大豆蛋白的性质及功能应用
大豆蛋白在食品调味料中的应用

大豆蛋白是一种高质量的植物蛋白,含有所有必需的氨基酸,是素食者和寻求植物性蛋白质来源的人们的理想选择。
在食品调味料中,大豆蛋白可以以多种形式应用,增加食品的营养价值、改善口感和增强风味。
以下是一些大豆蛋白在食品调味料中的应用实例:
1. 酱油和豆酱:大豆是酱油和豆酱的主要原料之一。
这些调味料通过大豆发酵制成,不仅提供了丰富的风味,还含有大豆蛋白。
2. 豆腐制品:豆腐、豆腐干和豆腐皮等豆腐制品含有大量的优质大豆蛋白,可以作为食品调味料的一部分,用于增加菜肴的蛋白质含量。
3. 大豆分离蛋白:大豆分离蛋白(SPI)是一种高蛋白的粉末状产品,可以用于增强食品的蛋白质含量,如沙拉酱、调味酱和肉制品中。
4. 大豆浓缩蛋白:大豆浓缩蛋白(SSP)是另一种高蛋白的大豆制品,常用于肉制品和仿肉食品中,作为蛋白质的来源。
5. 植物肉:大豆蛋白是许多植物肉产品的主要成分之一,如汉堡肉饼、香肠和肉丸等,它们模仿了传统肉类的口感和风味。
6. 乳制品替代品:大豆蛋白可以用于制作乳制品的替代品,如豆奶、酸奶和奶酪,这些产品对于乳糖不耐受或寻求植物性乳制品的人来说是很好的选择。
7. 烘焙食品:大豆蛋白粉可以添加到烘焙食品中,如面包、蛋糕和饼干,以增加蛋白质的含量。
8. 调味料和酱汁:大豆蛋白可以用于制作各种调味料和酱汁,如泰式酱汁、印度咖喱酱和地中海风格的调味酱。
在应用大豆蛋白作为食品调味料时,需要注意其与其他成分的兼容性,以及可能对食品的口感、质地和风味产生的影响。
此外,对于过敏体质的人群,需要确保大豆蛋白的来源安全,避免交叉污染。
大豆蛋白的应用

大豆蛋白粉的应用大豆蛋白粉具有乳化性、吸水性、保水性、凝胶性、气泡性、吸味性、防止脂肪渗透和聚集性、粘结性。
大豆分离蛋白是以低温脱溶大豆粕为原料生产的一种全价蛋白类食品添加剂。
大豆分离蛋白中蛋白质含量在90%以上,氨基酸种类有近20种,并含有人体必需氨基酸。
其营养丰富,不含胆固醇,是植物蛋白中为数不多的可替代动物蛋白的品种之一。
大豆分离蛋白的功能特性:乳化性:大豆分离蛋白是表面活性剂,它既能降低水和油的表面张力,又能降低水和空气的表面张力。
易于形成稳定的乳状液。
在烤制食品、冷冻食品及汤类食品的制作中,加入大豆分离蛋白作乳化剂可使制品状态稳定。
水合性:大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。
分离蛋白的吸水力比浓缩蛋白要强许多,而且几乎不受温度的影响。
分离蛋白在加工时还有保持水份的能力,最高水分保持能力为14g水/g蛋白质。
吸油性:分离蛋白加入肉制品中,能形成乳状液和凝胶基质,防止脂肪向表面移动,因而起着促进脂肪吸收或脂肪结合的作用。
可以减少肉制品加工过程中脂肪和汁液的损失,有助于维持外形的稳定。
分离蛋白的吸油率为154%。
凝胶性:它使分离蛋白具有较高的粘度、可塑性和弹性,既可做水的载体,也可做风味剂、糖及其它配合物的载体,这对食品加工极为有利。
发泡性:大豆蛋白中,分离蛋白的发泡性能最好。
利用大豆蛋白质的发泡性,可以赋予食品以疏松的结构和良好的口感。
结膜性:当肉切碎后,用分离蛋白与鸡蛋蛋白的混合物涂在其纤维表面,形成薄膜,易于干燥,可以防止气味散失,有利于再水化过程,并对再水化产品提供合理的结构。
大豆分离蛋白的应用:1.肉类制品:在档次较高的肉制品中加入大豆分离蛋白,不但改善肉制品的质构和增加风味,而且提高了蛋白含量,强化了维生素。
由于其功能性较强,用量在2~5%之间就可以起到保水、保脂、防止肉汁离析、提高品质、改善口感的作用。
将分离蛋白注射液注入到火腿那样的肉块中,再将肉块进行处理,火腿地率可提高20%。
大豆分离蛋白功能特性及在食品工业中的应用

大豆分离蛋白功能特性及在食品工业中的应用首先,大豆分离蛋白具有较高的溶解性。
其溶解性在不同的pH值范围内都较好,因此可以被方便地应用于多种酸性、中性和碱性食品中。
其次,大豆分离蛋白具有较好的稳定性。
在加热、冷冻、融化等复杂的食品处理过程中,大豆分离蛋白能够保持其形态和性质稳定,不易发生变化,保障食品的质量和口感。
此外,大豆分离蛋白还具有乳化和泡沫稳定的特性。
它可以在食品加工中起到辅助乳化剂和稳定剂的作用,使得食品具有更好的乳化性和泡沫稳定性。
比如在糕点、冰淇淋、饼干等产品中,大豆分离蛋白可以提高产品的质地和口感。
此外,大豆分离蛋白还具有胶凝和凝胶形成的特性。
它可以在食品中形成稳定的凝胶结构,提升产品的质地和稳定性。
比如在豆腐、豆浆等豆制品中,大豆分离蛋白作为凝固剂可以使得豆制品结构更为坚实和紧密。
在食品工业中,大豆分离蛋白被广泛应用于多种食品制品中。
首先,它常用于肉制品的替代品中。
由于大豆分离蛋白含有较高的蛋白质,可以被用来制作各种植物蛋白肉、素肉等替代品,在满足一定蛋白质需求的同时减少对动物蛋白的依赖。
其次,大豆分离蛋白还可以用于乳制品的替代品中。
由于其具有良好的乳化和泡沫稳定特性,大豆分离蛋白可以替代乳制品中的乳清或奶油,制作出低脂、低糖或无乳制品,满足不同人群的需求。
此外,大豆分离蛋白还可以用于烘焙食品中。
由于其胶凝和凝胶形成的特性,大豆分离蛋白可以用作替代传统的动物性胶质,使得面包、蛋糕等烘焙食品更为柔软和富有弹性。
总之,大豆分离蛋白具有多种功能特性,可广泛应用于食品工业中。
在肉制品、乳制品和烘焙食品领域有着重要的应用价值,为人们提供了更多健康、高品质的食品选择。
大豆分离蛋白的作用

大豆分离蛋白的作用大豆分离蛋白是从大豆中提取出来的一种蛋白质,具有多种重要的功能和应用。
本文将从不同角度探讨大豆分离蛋白的作用。
1. 营养价值:大豆分离蛋白是一种高质量的蛋白质,含有丰富的必需氨基酸,尤其是赖氨酸。
它可以作为一种优质的蛋白质补充剂,提供身体所需的各种氨基酸,有助于促进身体健康和发育。
在素食者或体育运动员中,大豆分离蛋白常被用来替代动物来源的蛋白质。
2. 功能性特点:大豆分离蛋白具有良好的功能特点,如乳化、凝胶化、吸水性和稳定性等。
这些特点使得大豆分离蛋白在食品工业中有广泛的应用。
例如,它可以用于替代动物蛋白制作各种素食产品,如豆腐、豆浆、豆干等。
此外,大豆分离蛋白还可以用作乳化剂、稳定剂、增稠剂等,改善食品的质地和口感。
3. 功能性食品:大豆分离蛋白在功能性食品中有重要作用。
例如,大豆分离蛋白可以用于制作高蛋白的营养补充品,如蛋白粉、蛋白棒等,以满足人们对蛋白质的需求。
此外,大豆分离蛋白还可以用于制作低糖、低脂、低胆固醇等功能性食品,适用于需要控制体重或管理特定健康问题的人群。
4. 医疗保健:大豆分离蛋白在医疗保健领域也有应用。
研究表明,大豆分离蛋白可以降低血液中的胆固醇水平,有助于预防心血管疾病。
此外,大豆分离蛋白还具有抗氧化、抗炎、抗肿瘤等多种保健功能,有助于提高人体免疫力,预防慢性疾病的发生。
5. 环保利用:大豆分离蛋白的生产过程相对较为环保,不会产生大量的废弃物和环境污染。
而且大豆是一种可再生资源,种植大豆有助于土壤保持和生态平衡。
因此,大豆分离蛋白的广泛应用有助于推动可持续发展和环保产业的发展。
大豆分离蛋白具有多种重要的功能和应用,包括提供营养、改善食品质地、制作功能性食品、医疗保健和环保利用等。
随着人们对健康和环境的关注度不断提高,大豆分离蛋白有望在更多领域得到应用和推广。
大豆蛋白

大豆蛋白大豆蛋白,顾名思义就是从大豆中提取出来的蛋白质, 是经过一系列加工步骤得到的近乎纯化的蛋白质。
大豆蛋白是公认的最优良植物蛋白,其氨基酸组成与牛奶蛋白质相近,在营养价值上可与鸡蛋、牛奶等动物蛋白相同,同时具有植物蛋白安全的优点,属于天然绿色食品。
大豆蛋白是唯一植物来源的完全蛋白质。
所谓“完全蛋白质”,是指该蛋白质不仅提供人体必需的从食物中摄取的氨基酸,而这些氨基酸也处于良好的平衡状态来满足人体的需要。
大豆蛋白不仅是营养高的天然绿色食品,而且还具有多种对人体有益的生理功能,包括降低血浆胆固醇水平、促进骨质健康、促进肾功能等。
如今,国内外有很多生产大豆蛋白的企业,并形成了相应的行业标准和国家标准。
大豆蛋白已被广泛应用在各种食品中,如果汁、奶酪、面包、食品棒、火腿肠、方便面等等,渗透到生活各个角落。
但由于大豆蛋白是大分子物质,存在不易溶解及不易消化吸收等缺点,限制了其应用领域,并使其营养价值和应用价值大打则扣。
如何克服大豆蛋白不易溶解及不易消化吸收等缺点,增加其营养价值和应用价值,从而增加大豆蛋白的附加值,成为当前的热点。
二、大豆多肽、大豆肽肽是氨基酸的线性聚合物,通常把含氨基酸残基50 个以上的称为蛋白质,低于50 个氨基酸残基的称为肽(国家大豆肽粉的标准中将大豆肽的分子量定为不大于10000,10000分子量的肽链含氨基酸残基约90个)。
大豆多肽与大豆肽是利用现代生物技术将大豆蛋白水解而获得的,其氨基酸的组成与大豆蛋白相同。
一般而言,没有严格区分大豆多肽与大豆肽。
与传统大豆蛋白相比,虽然大豆肽的生产工艺较复杂,成本价格较高,但其具有易溶解、消化吸收,能迅速供给机体能量,无蛋白变性、无豆腥味、无残渣、液体黏性小和受热不凝固等特性,尤其是具有降低血清胆固醇、降血压和促进脂肪代谢等独特的生理功能。
因此大豆肽是比大豆蛋白更为优质的、新型的大豆深加工产品及营养品,已在食品、医药、日用化工等领域中显示出了诱人的开发应用前景。
大豆分离蛋白的特性及其在肉制品中的应用

大豆分离蛋白的特性及其在肉制品中的应用张隽菡食工082 080107315摘要:大豆蛋白已经广泛用于各类肉制品加工中。
大豆蛋白对肉制品的保水性、质构具有一定的促进作用,但也存在豆腥味、致敏等不利影响。
文中对大豆蛋白质的功能性及其在肉制品中的应用研究进展进行了综述,并提出相关建议。
关键词:大豆蛋白肉制品进10多年来,我国肉类工业蓬勃发展,目前我国已经成为世界上最有影响力的肉类生产大国。
据统计,2010年我国肉制品产量达4100万t。
肉制品加工业的迅猛发展,带动了食品辅料、食品添加剂、食品包装等行业的进步。
当前在肉制品生产中,广泛添加以大豆分离蛋白为主的植物源蛋白。
大豆分离蛋白是一种重要的植物蛋白产品,是以低温脱溶大豆粕为原料生产的一种全价蛋白类食品添加剂,已广泛应用在食品及其它行业中,其蛋白质含量高达90%以上[1],消化利用率可达93%~97%[2],氨基酸种类有近20种,并含有人体必需氨基酸,其营养丰富,不含胆固醇,基本上不含碳水化合物,大豆分离蛋白有明显的降低血脂和胆固醇的作用。
按照目前国内肉制品的生产量以及大豆分离蛋白在肉制品中的添加量粗略计算,如果肉制品中的一半产品需要添加大豆蛋白,添加量按4%计算,则需要大豆分离蛋白20万t。
大豆分离蛋白应用于肉制品中具有良好的功能性,但同时也存在一些问题。
本文对大豆分离蛋白的功能性、在肉制品中的应研究进展进行了综述。
1、大豆蛋白的功能性质大豆蛋白最主要的营养成分之一是蛋白质,含量约为35%,大豆蛋白质主要含有大豆球蛋白(11S)和β-伴大豆球蛋白(7S)。
大豆蛋白质中约86%-88%能在水中溶解,其中球蛋白占85%,清蛋白占5%,蛋白胨占4%,非蛋白氮占6%[3]。
目前市场上常见的大豆蛋白产品种类为:大豆分离蛋白、大豆浓缩蛋白和大豆蛋白粉等。
大豆蛋白具有良好的流变学特性、乳化特性、凝胶性和稳定性,具有吸水吸油性、质构形成能力、加热成型性,而且具有很高的蛋白质含量,是肉制品生产中最重要的功能性食品原料。
粮食工程技术《大豆蛋白的结构特征与功能性质》

一大豆蛋白的结构与特征由于研究蛋白质的出发点不同,其分类方法也不同。
关于大豆蛋白的分类,一般有4种分类方法,分别按溶解度、构成蛋白质的最根本单位、结构和生理功能分类。
大豆球蛋白是由奥斯本〔Osborn〕和丹皮鲍尔〔Dampball〕首先用食盐溶液萃取,经反复透析沉淀而得到的一种蛋白质。
由于该蛋白质的长轴和短轴之比小于10:1,因而命名为大豆球蛋白。
球蛋白外形接近球形或椭圆形,溶解性较好,能形成结晶。
这种蛋白质也溶于水或碱溶液,加酸调pH至等电点4.5或加硫酸铵〔55%〕至饱和,那么沉淀析出,故又称为酸沉蛋白。
而清蛋白因无此特性,故又称为非酸沉蛋白。
根据构成蛋白质的最根本单位来分类,大豆蛋白根本上都属于结合蛋白,此种蛋白质由简单蛋白与其他非蛋白成分结合而成,即水解后所得产物不只是氨基酸,还含有一些配体,如糖等。
可以说大豆蛋白绝大局部都是糖蛋白,只是含糖多少不同。
大豆蛋白是具有四级结构的蛋白质。
植物蛋白按其在一系列溶剂里的溶解性分类〔此方法至今仍被沿用〕:溶于水的清蛋白〔albumin〕;不溶于水但溶于盐的球蛋白〔globulin〕;不溶于水但溶于70%-80%乙醇的溶蛋白〔prolamine〕;不溶于水、醇,但溶于稀酸或稀碱的谷蛋白〔glutelin〕。
因此,根据蛋白质组分在不同溶剂中的溶解性,可按顺序用蒸馏水、稀盐、乙醇、稀碱分别提取清蛋白、球蛋白、醇溶蛋白和谷蛋白,分别收集提取液来测定蛋白质组分含量。
根据生理功能分类法可分为贮藏蛋白和生物活性蛋白两类。
贮藏蛋白是主体,占总蛋白的70%左右,其中7S球蛋白约占37%,11S 球蛋白约占31%。
这种蛋白质没有生物活性,但它与大豆的加工性关系密切。
生物活性蛋白包括得较多,如胰蛋白酶抑制剂、β-淀粉酶、血细胞凝集素、脂肪氧化酶等,它们在总蛋白中所占比例不多,但对大豆制品的质量却有非常大的影响。
〔一〕蛋白体蛋白体外表有一层膜,使之接近球形。
大豆蛋白直径为5-2021,但大多数在5-8um这个狭小范围内。
食品中蛋白质的功能性质(1)

大豆蛋白的功能特性及其在食品中的应用大豆蛋白是一种优良的植物蛋白,具有良好的营养价值以及多种独特的功能特性,对改善制品的感官和食用品质有较好作用,广泛应用于食品领域。
大豆蛋白质中氛基酸种类丰富,具有良好的营养价值。
大豆蛋白作为一种常用的食品添加剂,具有多种功能特性,广泛应用于焙烤食品、肉制品、乳品等食品领域。
大豆中大约含有40%的蛋白质、20%的脂肪、10%的水分、5%的纤维和5%的灰分。
大豆中的蛋白质大部分为水溶性蛋白质,水溶性蛋白质中含有94%的球蛋白和6%的白蛋白。
大部分蛋白质在pH4一5范围内从溶液中沉淀出来,其中主要为大豆球蛋白。
大豆蛋白质中含有氨基酸种类接近20种,尤其是赖氨酸含量特别丰富;同时含有人体必需氨基酸,基本不含胆固醇或碳水化合物,并且具有明显的降低血脂和胆固醇的作用。
在食品加工中,大豆分离蛋白作为食品添加剂,可起到氨基酸互补作用,是一种功能性食品,具有很高的可消化性。
与其他食品混合时,可显著改善原有食品的营养价值。
大豆蛋白质的功能特性1.乳化性质许多食品属于乳胶体(冰淇淋、豆奶),蛋白质成分在稳定这些胶态体系中通常起着重要的作用。
天然乳胶体靠脂肪球“这种“膜”由三酰甘油、磷脂、不溶性脂蛋白和可溶性蛋白的连续吸附层所构成。
蛋白质一般对水/油(W/O)型乳胶液的稳定性较差。
这可能是因为大多数蛋白质的强亲水性使大量被吸附的蛋白质分子位于界面的水相一侧。
蛋白质的表面活性不仅与蛋白质中氨基酸的组成、结构、立体构象、分子中极性和非极性残基的分布与比例,二硫键的数目与交联,以及分子的大小、形状和柔顺性等内在因素有关,而且与外界因素,甚至加工操作有关。
凡是能影响蛋白质构象和亲水性与疏水性的环境因素,诸如pH、温度、离子强度和盐的种类、界面的组成、蛋白质浓度、糖类和低分子量表面活性剂,能量的输入,甚至形成界面加工的容器和操作顺序等,都将影响蛋白质的表面活性。
2.起泡性食品泡沫通常是气泡在连续的液相或含可溶性表面活性剂的半固相中形成的分散体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大豆蛋白的性质及功能应用
摘要针对大豆蛋白的组成,阐述了大豆蛋白的性质,包括溶解性、持水性、乳化性、起泡性、凝胶性、吸油性和粘度,并总结了大豆蛋白的功能应用,以期为大豆蛋白的利用提供参考。
关键词大豆蛋白;组成;性质;功能应用
大豆中含有丰富的植物蛋白,其产量高、价格低廉,含蛋白质40%左右,为蛋白质含量最高的食物。
因此,对大豆蛋白的提取、加工、应用等研究已成为热点。
为此,笔者对大豆蛋白的组成、性质及功能应用进行阐述。
1 大豆蛋白的组成
大豆蛋白中含有多种蛋白质,主要是贮存于子叶亚细胞结构——蛋白质中的蛋白[1]。
周瑞宝等[2]采用了超速离心方法对大豆蛋白质进行了分离分析,并将其分为2S、7S、11S、15S 4个主要组分(以沉降模式为依据),这些成分在不同的大豆品种中所占的比例有一定的差异。
但是通常情况下:7S和11S这2个组分占70%以上,而2S和15S 2个组合含量所占比例比较少,约占10%。
李荣和、朱建华等[3-4]采用免疫学电泳技术对大豆蛋白进行了分析,又可将其分成α-伴大豆球蛋白(2S)、β-伴大豆球蛋白和γ-伴大豆球蛋白(7S)以及大豆球蛋白(11S)和15S(以免疫性质的差异为依据)。
而这些组成按照分子量由大到小的排列顺序是:15S最大,约为600 kDa,其次是11S、7S,而2S最小,约为1~30 KDa。
现主要介绍7S大豆蛋白质和11S大豆蛋白。
1.1 7S大豆蛋白质
7S大豆蛋白质的分子量为18~210 kDa,它是由多糖与蛋白质的N端天门冬氨酸结合而成的共轭型糖蛋白,每个7S球蛋白分子含有38分子甘露糖及12分子葡萄糖胺。
7S蛋白质的等电点分别为4.9、5.2和5.7,同时7S球蛋白中含有5%的α-螺旋结构、35%的β-片层结构和60%的不规则结构,因此其具有致密折叠的高级结构。
另外分子中3个色氨酸残基几乎全部处于分子内部;4个半胱氨酸残基,每2个结合在一起形成二硫键[5]。
也有研究发现7S蛋白质非常敏感于离子强度及酸碱值,比如在离子强度0.5或pH值3.6状态下,7S蛋白则分别以单体和二聚物的形态存在着[5-7]。
1.2 11S蛋白质
11S蛋白组分比较单一,到目前只发现一种11S球蛋白,分子量为302~375 kDa,主要是由6个酸次单元体及6个碱次单元体所组成的非糖蛋白,等电点为6.4。
其中对于组氨酸、脯氨酸及胱氨酸这些氨基酸,在酸次单元体中含量要比碱次单元体中多;而对于疏水性氨基酸,在碱次单元体要比酸次单元体中多。
另外,11S蛋白质含有较多的赖氨酸和少量的氮氨酸,其中有23.5%的疏水性,46.7%
的亲水性氨基酸。
其类似于7S蛋白质,其四级结构也非常复杂,且构型易受pH 值、离子强度、温度等条件影响,其本身易发生凝集聚合和解离反应[8-9]。
2 大豆蛋白的性质
在改进食品结构、发展新食品方面,大豆蛋白的功能性质有着重要意义。
大豆蛋白在食品加工中最重要的反应是变性过程中蛋白质分子表面裸露的残基之间的分子内部反应。
天然状态球蛋白完全折叠,这种分子中存在着二级结构,如α-螺旋、反平行β-折叠和β-转角结构。
在氨基酸侧链的残基中,疏水性氨基酸侧链位于分子内部形成疏水区,而亲水的侧链位于表面与水接触。
这样大豆蛋白亚基分子可以形象地看成一个油滴,被一个亲水壳所包围。
有类似三维结构的几个不同亚基聚合成一个分子。
天然蛋白质溶于水,因为分子表面的亲水侧链可与水接触[10]。
这种蛋白质的结构在变性处理如加热时会破坏。
分子三维结构的破坏是众所周知的变性,破坏的程度依蛋白质的种类和变性处理的方法而定。
例如,11S的四级结构受离子浓度、pH值和温度的影响。
像尿素引起大多数蛋白质几乎完全变性;大豆蛋白经过100 ℃热处理,只有部分三维结构展开[11]。
大豆蛋白的功能特性相互影响,在食品体系中协同作用。
例如溶解性的好坏直接影响乳化性质;而粘度的大小关系持水性和凝胶性强弱。
2.1 溶解性
大豆蛋白用于食品生产加工中,首先要溶解,并分散在食品体系中,这样才能充分发挥出大豆蛋白的作用,然而其溶解特性成为食品加工中的首要问题。
工业上,大豆蛋白的功能性质主要是根据蛋白质分散指数(PDI)或氮溶解指数(NSI)这2种快速测定方法[12]。
但是这些方法存在一定的局限性,例如大豆蛋白加热超过120 ℃或pH值大于11时溶解度会很大,但其功能性质却极差。
又如豆粉经储存后,NSI会降低[13]。
有研究发现要控制大豆蛋白质的溶解度,最主要的2个因素是电荷率(charge frequency)和疏水性(hydrophobicity)[14]。
2.2 持水性
大豆蛋白质与水相互作用可区分为吸水性能和持水性能2种,吸水性能是指大豆蛋白与水之间的一种化学结合,而持水性能是指大豆蛋白与水之间的物理截留作用。
吸水过程是一个放热反应,而且水分子在蛋白表面结合之后的有序程度增加,与水蒸气冷凝相似。
将干燥蛋白质与液态水直接作用,所吸收的水分称为持水性,是一种宏观现象持水性,主要由pH值决定而不是浓度[15]。
2.3 乳化性
大豆蛋白可以使食品中的油和水分散形成稳定的乳化液。
稳定的乳化颗粒通过在油滴周围形成带电层引起多种斥力,或在溶剂液滴四周形成膜来实现乳化。
正常的大豆膜形成在pH值6.2~10.2[16]。
因此大豆分离蛋白在碱性条件下具有更好的乳化性,富集7S的蛋白也是一样的[17]。
2.4 起泡性
大豆蛋白作用于食品气液表面的起泡性用于改善食品的组织、质地和外观。
蛋白溶液表面张力减小的速率与蛋白的起泡能力有着明显的联系。
空气参与其中,接着内部蛋白部分变性,形成稳定的薄膜,膜内部无静电斥力[18]。