射频同轴电缆驻波的影响分析

射频同轴电缆驻波的影响分析
射频同轴电缆驻波的影响分析

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

驻波在乐器中的应用研究

驻波在乐器中的应用研究 摘要:本文先从声学的基本理论研究开始,以弦振动为主体对驻波的产生、传播及引起的声学规律进行研究,再把这些原理应用到弦乐器中进行分析,从物理学的角度以吉他为例讨论了驻波在弦乐器中的应用。 关键字:声学;驻波;弦乐器;音乐 1.引言 声学是近代科学中发展最早、内容最丰富的学科之一,它是物理学的一个分支,是一门既古老又迅速发展着的学科。在19世纪末已发展成熟,对声学的研究达到高潮,其应用渗透到几乎所有重要的自然科学,与各门学科相互交叉,从而具有边缘学科的特点[1]。从历史上讲,声学的发展离不开音乐,我国如此在国外也是如此。我国古代曾侯乙编钟就是一组杰出的声学仪器,外国的亥姆霍兹发展声学也是与乐器联系在一起的。物理学的发展,在理论上、方法上或技术上都会用到音乐上,比如非线性理论、瞬态分析等。 乐器是什么?从物理的角度来看,它就是一种仪器,一种人造的为人们所用产生音乐声的仪器[2]。那么对于音乐从物理的角度来看,它的实质就是一种声波,要产生声波还得有相应的振动[3]。比如乐器吉他、二胡的弦振动都是利用了驻波的传播而发声,然而声学在物理学中“外在性”最强,所以具体事物要具体分析。 从古至今踊跃出许多的音乐家、乐器演奏家,现时的音乐已经深入到我们生活的许多方面,琴声、歌唱声、说话声,电话、电铃的响声……其中,音乐声占了很大的比重。由此可见,音乐是每个人、每个家庭生活不可缺少的一部分。可以想象,如果生活中没有了音乐,世界将会变成怎样!然而不是任何一种声音都可以叫做音乐,必须是一定音调的声音才可以算得上是音乐。那影响音调的因素又有哪些,它们又有什么样的规律?那么本文将以吉他来研究,从根本上说明其发声的物理本质。 2.弦乐器的发声 在声学中我们知道,声音是一种波,是由物体的振动产生的,声波使它附近

关于驻波若干问题

关于驻波若干问题 1. 驻波中能量的转化 驻波中各质点的能量包括动能和势能。在最大位移时,波腹和波节中各质点的瞬时速度为0,动能均为0,此时各质点的形变达到极大,其中波节的形变最大,所以能量以势能存在,势能主要集中于波节处。在平衡位置时,波腹和波节中各质点瞬时速度达到极大,动能达到极大值,但波腹处的振幅最大,故动能主要集中在波腹处,此时各质点形变为0,故势能为0。 纵观这1/4周期过程,能量在波腹和波节之间转移,各质点的势能转化为动能,波节处的势能逐渐转移到波腹处变为波腹的动能。 该过程类似于一个小球左右两端各连接一根橡皮绳,橡皮绳水平放置,两绳的另外一端固定,然后将小球竖直方向拉起一段距离,再放手。让球在橡皮绳拉力作用下上下来回摆动。如下图: 在最大位移时,弹簧的形变最大;在平衡位置时弹簧的形变最小。 2.驻波中能流的问题 课件中关于“驻波中没有净能量传递,能流密度为0”的表述容易引起误解。事实上,从上面的分析我们可以看出,在波腹和波节之间还是有能量转移的。但是平均起来看,的确没有净能量的传递,各处的平均能流密度为0,这是因为驻波是由两列等振幅相向的干涉波叠加而成,它们的平均能流密度大小相等,但方向相反。 详细研究后,我们会发现能流在波腹和波节之间来回流动,但没有能流通过波节和波腹转移出去。关于这点,我们可以从驻波各点的能流密度看出。 假设形成驻波的两个相向波分别为: 最大位移 平衡位置

12 cos ()cos ()x x u y A t y A t ωω=-???=+?? 则,这两列波的能流密度分别为: 22212221sin ()sin () x u x u i A u t i A u t ρωωρωω?=-??=-+?? 驻波上某点能流密度为二者之合: 2222122222[sin ()sin ()] sin 2sin 24sin sin 2x x u u x i i i A u t t A u t A u x t ρωωωρωωωπρωωλ=+=--+=-=- 可见,在4x k ππλ=,即4x k λ =时0i =。这意味着在波节和波腹处能流均为0, 能流只能在波腹和波节之间来回转换。 对于波节处能流密度为0(没有能流经过它向前传播),我们还有一个很好的理解,那就是驻波的波节始终不动。 3. 半波损失 产生两列传播相反的波形成驻波,通常依靠反射。波在均匀介质中传播时是不反射的,但在介质的边界面上就会发生反射。 波从波疏介质进入波密介质时,分界面处反射会有半波损失(或相位突变 π) ;而从波密介质进入波疏介质时,分界面处反射则不会由半波损失。为了理解这一点,我们必须引入“阻抗”的概念,每一种介质都有阻抗,我们用z 来表示。波从一个介质传播到另一介质,我们把前者的阻抗记为c z ,后者视作一个负载 L z 。对于自由端点,负载阻抗0L z =,而对于固定端点,L z →∞。波在介质面上反射时,反射波与入射波复振幅之比记为A R A ≡反 入。分析发现 c L c L z z R z z -=+ 当||1R =时,波在分界面发生全反射,入射波与反射波形成驻波;当||0R =,即负载阻抗L c z z =时,分界面不发生反射,全部能流为负载所吸收,此时称为

大学物理实验-驻波实验(原始数据与分析)

1、调节震动频率测横波波速数据记录 线密度m kg /10322.03-?=ρ;砝码质量m=40g ;张力F=0.39N ;弦长l=0.6m 。 半波数n 1 2 3 4 5 6 平均值 频率/Hz 36 61 84 111 147 167 )./(21-=s m n l γ γ 43.2 36.6 33.6 33.3 35.28 33.4 36.4 2、调节弦长测横波波速数据记录 线密度m kg /10322.03-?=ρ;砝码质量m=40g ;张力F=0.39N ;频率γ=150Hz 。 半波数n 1 2 3 4 5 6 平均值 l/m 0.12 0.24 0.36 0.48 0.60 0.72 )./(21-=s m n l γ γ 36 36 36 36 36 36 36 3、弦线上横波波长与张力关系测量数据记录 线密度m kg /10322.03-?=ρ;频率γ=150Hz 。 砝码质量m/kg 310- 20 30 40 50 60 70 张力F/N 0.2 0.3 0.4 0.5 0.6 0.7 半波数n 3 4 4 4 4 4 弦长l/m 0.216 0.353 0.394 0.429 0.477 0.498 波长m /λ 0.144 0.1765 0.197 0.2145 0.2385 0.249 λln -1.9 -1.7 -1.6 -1.5 -1.4 -1.3 F ln -1.6 -1.2 -0.9 -0.7 -0.5 -0.4 思考题答案: 1、1 3 .8.3410 322.039.0--=?= = s m F v ρ 2、图略。由图得斜率53.07 .11 .10.2=-+-=a 截距b=-1.1 理论值a=0.5 b=-0.99 相对误差:%6%1005.05.053.01=?-= E %11%10099 .099 .01.12=?-+-=E 3、原因: ①存在空气阻力 ②弦长长度的精确度 ③拨弦的方式和计算机采样的步数 改进:①在真空环境下完成②多次取值减少误差

国内常用同轴电缆尺寸表

国内常用同轴电缆尺寸表(RG系列) 电缆型号标称阻抗 Ω 直径尺寸Φ(mm) 内导体 绝缘层屏蔽层护套外径构成外径 软电缆和半刚电缆(MIL-C-17-F) RG-5A/U50单芯 1.29 4.60 6.30D8.33 RG-6A/U75单芯0.72 4.70 6.30D8.43 RG-8/U527×0.7 2 2.177.248.20S10.29 RG-9/U517×0.7 2 2.177.118.70D10.67 RG-10/U527×0.7 2 2.177.248.20S12.07* RG-11/U757×0.4 1.217.248.20S1029 RG-12/U757×0.4 1.217.248.20S12.07* RG-21/U53单芯 1.29 4.70 6.30D8.43 RG-55/U53.5单芯0.81 2.95 4.20D 5.23 RG-58/U53.5单芯0.81 2.95 3.60S 4.95 RG-59B/U75单芯0.58 3.71 4.85S 6.15 RG-140/U75单芯0.64 3.71 4.47S 5.92 RG-141A/ U 50单芯0.99 2.95 3.71S 4.83 RG-142B/ U 50单芯0.99 2.95 4.34D 4.95 RG-144/U757×0.4 5 1.357.258.38S10.40 RG-165/U507×0.8 2.407.258.64S10.40 RG-174/U507×0.1 6 0.48 1.52 2.24S 2.54 RG-178B/ U 507×0.10.300.91 1.37S 2.01 RG-179B/ U 757×0.10.30 1.60 2.13S 2.54 RG-187/U757×0.10.30 1.52 2.13S 2.79 RG-188A/ U 50 7×0.1 8 0.51 1.52 2.06S 2.79 RG-196/U507×0.10.300.86 1.37S 2.03 RG-212/U50单芯 1.44 4.70 6.30D8.43 RG-213/U507×0.75 2.267.258.64S10.29 RG-214/U507×0.7 2.267.259.14D10.80

浅谈射频同轴电缆

射频同轴电缆是用于传输射频和微波信号能量的。它是一种分布参数电路,其电长度是物理长度和传输速度的函数,这一点和低频电路有着本质的区别。 射频同轴电缆分为半刚,半柔和柔性电缆三种,不同的应用场合应选择不同类型的电缆。半刚和半柔电缆一般用于设备内部的互联;而在测试和测量领域,应采用柔性电缆。 半刚性电缆 顾名思义,这种电缆不容易被轻易弯曲成型,其外导体是采用铝管或者铜管制成,其射频泄漏非常小(小于-120dB),在系统中造成的信号串扰可以忽略不计。这种电缆的无源互调特性也是非常理想的。如果要弯曲到某种形状,需要专用的成型机或者手工的模具来完成。如此麻烦的加工工艺换来的是非常稳定的性能,半刚性电缆采用固态的聚四氟乙烯材料作为填充介质,这种材料具有非常稳定的温度特性,尤其在高温条件下,具有非常良好的相位稳定性。 半刚性电缆的成本高于半柔性电缆,大量应用于各种射频和微波系统中。 半柔性电缆 半柔性电缆是半刚性电缆的替代品,这种电缆的性能指标接近于半刚性电缆,而且可以手工成型。但是其稳定性比半刚性电缆略差些,由于其可以很容易的成型,同样的也容易变形,尤其在长期使用的情况下。 柔性(编织)电缆 柔性电缆是一种“测试级”的电缆。相对于半刚性和半柔性的电缆,柔性电缆的成本十分昂贵,这是因为柔性电缆在设计时要顾及的因素更多。柔性电缆要易于多次弯曲而且还能保持性能,这是作为测试电缆的最基本要求。柔软和良好的电指标是一对矛盾,也是导致造价昂贵的主要原因。 柔性射频电缆组件的选择要同时考虑各种因素,而这些因素之间有些的相互矛盾的,如单股内导体的同轴电缆比多股的具有更低的插入损耗和弯曲时的幅度稳定性,但是相位稳定性能就不如后者。所以一条电缆组件的选择,除了频率范围,驻波比,插入损耗等因素外,还应考虑电缆的机械特性,使用环境和应用要求,另外,成本也是一个永远不变的因素。 在本节中,详细讨论了射频同轴电缆的各种指标和性能,了解电缆的性能对于选择一条最佳的射频电缆组件是十分有益的。 特性阻抗 射频同轴电缆由内导体,介质,外导体和护套组成。 “特性阻抗”是射频电缆,接头和射频电缆组件中最常提到的指标。最大功率传输,最小信号反射都取决于电缆的特性阻抗和系统中其它部件的匹配。如果阻抗完全匹配,则电缆的损耗只有传输线的衰减,而不存在反射损耗。电缆的特性阻抗(Zo)与其内外导体的尺寸之比有关,同时也和填充介质的介电常数有关。由于射频能量传输的“趋肤效应”,与阻抗相关的重要尺寸是电缆内导体的外径(d)和外导体的内径(D): Zo(?)=138√ε×logDd 常见的射频同轴电缆绝大部分是50?特性阻抗的,这是为什么呢? 通常认为导体的截面积越大损耗就越低,但事实并非完全如此。同轴电缆的每单位长度的损耗是logDd的函数,也就是说和电缆的特性阻抗有关。经过计算可以发现,当同轴电缆的特性阻抗为77?时,单位长度的损耗最低。 对于同轴电缆的最大承受功率,通常认为内外导体的间距越大,则同轴电缆可承受电压越高,即承受功率越大,但实际上也不完全准确。同轴电缆的最大承受功率同样与其特性阻抗有关。可以计算出当同轴电缆的特性阻抗为30?时,其承受的功率最大。 为了兼顾最小的损耗和最大的功率容量,应该在77?和30?之间找一个适当的数值。二者的算术平均值为53.5?,而几何平均值为48.06?;选取50?的特性阻抗可以做到二者兼顾。此外,50?阻抗的连接器也更加容易设计和加工。 绝大部分应用于通信领域的射频电缆的特性阻抗是50?;在广播电视中则用到75?的电缆。 大部分的测试仪器都是50?的阻抗,如果要测量75?阻抗的器件,可以通过一个50~75?的阻

有关驻波的定性分析

有关驻波能量的定性分析 提出问题 我们已经知道,在驻波中是没有能量是的定向的传播的。如果以一列由音叉引起的驻波为例,音叉在不断振动,释放能量,如果驻波中没有能量的定向传播,那么这部分能量是如何分配的,难道聚集在了波源处了么?显然不是的,那么就来探探讨一下这部分能量吧。探讨驻波的形成 驻波是干涉的一种特殊形式。两列(反向传播的)相干波在空间相遇,发生相互叠加形成驻波。那么是否可以将此“驻波”分开成两列波来考虑呢?如果可以,那么驻波=入射波+反射波。而能量的传播方向是相反的,能量也是随时间变化的量,这一点可以有数学上严格地证明。正是如此才(能量的叠加或相互削减)宏观上表现出能量的没有定向传播。也就是说,分开考虑时,入射波和反射波均是有且必须有能量的定向传播的(否则驻波就形不成)。那么音叉只是入射波的波源,却是反射波上一个特殊的点,他不受反射波的影响,即是说反射波传至此时,能量被波源除去。(那么能量是如何消失呢?)就好像是受迫振动。这样一来,音叉释放的能量有入射波导入波中,又被反射波反射回来,且这两部分能量的能量能流密度相同。反射回来的能量又被波源强行除去,且两能量数值相等,那么能量就是守恒的,各定理依旧成立。 如果上面的假设成立,放在一般的干涉波上 在空间一点,由于两列波的干涉,能量的传播发生了变化。假设两列单向传播的波。那么它们的干涉只能出现在一个点。过了此点,彼此相互独立,不在有任何瓜葛。就不存在所谓的无能量定向传播。那么再拓展至一般情况,比方说水波。(见课本附图)取一条波的传播方向上……上面的每一个点都是由不同的波干涉形成的,在无穷远处就相当于两列平行波发生了干涉(此时仍旧是波)

基于Ansys固定弦自由振动驻波能量守恒数值模拟分析

基于Ansys固定弦自由振动驻波能量守恒 数值模拟分析 摘要:本文将基于Ansys有限元软件对两端固定的弦的自由振动进行数值模拟分析。由于弦的自由振动可以看作是一系列不同的驻波叠加而成,因此在数值模拟的 过程当中,分别输出各个驻波的能量与总能量对比,验证能量定律。 关键词:Ansys;弦;自由振动;数值分析 0前言 “弦振动形成驻波”一直是高校普通物理试验中的传统力学试验之一,它是研究波的形成和干涉的重要途径之一。研究弦振动有利于研究钢琴弦的声学特性。两端固定弦的自由振动书最常见的琴弦振动模型。两端固定的弦自由振动的可以看作是一系列频率成倍增长、位相不同、振幅不同的驻波叠加形成。而在本文中,主要将对弦振动驻波的能量进行研究,利用有限元软件Ansys 进行数值分析,分别输出了各个驻波的能量以及弦的总能量进行分析,研究各个驻波的能量与弦自由振动总能量之间的联系。 图 1 两端固定弦形成驻波 1问题类型分析 1.1问题概述 固定端点有界弦的自由振动可以分解 成各种不同固有频率的驻波(谐波)的叠加,试计算各个驻波的动能和位能,并证明弦振动的总能量等于各个驻波能量的叠加。 1.2问题分析 为了建立弦自由振动的有限元模型,必须给出弦的材料参数。而且在ansys的数值输出中我们只能输出弦振动的总能量,因此,为了在输出各个驻波的能力,所以只能输入不同驻波的位移初值条件进行模拟。考虑到驻波个数的无限性,所以只能输出有限个驻波能量来分析。 一般来说,弦需要有初始激励才能发生自由振动的,所以这里只考虑了一种情况:在弦中间向上拉起h,而后放开作自由振动。 2实验研究方案 2.1计算参数 2.1.1材料参数 假设弦为低碳钢材料,则有弹性模量为200GPa,泊松比为0.3,密度为3 7800/ Kg m. 2.1.2几何参数 弦长:L=1.00m 拉起的位置和高度:h=0.01m,c=0.5m 2.1.3荷载参数 由于弦作自由振动,所以并没有施加力荷载,只是在初始的时候施加了位移边界条件。 2.2理论分析 以(,) u x t表示弦上各点的振动,由前面的问题分析中可以知道初始条件可以写

实验二 驻波分布特性的测量与分析

实验二驻波分布特性的测量与分析 一、实验目的 (1)了解测量线调整和使用方法; (2)测量观察测量线终端不同负载(短路、开路、匹配)时,测量系统的驻波分布情况; (3)理解在矩形波导系统中,不同终端负载对传输系统状态的影响。 二、实验原理 当波导中存在不均匀性或负载不匹配时,波导中存在驻波。测量驻波特性的仪器为测量线。测量线通常由一段开槽传输线(如开槽波导)、探头座(耦合探针、探针的调谐腔体)和输出指示表、传动装置三部分组成。测量线为了从波导中拾取能量,需要把探针伸入波导,由此在波导中引入不均匀性,从而影响测量系统的正常工作状态。 为了分析方便,通常将探针等效为与传输线并联的导纳Y p=g p+j b p ,其中g p 反映探针吸取功率的大小,b p表示探针在波导中产生反射的影响。在信号源和波导系统匹配的情况下,当终端接任意阻抗负载时,由于g p 的分流作用,驻波波腹点的电场强度比真实值小。而b p 的存在将使驻波波腹点和波节点的位置发生变化。当终端为短路时,由于此时驻波波节点处的输入导纳为Y in→∞ ,所以Y p 不起作用,故驻波节点位置不会发生偏移。然而在驻波波幅点,Y p影响就特别显著,尤其是探针容性电纳b p的存在,将使驻波波幅点向负载方向偏移,造成测量误差。为了减少g p 的影响可以适当减少探针插入深度,b p的消除则要依靠探针的调谐电路来达到。 实验中测量线探针电路的调整一般包括调节探针深度和调节指针调谐滑塞(即耦合输出匹配电路)。探针插入适当的深度通常为 1.0~1.5mm。当测量系统终端短路时,将探针移至两个驻波波节点正中间位置(即波腹点位置),调节指针调谐滑塞,直至在选频放大器上观察到的指示最大,此时b p的影响减至最小。调谐的过程就是减少探针反射对驻波图形的影响和提高测量系统灵敏度的过程,这是减少驻波测量误差的关键,必须认真调整。当改变信号源频率或者探针深度时,由于探针电纳Y p亦相应改变,必须对探针电路重新进行调整。 通常探针深度及指针调谐滑塞均已调好,不宜轻易变动!! 通过对微波技术知识的学习,我们已经知道,在理想的均匀矩形波导系统中传输的主模是TE10模,由于终端负载失配,在波导中会有反射波存在,此时波导传输系统中呈现的是行驻波分布状态。在终端负载阻抗不同的情况下,所形成的驻波分布也就呈现不同的特点。如终端负载短路或开路时,波导传输线中形成纯驻波状态;终端负载匹配时,波导传输线中形成行波分布状态;在其它任意负载阻抗时,波导传输线中呈现行驻波分布状态。利用测量线终端连接不同负载,在测量线上不同位置处 d 测量出所对应的检波电流值i,就可以根据d~i 的关系描绘出驻波分布特性图。 三、实验内容和步骤 1.平稳连接测量系统,选择信号源为 1kHz 方波调制工作方式(信号源中已配置),调整信号的输出大小,使选频放大器指示表上指针不超过量程。 2.测量线终端接短路板,首先将测量线探针座移动到测量线一端(最右端),然后从最右端开始缓慢移动测量线探针座到测量线的另一端,并在移动过程中,选择记录测量线探针

关于驻波能量的基本认识

关于驻波能量的基本认识 姓名:李昕学号:D3******* 专业:生物工程 一、什么是机械波 机械振动在介质中的传播称为机械波(mechanical产wave)。机械波与电磁波既有相似之处又有不同之处,机械波由 机械振动产生,电磁波由电磁振荡生;机械波的传播需要特定 的介质,垂直,则这种波称为横波;如果振动波的方向与波的 方向平行,则称为纵波。)在不同介质中的传播速度也不同,在 真空中根本不能传播,而电磁波(例如光波)可以在真空中传 播;机械波可以是横波和纵波,(如果振动方向与波的传播方向 但电磁波只能是横波;机械波与电磁波的许多物理性质,如: 折射、反射等是一致的,描述它们的物理量也是相同的。常见 的机械波有:水波、声波、地震波。 机械波传播的基本条件:有波源和传播机械振动的介质。 这是产生机械波的两个基本条件。波的传播实质即波动实 质上是波的振动状态在介质中的传播。而且传播过程有两 个特点: 1、介质中各质点都在做与波源同方向同频率的振动。 2、沿着波的传播方向,介质中各质点的振动相位是逐一 落后的 二、机械波的能量 因为在机械波传播的过程中,各质元即由静止开始振动,同时也

发生了形变。所以机械波传播的过程中一定有动能与弹性势能的转化。 振动动能+形变势能=波的能量 在平衡点,其振动速度最大,故动能最大。同时该处的形变最大因此该处质点的动能和势能为最大,其总能量也就最大。而位于波峰的A点和位于波谷的C点其动能和形变最小为零所位于平衡位置的以其能量最小。所以介于平衡位置和波峰之间的点和介于平衡位置和波谷之间的点其能量介于最大和零之间。离平衡位置越近的质点,它的能量就越大,即能量在波的传播方向上也呈现周期性的分布,随着波形的向前传播,这种能量分布的状态也以波的传播速度向前传递。 三、驻波的能量 驻波是频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,故称行波;上述两列波叠加后波形并不向前推进,故称驻波。例如,如图所示,一弦线的一端与音叉一臂相连,另一端经支点O并跨过滑轮后与一重物相连。音叉振动后在弦线上产生一自左向右传播的行波, 传到支点 O 后发生反射,弦线中产生一自右向左传播的反射波,当 弦长接近1/2波长的整数倍时。两列波叠加后弦线上各点的位移为(设音叉振动规律为u=Acosωt) u(x,t)=2Asin(x)sin(ωt )=A(x)sin(ωt),弦线上每个固定的点均作简谐运动,但不同点的振幅不同,由x值决定。振幅为零的点称为波节,振幅最大处称 为波腹。波节两侧的振动相位相反。相邻两波节或波腹间的距离都是

射频同轴电缆行业分析报告

射频同轴电缆行业分析报告

目录 一、所属行业及行业管理体制 (4) 1、所属行业情况 (4) (1)电线电缆行业近年整体呈现快速增长趋势 (5) (2)电线电缆各分支产业发展速度不均衡 (6) (3)企业数量多、规模小,电线电缆行业产业集中度低,但正逐步提高 (6) (4)主要竞争手段由目前的价格竞争正逐步向品牌竞争和技术竞争转变 (6) (5)特种电缆逐渐成为行业内发展的重点领域 (7) 2、行业监管体制 (7) 二、射频同轴电缆的定义、用途、结构及分类 (9) 1、射频同轴电缆的定义及用途 (9) 2、射频同轴电缆的基本结构及分类 (9) (1)射频同轴电缆的基本结构 (9) (2)射频同轴电缆的分类 (11) 三、行业发展概况 (13) 四、行业的主要法律法规及产业政策 (14) 五、行业竞争情况 (16) 1、行业竞争格局 (16) (1)全球竞争格局 (16) (2)国内竞争格局 (16) 2、市场容量、发展前景及市场供求状况 (17) (1)行业市场容量及未来几年的增长趋势 (17) (2)市场前景分析 (18) (3)市场供求情况 (22) 3、行业内的主要企业及其市场份额 (22) (1)行业内主要企业 (22) (2)行业内主要企业的市场份额 (24)

4、行业利润水平的变动趋势及变动原因 (24) 5、进入本行业的主要壁垒 (25) (1)技术壁垒 (25) (2)资金壁垒 (26) (3)客户关系壁垒 (26) 六、影响行业发展的有利因素和不利因素 (27) 1、有利因素 (27) (1)国内宏观经济复苏 (27) (2)国家产业政策支持 (27) (3)全球通信设备制造业采购中心向中国转移 (28) (4)发达国家需求稳定,发展中国家和地区需求快速增长 (28) 2、不利因素 (29) (1)行业自主创新意识和能力不强,知识产权保护不力导致行业竞争无序 (29) (2)原材料价格波动加大行业经营风险 (29) 七、行业技术水平及发展趋势 (29) 1、行业技术水平 (29) 2、行业技术发展趋势 (30) (1)降低衰减和驻波比 (30) (2)提高电缆的特殊性能 (31) (3)研发高端绝缘介质 (31) (4)提高电缆的环保特性 (31) 3、行业的周期性、区域性 (32) (1)行业的周期性 (32) (2)行业的区域性 (32) 八、上下游行业发展状况及其对本行业的影响 (33) 1、上游行业 (33) 2、下游行业 (34)

研究弦线上的驻波现象

研究弦线上的驻波现象 一、实验目的 1.观察弦线上驻波的变化,了解并熟悉实验仪器的调整方法。 2.研究弦线振动时的振动频率与振幅变化对形成驻波的影响。波长与张力的关系; 3.在弦线张力不变时,研究弦线振动时驻波波长与振动频率的关系。 4.改变弦线张力后,研究弦线振动时驻波波长与振动频率的关系。 二、仪器和用具 可调频率的数显机械振动源、弦线支撑平台、固定滑轮、可调滑轮、砝码盘、米尺、弦线、砝码、频闪灯、分析天平等。见图1 图1 仪器结构图 1.可调频率数显机械振动源 2.振簧片 3.弦线 4.可动刀口支架 5.可动滑轮支架 6.标尺 7.固定滑轮 8.砝码与砝码盘 9.变压器 10.实验平台 11.实验桌 三、实验原理 在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程: 2 2 22 x y T t y ??= ??μ (1) 式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。将(1)式与典型的波动方程 2 2 2 22 x y V t y ??=?? 相比较,即可得到波的传播速度: μ T V = 若波源的振动频率为f ,横波波长为λ,由于λf V =,故波长与张力及线密度之间的

关系为: μ λT f 1= (2) 为了用实验证明公式(2)成立,将该式两边取对数,得: f T lo g log 2 1log 2 1log -- = μλ 若固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其斜率值(如为 2 1),则证明了λ∝2 1 T 的关系成立。同理,固定线密度 μ及张力T ,改变振动频率f ,测出各相应波长λ,作log λ-log f 图,如得到斜率为-1的直线则验证了λ∝f -1 。 弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向 传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。在弦线上出现许多静止点,称为驻波的波节,相邻两波节间的距离为半个波长。见图2。 2 λ 图2 四.实验内容 1.必做内容 (1)验证横波的波长与弦线中的张力的关系 固定一个波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。 每改变一次张力(即增加一次砝码),均要左右移动可动滑轮○5的位置,使弦线出现振幅较大 而稳定的驻波。用实验平台⑩上的标尺○6测量L 值,即可根据式(3)算出波长λ。作log λ-log T 图,求其斜率。 (2)验证横波的波长与波源振动频率的关系 在砝码盘上放上一定质量的砝码,以固定弦线上所受的张力,改变波源振动的频率,用驻波法测量各相应的波长,作log λ-log f 图,求其斜率。最后得出弦线上波传播的规律结论。 2.选做内容 验证横波的波长与弦线密度的关系 在砝码盘上放固定质量的砝码,以固定弦线上所受的张力,固定波源振动频率,通过改变弦丝的粗细来改变弦线的线密度,用驻波法测量相应的波长,作log λ-log μ图,求其斜率。得出弦线上波传播规律与线密度的关系。

研究弦线上的驻波现象

实验五 研究弦线上的驻波现象 一、实验目的 1.观察弦线上驻波的变化,了解并熟悉实验仪器的调整方法。 2.研究弦线振动时的振动频率与振幅变化对形成驻波的影响。波长与张力的关系; 3.在弦线张力不变时,研究弦线振动时驻波波长与振动频率的关系。 4.改变弦线张力后,研究弦线振动时驻波波长与振动频率的关系。 二、仪器和用具 可调频率的数显机械振动源、弦线支撑平台、固定滑轮、可调滑轮、砝码盘、米尺、弦线、砝码、频闪灯、分析天平等。见图1 9 123456 7 8 10 11 图1 仪器结构图 1.可调频率数显机械振动源 2.振簧片 3.弦线 4.可动刀口支架 5.可动滑轮支架 6.标尺 7.固定滑轮 8.砝码与砝码盘 9.变压器 10.实验平台 11.实验桌 三、实验原理 在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程: 2 222x y T t y ??= ??μ (1) 式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。将(1)式与典型的波动 方程 2 2 222x y V t y ??=?? 相比较,即可得到波的传播速度: μ T V = 若波源的振动频率为f ,横波波长为λ,由于λf V =,故波长与张力及线密度之间的

关系为: μ λT f 1= (2) 为了用实验证明公式(2)成立,将该式两边取对数,得: f T lo g log 2 1 log 21log --= μλ 若固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作log λ-log T 图,若得一直线,计算其斜率值(如为 2 1),则证明了λ∝21T 的关系成立。同理,固定线密度μ及张力T ,改变振动频率f ,测出各相应波长λ,作log λ-log f 图,如得到斜率为-1的直线则验证了λ∝f -1 。 弦线上的波长可利用驻波原理测量。当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。在弦线上出现许多静止点,称为驻波的波节,相邻两波节间的距离为半个波长。见图2。 2 λ 图2 四.实验内容 1.必做内容 (1)验证横波的波长与弦线中的张力的关系 固定一个波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。 每改变一次张力(即增加一次砝码),均要左右移动可动滑轮○5的位置,使弦线出现振幅较大 而稳定的驻波。用实验平台⑩上的标尺○ 6测量L 值,即可根据式(3)算出波长λ。作log λ-log T 图,求其斜率。 (2)验证横波的波长与波源振动频率的关系 在砝码盘上放上一定质量的砝码,以固定弦线上所受的张力,改变波源振动的频率,用驻波法测量各相应的波长,作log λ-log f 图,求其斜率。最后得出弦线上波传播的规律结论。

驻波检测理论分析

驻波检测理论分析 电压驻波比介绍 电压驻波比(VSWR)为英文Voltage Standing Wave Ratio 的简写。电压驻波 比产生的原因主要是由于在系统或者电路中存在阻抗不匹配,在无线电通信中,由于天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。为了表示和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”(Standing Wave Ratio) 这一概念,驻波比的全称是电压驻波比。 当两个阻抗数值一样时,即达到完全匹配,反射系数Γ等于0,驻波比为1。这 是一种理想的状况,实际上总存在反射,所以驻波比总是大于1 的。理想的比例为1:1 ,即输入阻抗相等于传输线的特性阻抗, 但几乎不可能达到,如果当VSWR 1.25:1 时,反射功率大概为1.14 %,当VSWR 1.5:1 反射功率为4.06 %,当VSWR 1.75:1 时,反射功率为7.53 %,由这个数字我们可以知道, 驻波比越大, 反射功率越高。 在射频系统阻抗匹配中,特别要注意要使电压驻波比达到一定要求,在移动通信 系统中,一般要求驻波比小于1.5,一样一般可以保证通信系统的良好工作。同时,因为在宽带运用时频率范围很广,驻波比会随着频率而变,所以应使阻抗在宽范围内尽量匹配。 电压驻波比对系统性能的影响 随着驻波比的恶化,有效传输的功率将会减少,这是由于理想的 阻抗匹配(VSWR=1:1)可以使功率无损传输,而严重的阻抗失配(高VSWR)将导致传输到负载的功率减少。 高的VSWR可能引起多种系统问题,其中对VSWR最为敏感的器件是功率放大

RF同轴电缆的结构与传输特性

1 RF同轴电缆的结构与传输特性 1.1结构 RF同轴电缆由内导体、绝缘体、外导体和护套4部分组成,绝缘体使内、外导体绝 缘且保持轴心重合,这就是同轴电缆。内外导体由电介质(绝缘材料)隔开,电介质在很大程度上决定着同轴电缆的传输速度和损耗特性,常使用的绝缘材料是干燥空气、聚乙烯、聚丙烯、聚氯乙烯等材料的混合物。物理发泡电缆因损耗小、频率特性好、不易进水得到优选应用。 1.2传输特性 (1)同轴电缆内的电磁场分布 电场强度按正弦分布,在同轴电缆中传输的电波不会泄漏到电缆之外,在应用中,外导体通常是接地的,故具有良好的屏蔽作用,传输的电视信号不受外界杂波的干扰,里面的信号也不会辐射出去。 (2 )趋肤效应 高频信号的电流流过电缆时,电流集中于导体表面而使导体有效横截面积减少、电阻值加大的现象称之为趋肤效应。因为有趋肤效应,同轴电缆中的电流只沿内导体的外侧和外导体的内侧流动,因此,电缆的许多性质取决于内导体的外径和外导体的内径,电缆内、外部的电磁场也不相互干扰。趋肤深度与频率 f (MHz )的平方根成反比, 因此,同轴电缆的导体损耗与频率的平方根成正比。 1.3同轴电缆性能 (1 )特性阻抗 特性阻抗Z c定义为在同轴电缆终端匹配的情况下,电缆上任意点电压与电流的比值。同轴电缆的特性阻抗由导体的直径和导体间介质决定,与电缆长度无关。在CATV 系统中,同轴电缆的特性阻抗均为75 a (2 )衰减常数3与温度系数 RF信号在同轴电缆中传输时的衰减量与电缆的尺寸、介电常数、工作频率有关。同轴电缆信号的衰减程度,以衰减常数( 3 )表示单位长度(如100 m)电缆对信号衰 减的dB数。衰减常数与信号频率的平方根成正比,即在同一段电缆,信号频率越高,衰减常数越大;信号频率越低,衰减常数越小。温度系数表示温度变化对电缆损耗值的影响,温度上升,电缆的损耗值增大;温度下降,电缆的损耗值减小。温度系数定义为温度升高或降低1C,电缆对信号衰减量增大或减小的百分数。表1是根据和平县有线电视 台的频道配置选出8个频道,在33C和13C两个常温下,对汉胜RF同轴电缆-5型和-7 型进行测量的结果。 表1两种常温下的汉胜电缆-7与-5型的衰减常数(3 )频道图像载频(MHz) 33 C dB/100 m13 C dB/100 m -7型-5 型-7 型-5 型

驻波能量流动特性(参考)_994306910

驻波能量流动特性的一个教学方案 陈信义 (清华大学物理系,北京 100084) 摘 要 通过计算弹性棒中纵向驻波的能流密度,给出驻波中能量的流 动特性。 关键词 驻波;能流密度 通过计算弹性棒中纵向驻波的能流密度,给出驻波中能量的流动特性:在各波节和波腹处,能流密度为零而能量密度随时间的变化幅度最大,能量不能流过任何波节和波腹,只能在相邻的波节和波腹间流动;在相邻波节和波腹间的中点处,能流密度随时间的变化幅度最大而能量密度却始终不变,处于该点质元的各种行为与弹簧振子完全相同。 图1表示一个按纵向驻波形变的弹性棒。驻波的表达式为 t x k A t x y ωcos cos 2,=)( (1) 驻波的能量密度表达式为 () t kx A x y Y t y t x w ωωρρ2cos 2cos 12121,2222-=??+??=??? ????? ??)( (2) 式中ρ为介质的密度,Y 为杨氏模量。 下面计算驻波的能流密度。按胡克定律,截面所受应力为 x x y Y S F ???? ? ???= (3) 式中的S 为截面面积。截面的位移速度为

x t y u ???? ? ???= (4) 流过截面的能流密度,即流过单位截面的功率,可按下式计算 ()u S F u S F t ,x j -=?= (5) 由上式可知,因波节处的截面固定不动,而波腹处的截面无形变不受应力,则在各波节和波腹处能流密度为零。能量不能流过任何波节和波腹,只能在相邻的波节和波腹间流动。 把(1)式代入(3)~(5)式可得能流密度 ()t kx k YA t x j ωω2sin 2sin ,2 -= (6) 上式表明,驻波中的能流密度也是一个驻波,其波长为原驻波波长的一半,波节出现在原驻波的波节或波腹的位置上,而波腹则出现在原驻波相邻的波节和波腹间的中点处。 图2 t =T /12 时刻位移y (虚线)和能流密度 j (实线) 图2给出了t =T /12 时刻的位移y (虚线)和能流密度 j (实线)。以图中波腹x = 0 到相邻波节x =λ/4的区间为例说明。在此区间,能流密度取负值表示能量由波节流向波腹。此时刻弹性棒正在向平衡状态恢复,波腹处截面的动能在增加而波节处的形变势能在减小,能量由波节流向波腹。此外,能流密度驻波的波腹处于原驻波相邻的波节和波腹间的中点x =λ/8处,这里的能流密度的变化幅度最大。

电压驻波比测量 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 10 月 26 日, 第 九 周, 周 一 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 2007670 姓名 车宏龙 实验地点: 综合楼 406 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 微波系统中电压驻波比的测量 实验仪器:(注明规格和型号) 导波管(BJ-100)、隔离器、衰减器、谐振式频率计、晶体检波器、驻波测量线(DH364A00)、匹配负载 实验目的: (1) 了解驻波导测量系统,熟悉基本微波原件的作用; (2) 掌握驻波测量线的正确使用方法; (3) 掌握大、中、小电压驻波系数的测量原理和方法。 实验原理简述: 1. 微波的基本知识 1.1 电磁波的基本关系 ρ=??D 0=??B t B E ??- =?? t D j H ??+ =?? (3-1-1) E D ε=,H B μ=,E J γ= (3-1-2) 如上所示, 方程组(3-1-1)为Maxwell 方程组,方程组(3-1-2)描述了介质的性质对场的影响。 1.2 矩形波导中波的传播 在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,而必须改用微波传输线。 本实验中使用的是矩形波导管, 同时对应使用的是在矩形波导中常用的微波TE 10 1.2.1 TE 10型波。

一个均匀、无限长和无耗的矩形波导。(图3-1-3)经过计算可以得到波导波长2 )2( 1a g λ λ λ-= 特点: 1,存在一个临界波长c λ=2a ,只有波长c λλ<的电磁波才能在波导管中传播 2,导波波长g λ>自由空间波长λ 3,电场只存在横向分量,电力线从一个导体壁出发,终止在另一个导体壁上,并且始终平行于导波的窄边 4,磁场既有横向分量,也有纵向分量,磁力线环绕电力线 5,电磁场的波导的纵方向(z )上形成行波 下图所示, 为TE10型波的电磁场结构 1.2.2导波的工作状态 如果导波终端负载是匹配的,传播到终端的电磁波的所有能量被吸收,这时波导中呈现的是行波。当导波终端不匹配时,就是一部分波被反射,波导中的任何不均匀性也会产生反射,形成所谓混合波。为了描述电磁波,引入反射系数与驻波比的概念,反射系数Γ定义为 φj i r e E E ||/Γ==Γ 驻波比ρ定义为min max E E = ρ (3-1-6),其中式中,max E 和min E 分别为波腹和波节点电场E 的大小 不难看出:对于行波,1=ρ;对于驻波,∞=ρ;而当∞<<ρ1,是混合波(如上图所示) 2. 电压驻波比的测量

相关文档
最新文档