压谐波小等优点,从而备受关注。此外,伴随着高频化发展,出现了软开关技术,并结合三电平产生了不同拓扑的DC/DC变换器。传统ZVS半桥三电平DC/DC变换器轻载时滞后管难以实现ZVS,且开通损耗严重。ZVZCS变换器消除了ZVS三电平变换器零状态时变压器初级环流,减小了初级通态损耗,同时改善了占空比丢失问题,近年来得到了广泛研究。 这里提出一种新型ZVZCS半桥三电平DC/DC变换器,其次级采用了一个简单的无源筘位网络,通过这个无源箝位网络实现了超前桥臂在一定负载范围内的ZVS和滞后桥臂的ZCS。 2 主电路工作原理 图1为新型半桥三电平DC/DC变换器拓扑。 由图1可见,次级采用的无源箝位网络主要由箝位电容CA和二极管VDA1,VDA2,VDA3构成。变压器次级中心抽头通过VDA1连接到CA,将次级电压箝位在一个较低的水平。Cs1,Cs2为等值的输入分压电容,VDc1,VDc2为箝位二极管,Css为飞跨电容,Llk为变压器漏感,n为变比,VDR1~VDR4为整流二极管,Lf,Cf分别为滤波电感、电容,Uin,Uo 为输入、输出直流电压。采用移相PWM控制策略,工作波形如图2所示。 为简化分析,作如下假设:电路各器件均为理想元件;Lf足够大,其电流不变;将Cf看作

恒压源。变换器在半个稳态开关周期内有9个工作模态,分析如下: 新周期开始前超前管VS1导通,负载电流通过整流二极管续流,a,b间电压、次级电压、初级电流分别为uab,urec,ip,此时uab=urec= 0,ip=0. 模态1(t1~t2) t1时刻,滞后管VS2导通,新周期开始。由于ip=0,VS2此时ZCS开通。uab=Uin/2,ip线性增加。由于ip仍小于负载电流Io折算到初级的值Io/n,VDR1~VDR4全部导通,urec为零,说明该模态中次级存在占空比丢失现象。 模态2(t2~t3) t2时刻,ip达到Io/n,VDR1,VDR4关断,初级开始向负载传递能量。由于CA上电压为零,VDR1,VDR4为ZVS关断。同时VDA1导通,输入部分能量通过Ilk,VDA1向CA充电。记Uins(m2)为此模态中初级折算到次级的等效电压,Llk(m2)为折算到次级的等效漏感,则CA的电流iCA电压uCA,ip及urec分别为: 由于CA通过变压器次级中心抽头充电,urec=2uCA.t3时刻,uCA=Uo,VDA3导通,urec 被箝位为2Uo.记UrecP为次级电压峰值,则UrecP= 2Uo. 模态3(t3~t4)记uCA电压峰值为UCAM,UCAM=Uo保持不变,Llk中的谐振电流经过VDA3流向Cf,iCA迅速减小为零,urec保持2Uo不变。t4时刻Llk电流谐振到零,VDA1,VDA3 ZCS关断。 模态4(t4~t5) uCA仍保持UCAM不变,由于该模态下urec>Uo,VDA2不会导通,有ip(t)=Io/n,urec(t)=Uin/(2n)。 模态5(t5~t6) t5时刻,VS1 ZVS关断,记电容C1,C4电压分别为uC1,uC4,则UC1(t5)=0,UC4(t5)=Uin/2,ip向C1充电,C4放电,次级电压和整流二极管电压迅速减小,则有: 模态6(t6~t7)随着urec的减小,整流二极管两端电压迅速下降,在t6时刻被箝位为UCAM,此时VDA2 ZVS导通,CA开始放电,ip下降。则有:

开关电源的分类及运用

开关电源的分类及运用 1.开关电源的分类 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 1.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton (通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3)Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压UI,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制

造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 1.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为整流,功率流由负载返回电源的称为有源逆变。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

开关电源 安规要求

安规知识解读 以下如未特别说明,安规要求均指GB4943-2001 1、基本绝缘:对防电击提供基本保护的绝缘。 2、加强绝缘:除基本绝缘外施加的独立的绝缘,用于确保基本绝缘一旦失效时仍 能防止电击。 3、电气间隙(clearance):两个导电零部件之间的最短空间距离。 4、爬电距离(creepage distance):沿绝缘表面测得的两个导电零部件之间的最短 路径。 5、Y1电容可以认为具有加强绝缘的功能。 初—次级跨接的电容用Y1 初—地之间可用Y2电容(1.5.7.1) ?工程师设计时常见错误: 没有Y1和Y2电容的使用概念,以致初---次级之间也“不知不觉”地用了Y2电容。 6、设备的防电击保护类别: Ⅰ类设备:采用基本绝缘,而且有保护接地导体; Ⅱ类设备:采用双重绝缘,这类设备既不依靠保护接地,也不依靠安装条件的保护措施; Ⅲ类设备:SELV供电,且不会产生危险电压; 7、电源上的铭牌标示 i.电源额定值标志 1)额定电压及电流 对具有额定电压范围的设备:

100V—240V; 2.8A 100V—240V; 2.8—1.1A 200V—240V; 1.4A 对多个额定电压: 120/ 220V ; 2.4/1.2A 2)电源的性质符号: 直流——交流~(GB8898-2001) ii.制造厂商名称或商标识别标记 iii.型号 iv.符号“回”,仅对Ⅱ类设备适用。

?工程师设计时常见错误: Ⅱ类设备大标贴没有“回”字符 没有LOGO或LOGO与认证证书不是同一公司 交流输入性质用“AC”表示,不用“~”表示 具有额定电压范围或多个额定电压的设备,电流标示本应是“100V—240V; 2.8—1.1A”或“120/ 220V ; 2.4/1.2A”,错写成“100V—240V; 1.1—2.8A” 或“120/ 220V ; 1.2/2.4A” 8、保护接地和等电位连接端子标示 预定要与保护接地导线相连的接线端子 应标示符号,该符号不能用于其它接地端子。 对保护连接导线的端子不要求标示,

开关电源类产品设计的安全规范

仅供参考[整理] 安全管理文书 开关电源类产品设计的安全规范 日期:__________________ 单位:__________________ 第1 页共14 页

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波 电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分: 第 2 页共 14 页

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

开关电源技术教学大纲

《开关电源技术》课程教学大纲 课程代码: 060432005 英文名称: Switching Power Supply Technology 总学时: 32 其中实践学时: 0 适用专业:电气工程及其自动化 大纲编写(修订)时间:2017.11 一、课程目的与任务 本课程是电气工程及其自动化专业的专业选修课程,是一门理论性和实践性都很强的 课程。通过本课程的学习,使学生了解和掌握了开关电源最常用拓扑的基本原理(例如BUCK、BOOST、FLYBACK、正激电路等等)、磁性元件的设叶、开关电源的闭环控制系统设计和驱动 保护电路设计等,为今后从事电气设备或电子设备领域的研究和技术工作打下必要的专业 基础。 二、教学基本要求 学生通过本课程的学习,在知识、能力和素质上应达到的基本要求如下:了解和掌握开关电源的基本理论和分析方法,能够根据应用要求进行开关电源的拓扑电路选择,熟悉主要 的电路拓扑,例如BUCK、BOOST、FLYBACK、正激电路等,能够根据负载特性进行主电路拓 扑的主要元件的参数计算,能够根据负载特性选择合适的驱动管(MOSFET或者IGBT等等), 能够根据负载特性要求设计恰当合适的闭环控制系统的类型和参数 三、教学内容(按章、节、目三个层次详细编写,含具体要求、重难点内容和学时分配) 1.开关电源的基本理论和分析方法(8学时) 1.1开关电源的应用场合(2学时): 1.2开关电源的基本概念(2学时) 1.3开关电源的基本分析方法(2学时) 1.4开关电源设计的一般考虑(2学时) 要求了解和掌握开关电源的设计要求的制定以及各项指标的内涵等等。 2。开关电源的电路拓扑(8学时) 2.1开关电源的电路拓扑综述(2学时) 2.2 BUCK电路拓扑(2学时) 2.3 BOOST和FLYBACK电路拓扑(2学时) 2.4正激电路拓扑(2学时) 要求了解和掌握两大类电路拓扑的各自特点,能够进行BUCK和FLYBACK开关电源主电路拓扑的设计计算。 3.元件选择(8学时) 3.1 MOSFT和IGBT(2学时) 3.2磁性元件(4学时)

开关电源通用技术规范要求

省广电有线信息网络股份分公司传输中心机房工程大容量高频开关电源 技术规书 二○一七年六月

目录 1.概述 (1) 1.1.定义 (1) 1.2.必须满足的技术标准/规 (3) 2.主要技术要求 (3) 2.1.系统规格 (3) 2.2.环境条件 (4) 2.3.系统总体 (4) 2.4.交流配电 (9) 2.5.整流模块 (10) 2.6.直流配电屏(不含高阻配电屏) (11) 2.7.监控模块 (12) 2.8.外观与结构 (14) 2.9.补充要求 (15) 2.10.节能环保 (18) 3.技术服务要求 (20) 3.1.设备检验 (20) 3.1.1.工程技术协调会 (20) 3.1.2.出厂检验 (20) 3.1.3.供货 (21) 3.1.4.到货检验 (21) 3.1.5.到货抽检 (22) 3.2.工程服务 (23) 3.2.1.安装调测服务(交钥匙工程) (24) 3.2.2.督导调测服务 (25) 3.2.3.督导服务 (25) 3.3.设备验收 (26) 3.3.1初验 (26) 3.3.2.试运行 (26) 3.3.3.终验 (27) 3.4.保修 (28) 3.4.1.保修期 (28) 3.4.2.设备巡检服务 (28) 3.4.3故障件修理 (28) 3.4.4.故障响应及技术支持服务 (29) 3.4.5备件供应 (31) 3.4.6.技术文件 (32) 3.4.7.软件补丁 (32) 3.4.8.特殊情况下的服务 (32) 3.4.9.电子文档提供服务 (33) 3.4.10.资料共享 (33) 3.5.技术培训 (33)

基于TOP244Y的开关电源设计

1.开关电源感念 1.1开关电源就是用通过电路控制开关管进行高速的道通与截止。将直流电转化为高频的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压,转化为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多,所以开关变压可以做的很小,而且工作时不是很热,成本很低。如果不将50HZ变为高频开关就没有意义,开关变压也不神秘,就是一个普通的变压器。这就是开关电源。 *简单地说,开关电源的工作原理是: *1、交流电源输入经整流滤波成直流; *2、通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; *3、开关变压器次级感应出高频电压,经整流滤波供给负载; *4、输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。 1.2开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。我司采用的TOP244Y是将PWM控制器与功率开关场效应管合二为一封装在一起,可使用电路大为简化,体积进一步缩小,成本也明显降低。 ★TOP 244Y开关电源的基本原理: 封装形式

*漏极管脚(D):高压功率场效应管漏极输出。 *控制管脚(C):用于调节占空比的误差放大器。 *源极管脚(S):将其连接至输出场效应管源极可得到高压功率回馈。 *L:为输入电压的欠压与过压检测端。 *F:开关频率选择端,当F端接到源极时,其开关频率为132kHz,而当F端接到控制端时,其开关频率为66kHz。我司频率为132KHZ。 *X:外部电路流定调整端。在X端与源极之间接入不同的电阻,则开关电流可限定在不同的数值。若R=12kΩ,则流过开关的电流被设定为额定值的69%;若R1=6k Ω,则为额定值的90%;也就是说,随着电阻值的增大,开关允许流过的电流随之减小。 *若在L端与输入电压正端接入2MΩ的电阻,那么其: 欠压保护值为:Vuv=100VDC 过压保护值为:Vou=450VDC *产品主要有如下性能特点:输出功率250W;外围电路简单,成本低;在极低压或冲情况下能充分集成软启动;外部可编程精确电流限制的高效率,低成本设计和功率可限电路;线性欠压保护,无关断干扰。

开关电源PCB布局指南AN-1229中文版

SIMPLE Array SWITCHER ? PCB ? AN-1229? 2002 National Semiconductor Corporation AN200426 https://www.360docs.net/doc/6d14557899.html,

https://www.360docs.net/doc/6d14557899.html, 2 A N -1229 ? ? 20042601 1. 1a ? ? ? ? ? ? ? ? CBYPASS ? ? CIN ? ? ?? ? 1b ? ? ? ? ? ? ? ? ? ? 1c ? ? ??? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ?? PCB ? ? ? ? ? ? ? ? ? ? ? ? PWM ? ? ? ?? ?? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? , ? ? ? ? ???

AN-1229 https://www.360docs.net/doc/6d14557899.html, 3 ? ? ǖ ? ? ? ? ? ? ? ? ? ? ? ? ? ?ǖ ? ? ?? ? ǜ ? ? V ǚIR ? ? ? ?? ? ? ? 1.4 0.5 1 ? 20 ?? 1 ? 1A ? 2.5 ? ? ?? IC ? ? ? ? PCB ? ? ? ? ? 20 ?? ? ? ? SIMPLE SWITCHER ? V ǚL*dI/dt ? ?? ? ? ? 1A ? ? ? ? ? dI/dt ? ? 1a 1b ? ? ? ? 1c ? dI/dt ? ? ? ǖ ? ? ? ? 1.2?? 0.8?? ? ? ? ?? FET , LM267x 30ns ? , LM259x 75ns ? ? ? ? ? ? ? ? ?? ? ? ? 30ns ? 1 ? 1A 0.7V ? ? 2.5mV ? ?? 2 ? 3A 4V ? 1c ? ? 1a 1b ? ??? ? , IC ? ?? ?SW ?? ? ? ? ?? , ?? ?VIN ?? ? ? ?? 1c ? ? ? ?VIN ? ? ? ? , ? ? ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Np/Ns ?? ? RCD ? ? ? ? ? ?? ?? ? ? ? ? ? ?? ? ?? ? ? ? ? , ǖ EMI ? ? ? ? ? ? IC ? ? ? ? ? IC ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ǜ ?? ? ? ?? ? ? ? V*dt ǚL*dI ? , L ? ?V*dt ? ? ? , ? ??? ? ? ? ? ?? ? ? ? ? ? ?? ?COMP ?? ?? ? ?? ? ? ? ? ?? ?? ?? ? ?IC ? ? ? ? , ? ??

SIMetrix在“开关电源及其软开关技术”教学中的应用

SIMetrix 在“开关电源及其软开关技术”教学中的应用 为了完善专业的知识结构、配合学校培养应用型人才的办学思路,华南理工大学广州学院电气工程学院为本科生开设了“开关电源及其软开关技术”这门课程。该课程是“电力电子技术” 的后续课程,系统地介绍了开关电源电路的结构组成、工作原理、设计方法和开发过程,其综合性、工程性和实用性很强。目前,课程在教学中存在的主要问题:第一,虽然在课堂教学中使用了多媒体课件,但依然需要花费大量精力对电路工作原理及其波形进行描述和分析,学生仅凭听讲还是很难深入理解。第二,在本科生中开设该课程的高校较少,在市场上很难找到针对该课程的实验装置,学生学习的理论知识得不到很好的验证。第三,开关电源的硬件开发是一项知识面要求宽、难度大又危险的复杂技术工作,受时间、空间、物质条件等因素限制,在这方面不能做过多要求,因此学生动手能力得不到真正的锻炼。 为了弥补以上不足,本文提出在课程教学中引入SIMetrix 仿真工具。借助该仿真软件,学生更容易理解理论知识,还可以在课堂外对所学的知识加以验证以及进行一些设计应用,从而激发学习的兴趣并增强实践能力。 一、SIMetrix 仿真软件介绍 特点一:包含丰富的器件模型。模型库不仅包含了理想的电路元件,同时还提供了比较通用的、常见的半导体器件和各类应用广泛的

集成电路控制芯片,在此基础上足以构建完整的开关电源系统。 特点二:先进的测量功能。波形可通过选择检测器然后点击原理图生成,或在原理图上放入固定的检测器生成,可在仿真后甚至仿真时查看波形,非常方便。 特点三:强大的波形处理功能。为波形分析提供RMS、frequency、-3dB、FFT等40多种函数,选择这些函数可获得计算结果并显示在波形旁边。 特点四:具有多种分析功能。包括瞬态分析、交流分析、直流分析、噪声分析、传输函数分析等,每种分析功能下又提供多种扫描模式,如频率扫描、器件扫描、参数扫描、模型参数扫描、温度扫描、蒙特卡罗扫描等等。 此外,SIMetrix 仿真软件的仿真结果与实际非常接近,用户图形界面友好,仿真直观,使用者容易掌握。 二、基于UC3842的反激电路仿真实例分析 反激变换器具有高可靠性、高效率、电路拓扑简洁、输入输出电气隔离、升/ 降压范围宽、易于多路输出等优点,是小功率开关电源的理想电路拓扑。UC3842是SIMetrix仿真工具模型库 自带的集成芯片,其外围器件少、性能良好、价格低廉。综上所述,以UC3842空制的反激电源为仿真实例,电路简单且具有代表性,满足初学者的基本学习要求,具体的仿真电路如图1 所示 1. 仿真电路原理 (1)主电路原理。交流输入电压经D1-D4 组成的桥式整流

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

相关文档
最新文档