高职类高考数学部分公式汇集
高职高考公式

高职高考复习公式班别 姓名 学号1、乘法公式平方差公式:=-22b a ;完全平方公式:()=±2b a ; 立方和公式:=+33b a ;立方差公式:=-33b a ; 2、一元二次方程:()002≠=++ac bx ax ,△=①△ 0,方程有两个不相等的实数根;②△ 0,方程有两个相等的实数根; ③△ 0,方程没有实数根;④求根公式: ⑤韦达定理:3、均值定理:4、函数奇偶性①奇函数⇔图像关于 对称⇔ (判别式子) ②偶函数⇔图像关于 对称⇔ (判别式子)5、二次函数①一般式: ②顶点式:定点坐标: 对称轴: 最值: 6、幂运算公式:()=xab ;=⋅x x b a ;7、对数的定义:=⇔=b N a b ( )(填底数和真数的范围) 8、对数的性质:N y a log =中,=1log a ;=a a log ;9、对数的运算法则:=+N M a a log log ;=-N M a a log log ;=αM a log ;换底公式:=N a log ;对数恒等式:=aNa log11、对数函数性质12、等差数列公式、性质①通项公式=n a ;②前n 项和公式=n S ; ③等差中项性质 ;④等差数列连续n 项之和 ;13、等比数列①通项公式=n a ;②前n 项和公式=n S ; ③等比中项性质 ;④等比数列连续n 项之积 ;14、任意角α三角函数定义:终边上一点坐标()y x ,,=r ;=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;15、三角函数的符号:)(csc sin αα在 象限为+;)(sec cos αα在 象限为+; )(cot tan αα在 象限为+17、角度和弧度之间关系:1(rad )≈ (度)18、同角三角函数公式:+α2sin = ;=αtan 19、和角公式:()=±βαsin ;()=±βαcos ;()=+βαtan ; ()=-βαtan ;20、倍角公式:=α2sin ;=α2cos = = ;=α2tan ; 21 、【基础好的同学要记】降幂公式:=α2sin ;=α2cos ;22、判断函数的奇偶性:x y sin =( );x y cos =( );x y tan =( );x y cot =( ); 23、函数()ϕ+=wx A y sin 和()ϕ+=wx A y cos 中,值域 ; 最小正周期0>ϕ图像相对于x y sin =和x y cos =的图像向 平移 单位; 0<ϕ图像相对于x y sin =和x y cos =的图像向 平移 单位; 24、 函数()ϕ+=wx A y tan 中,定义域 ;值域 ; 最小正周期25、辅助公式:x b x a y cos sin +== ;=ϕtan 26、正弦定理:余弦定义:面积公式: 27、向量()21,b a a =;()21,b b b =若向量a ∥b ⇔ ;a ⊥b ⇔ ;28、向量坐标计算公式,距离、中点、平移公式:点A ()11,y x ,点B ()22,y x ,则=AB;= 中点公式:=x ,=y 平移公式:29、向量的内积:=⋅ ;=⋅ 30、直线方程①点斜式 ②斜截式③一般式 ④点法式⑤点向式 ⑥截距式31、两直线的位置关系①与直线0:=++C By Ax l 平行的直线可以设为: ②与直线0:=++C By Ax l 垂直的直线可以设为:③点到直线的距离公式:④两平行直线的距离公式:⑤两相交直线的夹角公式:=θcos ;=θtan32、圆的标准方程:;圆心:;半径: ;33、圆的一般方程:34、圆和直线的位置关系:36、椭圆第一定义:37、双曲线第一定义:第二定义:。
职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
高职高考必背数学公式有哪些(汇总)

高职高考必背数学公式有哪些(汇总)高职高考必背数学公式有哪些椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径×短半径×PAI×高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π×2/n)+sin(α+2π×3/n)+……+sin[α+2π×(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π×2/n)+cos(α+2π×3/n)+……+cos[α+2π×(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1×2+2×3+3×4+4×5+5×6+6×7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1×x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac0 注:方程有两个不相等的个实根b2-4ac0 注:方程有共轭复数根圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c×h 斜棱柱侧面积 S=c×h正棱锥侧面积 S=1/2c×h 正棱台侧面积 S=1/2(c+c)h圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi×r2圆柱侧面积 S=c×h=2pi×h 圆锥侧面积 S=1/2×c×l=pi×r×l弧长公式 l=a×r a是圆心角的弧度数r 0 扇形面积公式 s=1/2×l×r 锥体体积公式 V=1/3×S×H 圆锥体体积公式 V=1/3×pi×r2h斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长柱体体积公式 V=s×h 圆柱体 V=pi×r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)×(a+b-c)×1/4数学答题技巧1、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);2、求椭圆或是双曲线的离心率,建立关于 a 、 b 、 c 之间的关系等式即可;3、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;4、数列的题目与和有关,优选和通公式,优选作差的方法注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前 n 项和公式,体会方程的思想;5、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距创造直角三角形解题6、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃重视几何意义的应用,注意点是否在曲线上;如何快速记数学公式小学公式中,会存在大量平面几何的公式,比如三角形周长及面积公式,或是长方形周长及面积公式,圆形周长及面积公式等等,对于这类平面几何公式,可以引导孩子结合相应的图形具象地记忆,比如等腰三角形周长就是由两条相等的腰加上底边的长度,通过绘图可以更加直观地看出如何相加。
高职高考数学考重点公式大全

重点公式 第零章一、()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a二、因式分解常用的公式222)(2b a b ab a ±=+± ))((22b a b a b a -+=- ))((2233b ab a b a b a +±=±三、分式:除式中含有字母的有理式叫分式,分式有意义的条件是分母不零 1.分式的基本性质:M B M A B A ⨯⨯=MB MA B A ÷÷=(M 为整式,且0≠M ) 2.分式的运算:加减法:c b a c b c a ±=± bd bc ad d c b a ±=± 乘除法:bd ac d c b a =⋅ bcadc d b a d c b a =⨯=÷乘方:n nn ba b a =)( (n 为正整数)四、1.一元二次方程的求根公式:aac b b x 242-±-= (042≥-ac b )2.韦达定理:a b x x -=+21;ac x x =⋅21 第一章一、非空集合A 有:子集:n2个;真子集:12-n个;非空真子集个数:22-n个 二、两个实数大小的比较b a b a >⇔>-0 b a b a =⇔=-0 b a b a <⇔<-0第二章一、不等式的性质 1.对称性:a b b a <⇔> 2.传递性:c a c b b a <⇔>>, 3.(同加)m b m a b a +>+⇒>4. bc ac c b a >⇒>>0, bc ac c b a =⇒=>0, bc ac c b a <⇒<>0,5.(1) 加法运算(同向加):d b c a d c b a +>+⇒>>,(2)减法运算:统一成加法运算c b d a c d b a d c b a ->-⇒->->⇒>>,, 6.(1)(正向同乘) bd ac d c b a >⇒>>>>0,0 (2)除法运算:统一乘法运算0011,00,0>>⇒>>>>⇒>>>>cbd a c d b a d c b a 7.乘方运算(正乘方):)1,(0>∈>⇒>>+n N n b a b a nn且 8.开方运算(正开方):)1,(0>∈>⇒>>+n N n b a b a n n且9.(同号倒) ba ab b a 110,<⇒>> 二、均值定理1.时取等号当且仅当其中b a R b a ab ba =∈≥++,,,22. 时取等号当且仅当其中c b a R c b a abc c b a ==∈≥+++,,,,33三、重要不等式 1. 0)(2≥+b a2. 时取等号当且仅当其中b a R b a ab b a =∈≥+,,,2223. )0,0,0(3333>>>≥++c b a abc c b a第三章 一、1.正比例函数时为减函数时为增函数,当当00),0()(<>≠=k k k kx x f2.一次函数时为减函数时为增函数,当当00),0()(<>≠+=k k k b kx x f),0()(.3≠=k xkx f 反比例函数)上是减函数,,)和(,函数在区间(时当∞+∞->00,0k )上是增函数,)和(,时,函数在区间(当∞+∞-<000k时,函数为增函数时,函数为减函数,当当且对数函数110),10(log y 4.a ><<≠>=a a a a x 时,函数为增函数时,函数为减函数,当当且指数函数110),10(y 5.><<≠>=a a a a a x二、函数)0(2≠++=a c bx ax y 叫做二次函数 三、二次函数的图像是一条抛物线四、任何一个二次函数)0(2≠++=a c bx ax y 都可把它的解析式配方为顶点式;ab ac a b x a y 44)2(22-++=性质1.图像的顶点坐标为)44,2(2a b ac a b --,对称轴是直线abx 2-= 2.当0>a ,函数在区间)2,(a b --∞上是减函数,在),2(+∞-a b上是增函数, 当0<a ,函数在区间),2(+∞-a b 上是减函数,在)2,(ab--∞上是增函数,3.最值(1)当0>a ,函数图像开口向上,当a bx 2-=时,a b ac y 442min -=(2)当0<a ,函数图像开口向下,当abx 2-=时,a b ac y 442max -=[]说明1.我们研究二次函数的性质常用的方法有两种:配方法和公式法2.无论是利用公式法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴,但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向 五、常见函数的表达式:1.正比例函数表达式:)0(≠=k kx y2.反比例函数表达式:)0(≠=k xky 3.一次函数表达式:)0(≠+=k b kx y 4.二次函数表达式:一般式:)0(2≠++=a c bx ax y顶点式:为抛物线顶点其中),(),0()(2n m a n m x a y ≠+-=两根式:c bx ax x x x x x x a y ++--=22121),)((为二次方程、其中的两根,或函数与x 轴的交点的横坐标第四章一、幂的有关概念1.正整数指数幂:)(+∈=⋅N n a a a a nn个2.零指数幂:)0(,10≠=a a 3.负整数指数幂:),0(,1+∈≠=-N n a aan n4.正分数指数幂:)1,,,0(,>∈≥=+n N m n a a a n m nm5.负分数指数幂:)1,,,0(,1>∈>=+-n N m n a aanmnm三、实数指数幂的运算法则 1.nm n m a a a +=⋅2.mnn m aa =)(3.)0,0,()(>>∈⋅=⋅b a R n m b a b a nnn、注 四、函数),10(R x a a a y x∈≠>=且叫做指数函数五、一般地,指数函数)1,0(≠>=a a a y x在其底数101<<>a a 及这两种情况下的图像和性质如下表所示:1>a (1)R x ∈(2)0>y(3)函数的图像都通过点(0,1) (4)在),(+∞-∞上是增函数(5)当100;10<<<>>y x y x 时,当时,10<<a (1)R x ∈(2)0>y(3)函数的图像都通过点(0,1) (4)在),(+∞-∞上是减函数(5)当10;100><<<>y x y x 时,当时,六、对数概念如果)10(≠>=a a N a b且,那么b N N a b a =log 的对数,记作为底叫做以,其中叫做真数叫做底,N a特别底,以10为底的对数叫做常用对数,N N lg log 10可简记作 七、对数的性质1.1的对数等于零,即)10(01log ≠>=a a a 且2.底的对数等于1,即)10(1log ≠>=a a a a 且3.零和负数没有对数 八、积、商、幂的对数:1.)0,0,10(log log )(log >>≠>+=N M a a N M MN a a a 且2. )0,0,10(log log )(log >>≠>-=N M a a N M NMa a a 且 3. )0,10(log log >≠>=M a a M a M a aa 且九、换底公式:)0,1,10,0(log log log >≠≠>>=N b a b a bMN a a b 且十、对数恒等式:)0,10(log >≠>=N a a N aNa 且十一、对数函数:形如)0,1,0(log >≠>=x a a x y a 的函数我们称为对数函数十二、一般地,对数函数)1,0(log ≠>=a a x y a 在其底数101<<>a a 及这两种情况下的图像和性质如下表所示:1>a (1)0>x(2)R y ∈(3)函数的图像都通过点(1,0) (4)在),0(+∞上是增函数(5)当010;01<<<>>y x y x 时,当时,10<<a (1)0>x(2)R y ∈(3)函数的图像都通过点(1,0) (4)在),0(+∞上是减函数(5)当010;01><<<>y x y x 时,当时, 十三、指数方程及解法 1.定义法:b x f b aa x f log )()(=⇔=2.同底比较法:)()()()(x g x f a a x g x f =⇔=3.换元法:[]x t c bt t t a c a b a x f x f x f 后再求求得得可设,002)()(2)(=++=⇔=+⋅+十四、对数方程及解法 1.定义法:⎩⎨⎧=>⇔=ba ax f x f b x f )(0)()(log 2.同底比较法:⎪⎩⎪⎨⎧=>>⇔=)()(0)(0)()(log )(log x g x f x g x f x g x f a a3.换元法形如:[]0)(log 0)(log )(log 22=++=⇔=++c bt t t x f c x g b x f a a a 得可设第五章一、利用数列的前{}的通项公式:之间的关系求出数列与项和n n a n S nn n a a a a S ++++= 321 ⎩⎨⎧≥-==-)2(,)1(,11n S S n S a n nn[]说明这里是用两个式子联合起来表示的,切莫忘记前一个式子,事实上,当1=n 时,001,S S S n 而=-没有意义,因而第二个式子也无意义二、等差数列定义如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数叫做公差,记为)(,1++∈-=N n a a d d n n 即 等差数列的一般形式为 ,2,,111d a d a a ++ 三、等差数列通项公式d n a a n )1(1-+=四、等差数列前n 项和公式记n n a a a a S ++++= 321,则d n n na S a a n S n n n 2)1(2)(11-+=+=或 []说明在n nS an d a ,,,,1五个量中,已知任意三个量可求出另两的量,即“知三求二”五、等差中项对给定的实数b a A b A a A b a 与叫做成等差数列,则称使得,如果插入数与,, 的等差中项,且b a A ba A +=+=22或 六、等差数列的性质1.在等差数列中,若公差0=d ,则此数列为常数列;若0>d ,则此数列为递增数列;若0<d ,则此数列为递减数列2.在等差数列中,),,()(n m N n m nm a a d d n m a a nm n m ≠∈--=-=-+或3. 在等差数列中,若正整数q p n m ,,,满足q p n m +=+,则有q p n m a a a a +=+4. 在等差数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成一个新的等差数列,如 ,,,531a a a 仍然是等差数列5. 在等差数列中,每连续m 项之和构成的数列仍然是等差数列,如654321,,a a a a a a +++仍然是等差数列6. 有穷等差数列中,与首末两端距离相等的两项之和相等,并等于首末两项之和,若项数为奇数,还等于中间项的2倍,即中a a a a a a a a a n p n p n n 2112312=+=+==+=++---[]说明在三个成等差数列的数中,一般设为:d a a d a +-,,七、等比数列定义如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,这个数列就叫做等比数列,这个常数叫做公比,记为)(,1++∈=N n a a q q nn 即 等比数列的一般形式为 ,,,2111q a q a a 八、等比数列通项公式)0(11≠=-q q a a n n九、等比数列前n 项和公式记n n a a a a S ++++= 321,则)1(1)1(1)1(11≠--=≠--=q qq a a S q q q a S n n n n 或 []说明1.以上的两个式子都是针对1≠q 的情况,当1=q 时,数列为常数列,故1na Sn=2.在n n S a n d a ,,,,1五个量中,已知任意三个量可求出另两的量,即“知三求二” 十、等差中项对给定的实数b a G b G a G b a 与叫做成等比数列,则称使得,如果插入数与,, 的等比中项,且ab G ab G ±==或2[]说明1.b a 、两个实数必须是同号的,即0>ab ,这时b a 、才有等比中项2.其中的一个值ab ,当b a 与是正数时,有称为b a 与的几何平均数 十一、等比数列的性质1.在等比数列中,若公比1=q ,则此数列为常数列;若10,01,011<<<>>q a q a 或,则此数列为递增数列;若1,010,011><<<>q a q a 或,则此数列为递减数列2.在等比数列中,),,(n m N n m q a a q a a n m n m n m nm≠∈==+--或 3. 在等比数列中,若正整数q p n m ,,,满足q p n m +=+,则有q p n m a a a a =(特殊地,若2,2p n m a a a p n m ==+则)4. 在等比数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成一个新的等比数列,如 ,,,741a a a 仍然是等比数列5. 有穷等比数列中,与首末两端距离相等的两项之和相等,并等于首末两项之积,若项数为奇数,还等于中间项的平方,即2112312中a a a a a a a a a n k n k n n =====+---6. 在等比数列中,每连续m 项之和(积)构成的数列仍然是等比数列如 654321,,a a a a a a +++仍然是等比数列; 654321,,a a a a a a 也仍然是等比数列[]说明在三个成等比数列的数中,一般设为:aq a qa ,,第六章一、弧度π=0180 二、弧长公式:)(为弧度数ααr l⋅=三、扇形的面积公式:)(21212为弧度数扇形ααr lr S ⋅== 四、任意角的三角函数的定义定义:在平面直角坐标系中,设点α是角),(y x P 的终边上的任意一点,且该点到原点的距离为)0(>r r ,则yrx r y x x y r x r y ======ααααααcsc ,sec ,cot ,tan ,cos ,sin 五、三角函数的符号七、平方关系:1cot csc ,1tan sec ,1cos sin 222222=-=-=+αααααα 八、商数关系:ααααααcot sin cos ,tan cos sin == 九、倒数关系:1cos sec ,1sin csc ,1cot tan =⋅=⋅=⋅αααααα 十、诱导公式:1. ααααsec )sec(,cos )cos(=-=-2.终边相同的角,其同名三角函数值同3.奇变偶不变,符号看象限十一、两角和与差的三角函数的公式βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =± βαβαβαtan tan 1tan tan )tan( ±=±十二、倍角公式αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=十三、半角公式2cos 12sinαα-±= 2cos 12cos αα+±= ααααααααsin cos 1cos 1sin 2tan cos 1cos 12tan-=+=+-±=或十四、三角函数的图像与性质x y sin =图像定义式:R 值域:[]1,1-周期性:最小正周期π2=T 奇偶性:x x sin )sin(-=-奇函数 单调性:在上递增Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ22,22在上递减Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ223,22x y cos =图像定义式:R 值域:[]1,1-周期性:最小正周期π2=T 奇偶性:x x cos )cos(=-偶函数单调性:在[]上递增Z k k k ∈+-πππ2,2在[]上递减Z k k k ∈+πππ2,2x y tan =图像定义式: ⎭⎬⎫⎩⎨⎧∈⋅+≠Z k k x x ,2ππ值域:R周期性:最小正周期π=T 奇偶性:x x tan )tan(-=-奇函数 单调性:在每个区间上都是递增Z k k k ∈++-)2,2(ππππ十五、正弦性函数:k x A y ++=)sin(ϕω ,最小值:最大值:k A k A +-+, ϖπ2=T 最小正周期:十六、余弦性函数: k x A y ++=)cos(ϕω ,最小值:最大值:k A k A +-+, ϖπ2=T 最小正周期:十七、正切性函数: k x A y ++=)tan(ϕω ϖπ=T 最小正周期: 十八、辅助公式:)sin(cos sin 22ϕααα++=+=b a b a y (其中ab =αtan ) 十九、三角形中的边角关系 1.π=++C B A2.大边对大角,大角对大边3.直角三角形中:1sin ,sin ,sin 2222===+===+C cbB c a A b a cC B A 、、π二十、余弦定理A bc c b a cos 2222-+= bca cb A 2cos 222-+=B ac c a b cos 2222-+= acb c a B 2cos 222-+=C ab b a c cos 2222-+= abc b a C 2cos 222-+=二十一、正弦定理)(2sin sin sin 为三角形外接圆的半径其中r r CcB b A a === 二十二、三角形面积B ca A bcC ab S ABC sin 21sin 21sin 21===∆第七章 一、运算律若为实数,则、μλ 1.a a ⋅=)()(λμμλ 2. a a a μλμλ+=+)( 3. b a b a λλλ⋅=+)([]说明数乘向量的运算律与实数的运算律类似二、向量平行的充要条件若b a b a b λλ=⇔≠,使存在唯一实数则//,0[]说明当b a b //,0,显然对任意实数λ=三、向量内积的概念与性质 1.两向量的夹角已知两个非零向量b a 与,作,,b OB a OA ==则AOB ∠是向量b a 与规定01800≤≤[]说明①b a 与0②b a 与0180③b a ⊥0902.内积的定义b a =⋅[]说明①b a ⋅的结果是一个实数,可以等于正数、负数、零叫做a b 在方向上正射影的数量 3.内积的性质①如果e 是单位向量,则a e e a =⋅=⋅ ②0=⋅⇔⊥b a b a③a a ==⋅④b a =⑤b a ≤⋅ 四、向量内积的运算律 1. a b b a ⋅=⋅2. )()()(b a b a b a λλλ⋅=⋅=⋅3. c b c a c b a ⋅+⋅=⋅+)([]说明一般地,)()(c b a c b a ⋅⋅≠⋅+,也就是说,向量内积没有“乘法的结合律”五、设A 、B 两点的坐标分别是),)(,(2211y x y x 则 ),(),(),(12121122y y x x y x y x AB --=-= 六、向量直角坐标运算1.设),(21a a a =,),(21b b b =则),(),(),(22112121b a b a b b a a b a ±±=±=± 2.),(),(2121a a a a a λλλλ==3.若),(21a a a =,),(21b b b =则2211b a b a b a +=⋅ 七、向量长度坐标运算1.若),(21a a a =2221a a +=2.若),(),(2211y x B y x A ,212212)()(y y x x -+-=[]说明也叫A 、B 两点的距离,记为BA d、,上式也叫两点距离公式八、中点公式设),(),(2211y x B y x A ,线段AB 的中点坐标为),(y x ,则2,22121y y y x x x +=+= 九、平移变换公式 点平移公式:若把点⎩⎨⎧+=+==201021000),,(),(),(a y y a x x y x P a a a y x P 则平移到点按向量十、两向量平行于垂直的条件 设),(21a a a =,),(21b b b =,则)00(0//2122111221≠≠=⇔=-⇔b b b a b a b a b a b a 且 02211=+⇔⊥b a b a b a十一、图像平移公式:一般地,函数)(x f y =的图像平移向量),(21a a a =后,得到的图像的函数表达式为)(12a x f a y -=-第八章一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x 轴的正方向所成的最小正角α,称为直线的倾斜角规定:当0//=α轴时,x l 倾斜角的范围是:πα≤≤02.直线的斜率:若α为直线l 的倾斜角,当2πα≠时,将αtan 叫做直线的斜率,记作:αtan =k ,当2πα=,直线的斜率不存在3.斜率的计算公式:①αtan =k②如果),(21v v v =为直线的一个方向斜率,且121,0v v k v =≠则 ③如果),(B A n =为直线的一个法向量,且BA kB -=≠则,0 ④如果),(),(2211y x N y x M 是直线上的两个点 ,且121221,x x y y k x x --=≠则二、直线的方程 1.直线方程一览表2.特殊的直线方程①平行于y 轴的直线方程:0x x = ②平行于x 轴的直线方程:0y y = ③过原点的直线方程:kx y =[]说明当一般式方程y x ,系数有为零时1. ,0:111=+C x A l ,0:222=+C x A l 则重合与或2121///l l l l212121//C C A A l l ≠⇔;212121/C C A A l l =⇔重合与 2. ,0:111=+C x A l ,0:222=+C x B l 则21l l ⊥四、待定系数法求直线方程已知直线l :0=++C By Ax ,则与l 平行的直线方程可设为:0=++D By Ax 与l 垂直的直线方程可设为:0=+-D Ay Bx 五、两直线的夹角1.定义:两条直线相交,组成两对对顶角,其中不大于2π的角叫做两条直线的夹角;当两直线平行或重合时,规定夹角为0,常用θ表示两直线的夹角 2.范围:20πθ≤≤3夹角公式:① 设0:1111=++C y B x A l ,0:2222=++C y B x A l 则222221212121cos B A B A B B A A +⋅++=θ②111:b x k y l +=,222:b x k y l +=则21121tan k k k k +-=θ六、点到直线的距离公式 1. 点到直线的距离公式设点),(000y x P 到直线l :0=++C By Ax 的距离为d ,则2200BA CBy Ax d +++=2. 两条平行直线间的距离公式设0:1111=++C y B x A l ,0:2222=++C y B x A l 的距离为d ,则2221BA C C d +-=七、定义:平面内,与定点的距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆的圆心,定长叫做圆的半径 八、圆的标准方程圆心在点),(b a C ,半径为r 的圆的标准方程是222)()(r b y a x =-+- 特殊地,圆心在坐标原点,半径为r 的圆的标准方程是222r y x =+九、圆的一般方程022=++++F Ey Dx y x把圆的一般方程化为标准方程的形式就是:44)2()2(2222FE D E y D x -+=+++1.当F E D 422-+>0时,方程表示一个圆的方程,圆心为(2D-,2E -)半径为2422F E D r -+=2. 当F E D 422-+=0时,方程表示一个点(2D-,2E -)3. 当F E D 422-+<0时,方程不表示任何图形 十、点与圆的位置关系对于点),(000y x P 和圆222)()(r b y a x =-+-或022=++++F Ey Dx y x ,点P 到圆心距离记作d1.点P在圆内⇔⇔<-+-22020)()(r b y a x r d F Ey Dx y x <⇔<++++0002020⇔在圆上点P .2⇔=-+-22020)()(r b y a x r d F Ey Dx y x =⇔=++++0002020 ⇔在圆外点P .3⇔>-+-22020)()(r b y a x r d F Ey Dx y x >⇔>++++0002020十一、圆与直线的位置关系直线l :0=++C By Ax ,圆C: 222)()(r b y a x =-+-有直线和圆的方程联系得到关于y x 或的一元二次方程,求出判别式∆1. 直线与圆相离⇔圆与直线没有公共点⇔∆<0⇔圆心到直线l 的距离r d >2. 直线与圆相切⇔圆与直线有一个公共点⇔∆=0⇔圆心到直线l 的距离r d =3. 直线与圆相交⇔圆与直线有两个公共点⇔∆>0⇔圆心到直线l 的距离r d <[]说明当直线与圆相离时,圆上的点到直线的最大距离=r d +,最小距离=r d -其中d 为圆心到直线的距离,知圆上的一点),(00y x P ,则过点P 的圆222)()(r b y a x =-+-的切线方程为:0))(())((0000=--+--b y y y a x x x 十二、圆与圆的位置关系圆221211)()(r b y a x C =-+-,圆21222222,)()(C C d R b y a x C ==-+-,1.外离r R d +>⇔ 2外切r R d +=⇔3.相交)(,r R r R d r R >+<<-⇔4.内切r R d -=⇔5.内含r R d -<⇔十三、椭圆定义:平面内,与两定点21F F 、的距离的和等于常数(大于21F F )的点轨迹叫做椭圆,定点21F F 、叫做椭圆的焦点,两焦点间的距离叫做焦距第二定义:平面内,与一个定点F 的距离和到一条定直线l 的距离的比是常数)10(<<e e 的点的轨迹叫做椭圆,定点F 叫做椭圆的一个焦点,定直线l 叫做与该焦点对应的准线(一个椭圆有两个焦点和两条准线)常数e 叫做椭圆的离心率十四、椭圆的标准方程和几何性质定义:M 为椭圆上的点)2(22121F F a a MF MF >=+ 焦点位置:x 轴 图形:标准方程:12222=+by a x参数关系:)0(222>>+=b a c b a 范围:b y a x ≤≤,对称性:对称轴:x 轴、y 轴 对称中心:原点 焦点:)0,()0,(21c F c F 、- 顶点:),0()0,(b B a A ±±、 轴长:长轴长a 2;短轴长b 2准线:ca x l 2:±=离心率:ac e =焦点位置:y 轴 图形:标准方程:12222=+bx a y参数关系:)0(222>>+=b a c b a 范围:a y b x ≤≤,对称性:对称轴:x 轴、y 轴 对称中心:原点 焦点:),0(),0(21c F c F 、- 顶点:)0,(),0(b B a A ±±、 轴长:长轴长a 2;短轴长b 2准线:ca y l 2:±=离心率:ac e =十五、双曲线定义:平面内,与定点21F F 、的距离的差的绝对值等于常数(大于0小于21F F )的点轨迹叫做双曲线,定点21F F 、叫做双曲线的焦点,两焦点间的距离叫做焦距第二定义:平面内,与一个定点的距离和到一条定直线的距离的比是常数)1(>e 的点的轨迹叫做双曲线,定点叫做双曲线的一个焦点,定直线叫做与该焦点对应的准线(双曲线有两个焦点和两条准线)常数e 叫做双曲线的离心率十六、双曲线的标准方程和几何性质定义:M 为双曲线上的点)20(22121F F a a MF MF <<=- 焦点位置:x 轴图形:标准方程:12222=-by a x 参数关系:)0,0(222>>+=b a b a c 范围:R y a x ∈≥,对称性:对称轴:x 轴、y 轴 对称中心:原点焦点:)0,()0,(21c F c F 、-顶点:)0,()0,(21a A a A 、-轴长:实轴长a 2;虚轴长b 2 准线:ca x l 2:±= 渐近线:x a b y ±= 离心率:ac e =焦点位置:y 轴图形:标准方程:12222=-bx a y 参数关系:)0,0(222>>+=b a b a c范围:R x a y ∈≥,对称性:对称轴:x 轴、y 轴 对称中心:原点焦点:),0(),0(21c F c F 、-顶点:),0(),0(21a A a A 、-轴长:实轴长a 2;虚轴长b 2 准线:ca y l 2:±= 渐近线:x b a y ±= 离心率:ac e = 十七、抛物线定义:平面内与一个定点F 的距离和到一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线第二定义:平面内,与一个定点F 的距离和到一条定直线l 的距离的比是常数)1(=e 的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,常数e 叫做抛物线的离心率十八、抛物线的标准方程和几何性质焦点位置:x 轴正半轴图形:标准方程:px y 22=范围:R y x ∈≥,0对称性:对称轴:x 轴 焦点:)0,2(p F 顶点:原点:(0,0) 准线:2:p x l -= 离心率:1=e焦点位置:x 轴负半轴图形:标准方程:px y 22-=范围:R y x ∈≤,0对称性:对称轴:x 轴 焦点:)0,2(pF -顶点:原点:(0,0) 准线:2:px l =离心率:1=e焦点位置:y 轴正半轴图形:标准方程:py x 22=范围:0,≥∈y R x对称性:对称轴:y 轴 焦点:)2,0(pF顶点:原点:(0,0) 准线:2:py l -=离心率:1=e焦点位置:y 轴负半轴图形:标准方程:py x 22-=范围:0,≤∈y R x对称性:对称轴:y 轴 焦点:)2,0(pF -顶点:原点:(0,0) 准线:2:py l =离心率:1=e、。
职高高考数学公式大全

第 1 页 共 10 页1部分公式识记:1、解绝对值不等式:a a a -<>⇔>(...)(...)(...)或a a a <<-⇔<(...)(...) 0>a2、三角形3、4、的面积公式:A bc B ac C ab S sin 21sin 21sin 21===3、函数c bx ax y ++=2的最大值(或最小值):当a b x 2-=时,abac y 442-=最大(或最小) 4、组合数公式:m n m n m nC C C 11+-=+、mn nm n C C -= 5、三角函数的定义:r y =αsin ,r x =αcos ,xy =αtan ,其中22y x r +=。
6、正弦定理:CcB b A a sin sin sin ==,余弦定理:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 7、在三角形ABC 中,c b a C B A ::sin :sin :sin = 8、)sin(cos sin 22ϕωωω++=+x b a x b x a ,最大值为22b a +,最小值为22b a +-,最小正周期:ωπ2=T9、等差数列的性质:d n m a a n m )(-=-,如d a a 325=- 10、和角差角公式:)sin(sin cos cos sin βαβαβα±=± )cos(sin sin cos cos βαβαβα±= 11、倍角公式:αααcos sin 22sin =ααα22sin 211cos 22cos -=-=12、⇔>0sin θθ是第一或第二象限的角,⇔<0sin θθ是第三或第四象限的角;⇔>0cos θθ是第一或第四象限的角,⇔<0cos θθ是第二或第三象限的角; ⇔>0tan θθ是第一或第三象限的角,⇔<0tan θθ是第二或第四象限的角 13、特殊角的三角函数值:2130sin =︒ 2245sin =︒ 2360sin =︒ 2330cos =︒ 2245cos =︒ 2160cos =︒21150sin =︒ 22135sin =︒ 23120sin =︒ 23150cos -=︒ 22135cos -=︒ 21120cos -=︒知识点回顾第一部分:集合与不等式【知识点】1、集合A 有n 个元素,则集合A 的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个;2、充分条件、必要条件、充要条件:(1)p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件如 p :(x+2)(x-3)=0 q :x=3∴q ⇒p ,q 为p 的充分条件,p 为q 的必要条件 (2)q p ⇒且p q ⇒,则p 是q 的充要条件,q 也是p 的充要条件 3、一元二次不等式的解法:若a 和b 分别是方程0))((=--b x a x 的两根,且a b <,则如:()()2303x x x -->⇒>或2x <, 0)3)(2(<--x x ⇒23x << 口诀:大于两边分(大于大的根,小于小的根),小于中间夹。
高职高考数学公式

高中高职数学常用公式 一. 集合与函数{}{}{}A x U x x A CB x A x x B A B x A x x B A B A A B B A U ∉∈=∈∈=∈∈==⇔⊆⊆且或且,,,|||二.指数与对数()()1,0111,0>∈>==>∈>=-n N n m a aaan N n m a a a nmnm nm n m n m ,,,,且1,01)0(1log log 0==≠=a a a aa()()R n M n M N M NMN M MN aNN N a a n a a a a a a a b b a N a ∈=-=⎪⎭⎫⎝⎛+===log log log log log log log log log log log log ,三. 数列(1)等差数列()()()d n n na a a n S a a a a l k n m b a A b A a dn a a d a a n n l k n m n n n 1212211111-+=+=+=+⇒+=++=⇒-+==-+成等差数列,,(2)等比数列lk n m n n a a a a l k n m ab G b G a q a a =⇒+=+=⇒=-211成等比数列,,()()()S a q q q na q n n =--≠=⎧⎨⎪⎩⎪111111四. 不等式bc ac c b a cb c a b a c a c b b a ab b a >⇒>>+>+⇒>>⇒>><⇔>0,,bc ac c b a <⇒<>0,五. 三角函数1.三角函数的定义和符号法则):(t a n c o s s i n 22S T C y x r xy r x r y 全符号法则+====ααα2. 同角三角函数关系式:αααααc o ss i n t a n :1c o s s i n :22==+商数关系平方关系3. 诱导公式()()()()()()()()()s i n s i n cos cos tan tan cos cos sin sin tan tan sin sin cos cos tan tan k k k ⋅︒+=⋅︒+=⋅︒+=-=-=--=-︒±=︒±=-︒±=±360360360180180180αααααααααααααααααα()()()符号看象限名称不变,tan 360tan cos 360cos sin 360sin αααααα-=-︒=-︒-=-︒六. 向量运算向量的数量积及性质,及坐标运算 数量积(内积):2121cos y y x x b a b a +==⋅θ主要公式:(1)a b a b ⊥⇔⋅=0 (2)cos θ=⋅a ba b0),(),,()3(122121212211=-⇔=+⇔⊥==y x y x y y x x b a y x y x2121y x a a +=∙=七. 直线和圆1. 直线方程:()0:::11≠=+++=-=-A C By Ax bkx y x x k y y 一般式斜截式点斜式斜率 B Cb B A k -=-=截距,1212x x y y k --=斜率公式2.两点间的距离公式()()21221221y y x x P P -+-=中点坐标公式:x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪1212223. 两直线关系l l A A B B C C 12121212//⇔=≠或k k 12=且b b 12≠l l A A B B 1212120⊥⇔+=或k k 121=- 与直线Ax+By+C=0平行的直线可设为Ax+By+m=0与直线Ax+By+C=0垂直的直线可设为 Bx-Ay+m=04 点到直线的距离d Ax By C A B=+++00225.圆的方程F E D r E D F Ey Dx y x r b x a x 421)2,2(0:)()(:2222222-+=--=++++=-+-半径圆心一般方程标准方程6直线和圆的位置关系(1) 几何法:圆心到直线的距离d 和半径r d>r 相离 d=r 相切 d<r 相交 (2) 代数法:直线和圆的方程组成方程组消去一个未知数转化为一元二次方程 △<0 相离 △=0相切 △>0 相交。
职高高考数学公式大全

CCnC 22n n 、C部分公式识记:1、解绝对值不等式:(...) a(...)a 或(...)asin1501 sin 13522 3 sin12022cos1503 cos13522 cos1201222、三角形3、(...)aa (...) aa 0第一部分:集合与不等式【知识点】知识点回顾4、的面积公式: S21 absin C2 1acsin B 21bcsin A 2b4 acb1、集合 A 有 n 个元素,则集合 A 的子集有 2n 个,真子集有 2n1个,非空真子3、函数 yaxbx c 的最大值(或最小值) :当 x时, y 2a最大(或最小)= 4a集有 2n2个;4、组合数公式: m 1mmm n m n 1 n2、充分条件、必要条件、充要条件:(1)p q ,则 p 是 q 的充分条件, q 是 p 的必要条件5、三角函数的定义:siny , cos x , tany,其中 rxy 。
如 p :( x+2 )( x-3 ) =0 q : x=3∴ q p , q 为 p 的充分条件, p 为 q 的必要条件rra b c x a2 b 2c 22bc c os A (2) pq 且q p ,则 p 是 q 的充要条件, q 也是 p 的充要条件6、正弦定理:sin Asin Bsin C,余弦定理:b2 a2 c 2 2ac cos B 3、一元二次不等式的解法:7、在三角形 ABC 中, sin A: sin B : sin Cc 2a :b : ca2b22ab cos C若 a 和 b 分别是方程 ( x a )( x b) 0 的两根,且 a b ,则8 、 a sinxb cos xa2b 2sin( x) , 最 大 值 为a 2b 2, 最 小 值 为x a x b0 的解集为 x b 或 x a , x a x b 0 的解集为 a x ba2b22,最小正周期: T如:x 2 x 3x 3或 x 2,( x 2)( x 3) 02 x 39、等差数列的性质:a ma n(m n )d,如 a 5a 23d 口诀:大于两边分(大于大的根,小于小的根),小于中间夹。
2024年广东高职考数学公式

2024年广东高职考数学公式
1.二次方程公式(Quadratic Equation Formula):
解一般形式的二次方程ax^2 + bx + c = 0,其中a ≠ 0:
x = (—b ± √(b^2 — 4ac)) / (2a)
拓展:二次方程的解与图像的关系,以及如何利用二次方程解决实际问题。
2.三角函数公式(Trigonometric Function Formulas):
常见的三角函数包括正弦(sine),余弦(cosine),正切(tangent),它们的基本关系是:
sin^2θ + cos^2θ = 1
拓展:三角函数的周期性、标准角及其在几何和物理问题中的应用。
3.对数公式(Logarithmic Formula):
常用的对数公式是:
log(a*b) = log(a) + log(b)
拓展:对数的性质与运用,如对数与指数的关系、对数在数据压缩和放大方面的应用等。
4.概率公式(Probability Formulas):
常见的概率公式包括加法法则、乘法法则等,用于计算事件发生的可能性和概率:
P(A ∪ B) = P(A) + P(B)— P(A ∩ B)(加法法则)P(A ∩ B) = P(A) * P(B|A)(乘法法则)
拓展:条件概率、独立事件、概率分布等概率知识的深入学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职类高考数学公式汇集一、集合
实数集R 交集:A∩B={x|x∈A且x∈B } 空集∅并集:A∪B={x|x∈A或x∈B} 有理数集Q补集:CuA={x|x∈U且x∉A} 自然数集N 充分条件:条件p=>结论q
正整数集N* 必要条件: 条件p<=结论q
整数集Z 充要条件:条件p<=>结论q 二、不等式
三、 函数y=f(x)
函数的奇偶性
奇函数:设函数的定义域为数集D ,如果对于任意的,都有-x ∈D 且f (-x )=-f (x ),那么函数f (x )叫做奇函数。
偶函数:设函数的定义域为数集D ,如果对于任意的,都有-x ∈D 且f (-x )=f (x ),那么函数f (x )叫做奇函数。
不具有奇偶性的函数叫做非奇非偶。
四、 指数函数与对数函数
分数指数幂:n
m
a =n m
a n
m a
-
=
n
m
a
1
实数指数幂:p a ·q a =q p a (p a )q =pq a (ab )p =p p b a 幂函数:y =a x (α∈R )
指数函数:y =x a (a>0且a ≠1) 性质: 1) 函数的定义域为R ,域值为(0,+∞); 2) 当x=0时,函数值y =1;
3)
当a>1时,函数在(-∞,+∞)内是增函数,当0<a<1时,函数在(-∞,
+∞)内是减函数。
对数:b a =N <=>N
a log =b
性质:1)a log 1=0 2)a a
log
=1
3)N >0,即零和负数没有对数 常用对数:N
10
log 简记为N
lg
自然对数:以无理数e (e=2.71928……)为底数的对数,N
e
log 简记为N
ln
积、伤、幂的对数:
)lg(MN =M
lg +N
lg
(M >0,N >0)
N
M lg
=M
lg
-N
lg
n
M
lg =M n lg
对数函数:y =x a
log
性质: 1) 函数的定义域为(0,+∞),域值为R ; 2) 当x=1时,函数值y=0;
4) 当a>1时,函数在(-∞,+∞)内是增函数,当0<a<1时,函数在(-∞, 3) +∞)内是减函数。
五、 三角函数
角α终边相同的角的集合:{β|β=α+k ·360°,k ∈Z }
+ +
-
- + +
- -
+ + -
-
αsin
αcos
αtan
界限角的三角函数值。