七年级数学上册 第3章 一元一次方程(全章课件)

合集下载

3.2 一元一次方程及其解法(课件)沪科版(2024)数学七年级上册

3.2 一元一次方程及其解法(课件)沪科版(2024)数学七年级上册

(2) 合并同类项: 把方程变形为 ax=b(a, b 为常数,且a
≠ 0)的形式;
(3)系数化为 1: 得到方程的解 x= ba(a ≠ 0).
知2-讲
解法提醒 移项一般习惯上将含未知数的项放在等号
的左边,常数项放在等号的右边 .若移项时为计 算简便不是这样放置的,在合并时可直接交换 过来,这不需要变号,因为等式有对称性 .
知1-练
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2

(6) 2x2+5=2(x2-x) .
解题秘方:利用一元一次方程的定义进行判断 .
知1-练
解: (1) 含有两个未知数,不是一元一次方程; (2) 化简后 x 的系数为 0,不是一元一次方程; (3) 未知数 x 的最高次数为 2,不是一元一次方程; (4) 等号左边不是整式,不是一元一次方程; (5)(6) 是一元一次方程 . 判断一元一次方程不仅要看
例3 解方程:8-3x=x+6.
知2-练
解题秘方:利用移项解一元一次方程的步骤(移项 →合并同类项→系数化为 1)解方程.
解: 移项,得 -3x-x=6 - 8. 合并同类项,得 -4x=-2.
两边都除以 - 4,得 x= 12.
3-1.解方程:
知2-练
(1)5x-2=7x+8;
(2) -2x-23 =x+ 13.
是乘法分配律 . 2. 解方程中的去括号法则与整式运算中的去括
号法则相同 .
例4 解方程: 2(x-3) -3(3x-1) =6(1-x) .

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

3人教版七年级数学上册第三章 3.1.2 等式的性质 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.2 等式的性质 优秀教学PPT课件
通常用a b表示一般的等式.
试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,

2024七年级数学上册第3章3.2一元一次方程及其解法第2课时用去分母法解一元一次方程课件新版沪科版

2024七年级数学上册第3章3.2一元一次方程及其解法第2课时用去分母法解一元一次方程课件新版沪科版


C
6,其错误的原因是(
)
A. 分母的最小公倍数找错
B. 去分母时,漏乘了分母为1的项
C. 去分母时分子部分的多项式未添括号,导致符号错误
D. 去分母时,分子未乘相应的数
返回
1
2
3
4
5
6
7
8
9
10
11
知识点2
用去分母法解一元一次方程
4. [2024·合肥四十五中月考]根据下列解方程
.+.
1
2
3
4
5
6
7
8
9
10
11
【解】将2 x +3, x -2分别看成一个整体,移项、合并
同类项,得


(2 x +3)= ( x -2),




即 (2 x +3)= ( x -2).


去分母,得2(2 x +3)= x -2.
去括号,得4 x +6= x -2.
移项、合并同类项,得3 x =-8.
返回
1
2
3
4
5
6
7
8
9
10
11
6. [母题 教材P100例3]解下列方程:
+

+
-1=

.



【解】去分母,得10(3 x +2)-20=5(2 x -1)-4(2 x +1).
去括号,得30 x +20-20=10 x -5-8 x -4.移项、合并

同类项,得28 x =-9.系数化为1,得 x =- .


系数化为1,得 x =- .

2024七年级数学上册第3章一元一次方程及其解法第1课时用移项法去括号法解一元一次方程课件新版沪科版

2024七年级数学上册第3章一元一次方程及其解法第1课时用移项法去括号法解一元一次方程课件新版沪科版

所以(-2)★3
=(-2)×32+2×(-2)×3+(-2)
=(-2)×9+2×(-2)×3+(-2)
=-18+(-12)+(-2)
=-32.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(2)若
+


★(-2)=16,求 a 的值.
【解】因为 a ★ b = ab2+2 ab + a ,
7
8
9
10
11
12
13
14
15
16
17
10. [新考向 传承数学文化]我国古代数学著作《孙子算经》
中有这样一道题,原文如下:今有百鹿入城,家取一
鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大
意为:今有100头鹿进城,每家取一头鹿,没有取完,剩
下的鹿每3家共取一头,恰好取完,问:城中有多少户人
家?在这个问题中,城中人家的户数为
所以
+
★3

+
+
+
2

×3 +2×
×3+




+
+
×9+3( a +1)+


=8 a +8.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
因为
+


★(-2)=16,
所以(8 a +8)★(-2)=16,

人教版七年级上册(新)第三章《一元一次方程》说课课件(30张PPT)

人教版七年级上册(新)第三章《一元一次方程》说课课件(30张PPT)


本节课是在学生已具备的感性认识基础上,重点研究什么是方程,一元
一次方程和找相等关系列方程。通过对这一部分内容的学习,使学生认识到 方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步, 让学生充分感受到方程作为刻画现实世界有效模型的意义,体会列方程中蕴 涵的“数学建模思想”。
2、教学目标分析
础.它一方面是对小学学段学习的有关算术方法解题和简单方程的运 用的进一步发展,也是今后学习二元一次方程组、一元二次方程、函 数等知识的基础,有承上启下的作用。
1、教材的地位和作用
《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程
的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学 模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在 解决问题中与他人合作的重要性,获得解决问题的经验.
(1)一台计算机已使用1700小时,预计每月再使用150小时, 经过多少月这台计算机的使用时间达到规定的检修时间2450小时? (2)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍, 长方形的长、宽各应是多少? (3)某校女生占全校学生数的52%,比男生多80人,这个学校有多 少学生?
情感目标
程是刻画现实世界的一种有效的数学模型,初步体会建立
数学模型的思想。
3、教材重点、难点分析
知道什么是方程,一元一次方程,使学生理解问题情
境,探究情境中包含的数量关系,最终用方程来描
Hale Waihona Puke 重点述和刻画事物间的相等关系。
难点
思维习惯的转变, 从问题情境中找等量关系列方程
二、学情分析

学生刚刚进入中学,理性思维的发展还很有限,他们在知识经 验、心理品质等方面依然保留有小学生的特点:天真活泼,对新鲜 事物很感兴趣,具有强烈的求知欲,形象思维已经比较成熟,但抽 象思维能力还比较薄弱。

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

人教版_ 七年级上册_第三章 3.1.1一元一次方程课件(共27张PPT)

问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1
解: (1)把m=2分别代入方程的左边和 右边. 左边= 8 , 右边= 4 因为左边 ≠ , 右边,
所以m=2 不是 原方程的解.
问题6: 判断下列m的值是不是方程3m+2=6–m的解? (1)m=2 (2)m=1 解: (2)把m=1分别代入方程的左边和右边 . 左边= 5 ,
一切问题都可以转化为数 学问题,一切数学问题都可以 转化为代数问题,而一切代数 问题又都可以转化为方程。因 此,一旦解决了方程问题,一 切问题将迎刃而解。
——笛卡儿
笛卡儿,1596年3月 31日生于法国都兰城。 笛卡儿是伟大的哲学 家、物理学家、数学 家、生理学家,解析 几何的创始人。
问题7:
根据下列问题,设未知数,列出方程。 (1)环形跑道一周长是400 m,沿跑道跑多少周, 可以跑3000 m? 解:设跑x周,依题意得, 400x=3000 (2)甲种铅笔每支0.3元,乙种铅笔每支0.6元, 用9元钱买了两种铅笔共20支,两种铅笔各买了 多少支? 解:设买甲种铅笔x支,乙种铅笔(20-x)支, 依题意得展
希腊数学家丢番图(公元3–4世纪) 的墓碑上记载着: 他生命的六分之一是幸福的童年; 再活了他生命的十二分之一,两颊长起了细细的胡须;
他结了婚,又度过了一生的七分之一;
再过五年,他有了儿子,感到很幸福; 可是儿子只活了他全部年龄的一半; 儿子死后,他在极度悲痛中过了四年,也与世长辞了。 根据以上信息,你能知道丢番图的寿命吗?
右边= 5 ,
因为左边 = 右边, 所以m=1 是 原方程的解. 使方程中等号左右两边相等的未知数的值, 叫做方程的解
中国人对方程的研究有悠久 的历史,“方程”一词最早出现 于《九章算术》.《九章算术》 全书共分九章,第八章就叫“方 程”. 宋元时期,中国数学家创立 了“天元术” ,即用“天元”表 示未知数进而建立方程,“立天 元一”相当于现在的“设未知数 x”. 14世纪初,我国元朝数学家 朱世杰创立了“四元术”,四元 指天、地、人、物,相当于四个 未知数.

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件

初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》课件

例 一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,
逆风飞行要3小时,求两城距离.
解:设飞机在无风时的速度为x km/h,
则在顺风中的速度为(x+24) km/h ,在逆风中的速度为(x-
根据题意,得
24)km/h.
17
6
+ 24 = 3( − 24).
解得 x=840.
若同时出发,则快者追上慢者时,快者用的时间=慢者用的时间.
3.航行问题
顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度.
顺风速度=无风速度+风速;逆风速度=无风速度-风速.
往返于A,B两地时,顺流(风)航程=逆流(风)航程.
甲、乙两运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往
返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A
点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为
4 m/s,则起跑后100 s内,两人相遇的次数为( B
A.5
B.4
C.3
100×2
解:设两人相遇的次数为x,依题意有

5+4
解得x=4.5,
因为 x为整数,
所以 x取4.
我们可以解决哪些实际问题呢?
例 一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返
回甲码头逆流而行,用了 2.5 h.已知水流的速度是 3 km/h,求
船在静水中的平均速度.
分析:等量关系为这艘船往返的路程相等,即
顺流速度___顺流时间___逆流速度___逆流时

×
×
间.
解:设船在静水中的平均速度为 x km/h,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/10/1
5、根据下列问题,设未知数,列出方程:
(1)、环形跑道一周长400m,沿跑道 跑多少周,可以跑3000m? (2)、甲种铅笔每枝0.3元,乙种铅笔 每枝0.6元,用9元钱买了两种铅笔共20 枝,两种铅笔各买了多少枝?
(3)、一个梯形的下底比上底多2㎝, 高是5㎝,面积是40㎝2,求上底.
0.7x=1400 式叫做 方程

2x-2=6
判断方程的两个关键要素:
2020/10/1
①有未知数 ②是等式
我回顾,我思考
3、判断下列各式哪些是方程?
①1+2=3
(×)
③x+y=2
√( )
⑤x²-1=0
(√)
⑦ 2 3x (√)
x 1
2020/10/1
②1+2x=4 √( )
④x+1
( ×)
⑥6a+8=3 (√)
方程的概念: 1.含有未知数 2.等式
2020/10/1
问题:你能通过观察求下列方程的解吗?
(1)3x – 5 = 22; (2)0.28 – 0.13y = 0.27y + 1. 第(1)题比较容易解答, 第(2)题较复杂,仅依靠观察来解比较复杂的方 程是有困难的。 因此,我们还要讨论怎样解方程。
2020/10/1
观察、思考:
+ -
归纳:等式就像平衡的天平,它具有与上面的
事实同样的性质。比如“8 =6+2”,我们在两边 都加上6,就有“8 + 6 = 6+2 + 6”;两边都减去11, 就有“8 – 11 =6+2 – 11”。
2020/10/1
问题1:你能用文字来叙述等式的这个性质吗? 等式性质1: 等式的两边加上(或减去)同一个数 (或式子),结果仍相等。
2020/10/1
智力闯关,谁是英雄
第一关 xk 1 21 0 是一元一次方程,则k=__2_____ 第二关: x|k| 21 0 是一元一次方程,则k=_1_或___-_1
第三关 : (k 1)x|k| 21 0 是一元一次方程,则k=_-_1:
第四关:(k 2)x2 kx 21 0 是一元一次方程,则k =__-_2_
3.1 从算式到方程
3.1.1 一元一次方程
2020/10/1
2020/10/1
2020/10/1
2020/10/1
我回顾,我思考
1、象这种用等号“=”来表
1+2=3
示相等关系的式子,
5=7-2
叫 等请式大家观察。左边的这
3+b=2b+1 4+x=7
些式子,看看它们有什
2、么象共这同样的特含征有?未知数的等
2020/10/1
1、通过本节的学习你有什么收获?
一种方法——列方程解决实际问题的方法; 三个概念——方程、一元一次方程、方程
的解;
2、在这部分学习中,你还有什么困难?
2020/10/1
自主探索~~~
上有20头、

下有52足,

问鸡兔各有

多少?

2020/10/1
2020/10/1
3.1.2 等式的性质
2020/10/1
我掌握,我巩固
1、方程(a+6)x2 +3x-8=7是关于x的一元一次方 程,则a= __-6___。
2、列方程:某数χ的相反数比它的 求某数。
解:-χ = χ+1
大1,
3、一元一次方程2x-3=5的解是( A )
A、4
B、5
C、6
D、7
2020/10/1
4、x=2是下列哪个方程的解? (1)(4). (1) 3x-1=2x+1 (2) 3x+1=2x-1 (3) 3x+2x-2=0 (4) x-2=0
2020/10/1
我探究,我发现
下面的三个方程: 4x=24, 1700+150x=2450, 0.52x-(1-0.52)x=80
有什么共同点?
①都只含有一个未知数; 一②元未一知次数方的程次:只数含都有是一1;个未知数(元),未知 ③数等的号次两数边都都是是1,整等式号;两边都是整式,这样 ④的方都是程方叫程一。元一次方程。
⑧5x+2≥0 (×)
讨论交流
算术方法: 列出的算式表示解题的计算过程,其 中只能 用已知数.对于较复杂的问题,列算式比 较困难. 列方程(代数方法): 方程是根据题中的等量关系 列出的等式.其中既含已知数,又含未未知数.使 问题的已知量与未知量之间的关系很容易表示, 解决问题就比较方便.
所以,从算术到方程是数学的进步.
2020/10/1
小试身手
练习二:判断下列式子是不是一元一次
方程?
①2x+9=50 (√)
②x+y=9
( ×)
③3x2-4+x=0 (×)
⑤2+x=9 (√)
⑦ 1 5(×) x3
④6y+4=y+8 ⑥x+2 ⑧3x+x+1=5
(√ ) (× ) ( √)
注意:一元一次方程中,只含有一个未知数,且未知数
如果a = b,那么a ±c = b ±c
的次数都是1,等号两边都是整式。
2020/10/1
思考
想一想:⑴使得方程4x=24成立的x的值为 多少?
当x=6时,方程4x=24成立。
(2)使得方程5x+2=12成立的x的值为多少? 当x=2时,方程5x+2=12成立。
方程的解:使方程中等号左右两边相等 的未知数的值叫方程的解。
2020/10/1
实践练习
x=1和x=5哪一个是方程1700+150x=2450的解?
解:当x=1时 方程的左边=1700+150×1 =1700+150=1850
方程的左边≠右边,所以x=1不是方程 1700+150x=2450的解。
当x=5时 方程的左边=1700+150×5=2450 方程的左边=右边,所以x=5是方程 1700+150x=2450的解。
2020/10/1
我探究,我发现
根据下列问题,设未知数并列出方程:
(1)用一根长为24cm的铁丝围成一个正方形, 正方形的边长是多少? (2)一台计算机已使用1700小时,预计每月再使 用150小时,经过多少个月,这台计算机的使用 时间达到规定的检修时间2450?
(3)某校女生占全体学生数的52%,比男生多80 人,这个学校有多少学生?
2020/10/1
①4+x=7, ② 2x, ③ 3x+1,
④ a+b=b+a, ⑤ a2+b2 ⑥ c=2πr
⑦ 1+2=3, ⑧ 2ab, ⑨ S= 1 ah,
3
2
⑩ 2x-3y
ห้องสมุดไป่ตู้
上述这组式子中,( ①④⑥⑦⑨)是等式, ( ②③⑤⑧⑩ ) 不是等式,为什么?
2020/10/1
什么是方程?
含有未知数的等式叫做方程.
相关文档
最新文档