初三数学中考模拟试题(含答案).pdf

合集下载

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。

可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sin(A) = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(2, -3)关于原点的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题1. 任何两个奇数之和都是偶数。

()2. 一元二次方程的判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根。

()3. 在等边三角形中,每个角的度数是60°。

()4. 函数y=2x+3的图像是一条直线。

()5. 互质的两个数的最小公倍数是它们的乘积。

()三、填空题1. 若 a 3 = 5,则 a 的值为______。

2. 若一个等比数列的前三项分别是2、4、8,则该数列的公比是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若sin(α) = 1/2,且α是锐角,则cos(α)的值是______。

5. 一元二次方程x^2 5x + 6 = 0的解是______和______。

四、简答题1. 解释什么是等差数列,并给出一个例子。

2. 什么是锐角和钝角?给出一个锐角和一个钝角的例子。

3. 解释一元二次方程的解的意义。

4. 什么是平行线?在直角坐标系中如何判断两条线是否平行?5. 解释什么是函数的图像,并给出一个例子。

五、应用题1. 一个等差数列的前三项分别是2、5、8,求该数列的第10项。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

模拟中考数学试题及答案

模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个数的倒数是1/4,那么这个数是______。

答案:413. 一个三角形的内角和是______度。

答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。

答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。

2024年湖北省武汉市部分学校中考模拟数学试题(五)(含答案)

2024年湖北省武汉市部分学校中考模拟数学试题(五)(含答案)

2024年武汉市中考模拟试题数学试卷(五)亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共8页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.实数2024的相反数是( )A .2024B .2024-C .12024D .12024-2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形是()A .B .C .D .3.不透明袋子中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他区别,从袋子中随机取出1个球,下列说法正确的是()A .可以事先确定取出的小球是哪种颜色B .取出每种颜色小球的概率相等C .取出红球的概率是12,取出绿球的概率是13,取出蓝球的概率是14D .将其中1个蓝球换成红球,则取出每种颜色小球的概率相等4.下列计算结果是6x 的是( )A .33x x +B .82x x -C .23x x ⋅D .()32x 5.如图是水平放置的正三棱柱,关于它的三视图的描述正确的是()A .主视图与俯视图相同B .主视图与左视图相同C .左视图与俯视图相同D .三视图都不相同6.如图,12180∠+∠=︒,3108∠=︒,则4∠=()A .72°B .80°C .82°D .108°7.两次掷一枚质地均匀的骰子,第二次掷出的点数能够被第一次掷出的点数整除的概率是( )A .518B .13C .718D .128.甲、乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发,相向而行,每隔2min 相遇一次;如果同向而行,每隔6min 相遇一次.则( )A .甲每分跑13圈,乙每分跑16圈B .甲每分跑13圈,乙每分跑16圈或甲每分跑16圈,乙每分跑13圈C .甲每分跑12圈,乙每分跑14圈D .甲每分跑12圈,乙每分跑14圈或甲每分跑14圈,乙每分跑12圈9.如图,AB 是半圆O 的直径,点C ,D 在半圆上, CD与 DB 相等,连接OC ,CA ,OD .过点B 作EB AB ⊥,交OD 的延长线于点E .设△OAC 的面积为1S ,△OBE 的面积为2S ,若1223S S =,则tan ∠ACO 的值是()ABC .75D .3210.如图,在矩形ABCD 中,23AB BC =,动点N 从A 出发,沿边AD 向点D 匀速运动,动点M 从B 出发,沿边BC 向点C 匀速运动,连接MN .动点N ,M 同时出发,点N 运动速度为1v ,点M 的运动速度为2v ,且12v v <.当点M 到达C 时,M ,N 两点同时停止运动.在运动过程中,将四边形NABM 沿MN翻折,得到四边形NA B M ''.若在某一时刻,点B 的对应点B '恰好与CD 的中点重合,则12v v 的值是()A .25B .35C .45D .34二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.2023年全球人数约为80.86亿,数80.86亿用科学记数法表示是______.12.反比例函数图象经过三点()11,x y ,()22,x y 和(1,k ),若120x x <<,则12y y >,写出一个满足条件的k 的值是______.13.计算22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的结果是______.14.如图,在Rt △ABC 中,90C ∠=︒,棱长为1的立方体展开图有两边分别在AC ,BC 上,有两个顶点在斜边AB 上,则△ABC 的面积为______.15.四边形ABCD 中,3AB =,CD =,105A ∠=︒,120D ∠=︒,E 为AD 的中点,若90BEC ∠=︒,则BC 的长度为______.16.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②一元二次方程2ax bx c +=-的解为13x =-,25x =;③a c b +>;④150a c +=.其中,正确的是______.三、解答题(共8 小题,共 72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题满分8分)求满足不等式组()11,273x x -->⎧⎪⎨+≥⎪⎩①②的整数解.18.(本小题满分8分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.(1)求证:BE DF =;(2)直接写出BD 与AC 满足什么数量关系时,四边形DEBF 为矩形.19.(本小题满分8分)某校为响应进一步深化全民阅读号召,随机抽取了八年级若干名学生,对“双减”后学生周末课外阅读时间进行了调查.根据收集到的数据,整理后得到下列不完整的图表:时间段/分钟3060x ≤<6090x ≤<90120x ≤<120150x ≤<组中值75105135频数/人6204请你根据图表中提供的信息,解答下列问题:(1)扇形统计图中,120~150分钟时间段对应的扇形的圆心角度数为______,a =______;(2)样本数据的中位数位于______~______分钟时间段;(3)请通过计算估计该校八年级学生周末课外平均阅读时间.20.(本小题满分8分)阅读:《几何原本》是古希腊数学家欧几里得所著的一部数学著作,它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.下面是其中的切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.即,如图1,AB 是⊙O 的切线,则2AB AC AD =⋅.下面是切割线定理的证明过程(不完整):证明:如图1所示,连接BD ,连接BO 并延长交⊙O 与点E ,连接CE ,BC .图1 图2∵AB 是⊙O 的切线,OB 是⊙O 的半径,90ABC CBE ∴∠+∠=︒.∵BE 是⊙O 的直径,90BCE ∴∠=︒(____________).90E CBE ∴∠+∠=︒.∴____________,E CDB ∠=∠ (____________),∴____________,BAC DAB ∠=∠ ,ABC ADB ∴△∽△,AB ACAD AB∴=.2AB AC AD ∴=⋅.任务:(1)请在上面横线上补充证明过程,在括号内补充推理的依据;(2)如图2,已知AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,割线CF 交AB 于点E ,且满足::1:2:1CD DE EF =,8AC =,求AB 的长.21.(本小题满分8分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(1)线段AC 的长等于______;(2)半圆O 以AB 为直径,仅用无刻度直尺,在如图所示的网格中完成画图:①画∠BAC 的角平分线AE ;②在线段AB 上画点P ,使AP AC =.22.(本小题满分10分)某园林专业户计划投资种植花卉和树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,种植花卉的利润2y 与投资量x 的平方成正比例关系,并得到了表格中的数据:投资量x (万元)2种植树木的利润1y (万元)4种植花卉的利润2y (万元)2(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉的金额为m 万元,种植花卉和树木共获利润W 万元,求出W 关于m 的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不利于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的取值范围.23.(本小题满分10分)背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E ,A ,D 在同一条直线上),发现BE DG =且BE DG ⊥.小组讨论后,提出了三个问题,请你帮忙解答:背景图 图1(1)将正方形AEFG 绕点A 按逆时针方向旋转,如图1,还能得到BE DG =吗?如果能,请给出证明,如果不能,请说明理由;(2)把背景中的正方形改为菱形AEFG 和菱形ABCD ,将菱形AEFG 绕点A 按顺时针方向旋转,如图2,试问当∠EAG 与∠BAD 的大小满足什么关系时,背景中的结论BE DG =仍成立?请说明理由;图2图3(3)把背景中的正方形改为矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,4AE =,8AB =,将矩形AEFG 绕点A 按逆时针方向旋转,如图3,连接DE ,BG ,小组发现,在旋转过程中22BG DE +是定值,请求出这个定值.24.(本小题满分12分)已知:抛物线23y x bx =-++与直线1y x =+相交于A ,B 两点,与y 轴相交于点C ,点A 在x 轴的负半轴上.图1图2(1)求抛物线的函数表达式及顶点D 的坐标;(2)如图1,直线AB 上方的抛物线上有一动点P ,过点P 作PH AB ⊥于点H ,求垂线段PH 的最大值;(3)如图2,当点P 运动到抛物线对称轴右侧时,连接AP ,交抛物线的对称轴于点M ,当AM DM +最小时,直接写出此时线段AP 的长度.2024武汉市中考模拟数学试题(五)参考答案一、选择题(共10小题,每小题3分,共30分)题号12345678910答案BCDDDACBAB二、填空题(共6小题,每小题3分,共18分)11.98.08610⨯12.1(答案不唯一)13.1a b-14.161516.①②④三、解答题(共8小题,共72分)17.解:解不等式①,得0x <.解不等式②,2x ≥-.∴不等式组的解集为20x -≤<.∴满足不等式组的整数解为1,2--.18.(1)证明:∵四边形ABCD 是平行四边形,AO CO ∴=,BO DO =,又∵E ,F 分别是OA ,OC 的中点,12EO AO ∴=,12FO CO =,EO FO ∴=,∴四边形DEBF 是平行四边形,BE DF ∴=.(2)12BD AC = 答案不唯一.19.(1)36°,25.(2)60,90(3)45675201051013548440⨯+⨯+⨯+⨯=(分钟)答:估计该校八年级学生周末课外平均阅读时间为84分钟.20.(1)直径所对的圆周角是直角ABC E∠=∠同弧所对的圆周角相等,ABC CDB∠=∠(2)::1:2:1CD DE EF = ,设CD x =,则2DE x =,EF x =,4CF x ∴=由切割线定理得2AC CD CF =⋅,即2284x =,0x > ,4x ∴=,4CD ∴=,8DE =,4EF =,12CE CD DE =+=,∵AB 是圆O 的直径,AC 是圆O 的切线,AB AC ∴⊥,在Rt △ACE 中,AE ===连接AD ,BF ,ADF ABF ∠=∠ ,DEA FEB ∠=∠,ADE FBE∴△∽△AE DEFE BE∴=8BE =,BE ∴=,AB AE BE ∴=+==.21.解:(1)AC ==(2)①如图②如图22.解:(1)由题意得:设()1110y k x k =≠,()1110y k x k =≠将2x =,14y =与2x =,22y =分别代入上述关系式中,得:124k =,242k =,12k ∴=,212k =,12y x ∴=,2212y x =.(2)由题意得:()21282W m m =+-211622m m =+-()212142m =-+∴当2m =时,W 有最小值14,08m <≤ ∴当8m =时,W 有最大值32.答:他至少获得14万元利润,能获得的最大利润为32万元.(3)当22W =时,()21214222m -+=,解得12m =-,26m =,0m > ,∴当68m ≤≤时,获利不低于22万元.23.(1)还能得到BE DG =,理由如下:90EAB BAG ∠+∠=︒ ,90BAG GAD ∠+∠=︒,EAB DAG ∴∠=∠,AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(2)当EAG BAD ∠=∠时,BE DG =,理由如下:EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又AE AG = ,AB AD =,()SAS EAB GAD ∴△≌△,BE DG ∴=;(3)23AE AB AG AD ==,4AE FG ==,8AB DC ==,6AG EF ∴==,12AD BC ==,连接EG ,BD ,令EB 与GD 相交于点N ,EAG BAD ∠=∠ ,EAB GAD ∴∠=∠,又12AE AG AB AD == ,EAB GAD ∴△∽△,EBA GDA ∴∠=∠,又90GDA BDG ABD ∠+∠+∠=︒ ,90NBD BDN ∴∠+∠=︒,EB GD ∴⊥,222GN NB GB += ,222EN ND ED +=,222222GN EN NB ND GB ED ∴+++=+,又22222CN EN EG EF EG +==+ ,22222NB DN BD BC DC +==+,222222222264128260GB ED EF FG BC DC ∴+=+++=+++=.24.(1)∵点A 在直线1y x =+上,且在x 轴的负半轴上,10x ∴+=,解得1x =-,()1,0A ∴-,把()1,0A -代入23y x bx =-++得()2130b ---+=,解得2b =,∴抛物线解析式为223y x x =-++,又()222314y x x x =-++=--+ ,∴顶点D 的坐标为(1,4).(2)设直线AB 和y 轴相交于点E ,过点P 作PQ y ∥轴交AB 于点Q设点P 的坐标为()2,23m m m -++,则点Q 的坐标为(),1m m +,∵点P 在直线AB 上方,2231PQ m m m ∴=-++--221992244m m m ⎛⎫=-++=--+≤ ⎪⎝⎭,令0x =,则011y =+=,()0,1E ∴,1OA OE ∴==,45OAE AEO ∴∠=∠=︒,PQ y ∥,45PQH AEO ∴∠=∠=︒,在Rt ΔPHQ 中,sin sin 45PH PQH PQ PQ =∠⋅=︒⋅=,∵PH 随PQ 增大而增大,∴PH 94=.(3.。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

最新初三中考数学模拟试卷及答案(4套)

最新初三中考数学模拟试卷及答案(4套)
请你借助数学知识帮助同学们分析老师画的这两个图,通过计算验证说明图1到图2的拼接是否可行,若不行请说明理由,并画出正确的拼接图
25.(本题满分10分)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
23.(本题满分10分)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的 形状,并证明你的结论.
24.(本题满分10分)
数学课上,老师用多媒体给同学们放了2010年春节联欢晚会由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但
丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两
车又工作了几小时,使仓库的库存量为6吨?
28.(本题满分12分)
在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
A.7 B.9 C.9或12 D.12
7.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()
A.正视图的面积最大B.俯视图的面积最大

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/吨,其它品种平均售价为 0.8 万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如
果设“妃子笑”荔枝产量为 x 吨,其它品种荔枝产量为 y 吨,那么可列出方程组

.
15.如图,正比例函数 y=kx 与反比例函数 y = 1 的图象相交于 A,B 两点,过 B 作 X 轴的 x
垂线交 X 轴于点 C,连接 AC,则△ABC 的面积是
学海无涯
初三年级数学中考模拟试题
题一


总分
次 1—10 11-15 16 17 18 19 20 21 22


一、选择题:(本大题共 10 题,每小题 3 分,共 30 分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分)
题号 1 2
3
4
5
6
7
8
9 10
答案
1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3 中, 负数的个数为 (
119
97
500
经统计发现两班总分相等.此时有学生建议,可以通过考查数据中的其他信息作为参考.请你 回答下列问题: (1)计算两班的优秀率. (2)求两班比赛数据的中位数. (3)计算两班比赛数据的方差并比较. (4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
20.如图:已知 AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点 D,连结 AD 并 延长,与 BC 相交于点 E。
(1)若 BC= 3 ,CD=1,求⊙O 的半径;
A
O D
(2)取 BE 的中点 F,连结 DF,求证:DF 是⊙O 的切线 C
E
F
B
学海无涯
21.如图 12,一次函数 y = − 3 x + 1的图象与 x 轴、 y 轴分别交于点 A、B,以线段 AB 3
为边在第一象限内作等边△ABC, (1) 求△ABC 的面积;
三、计算题:(本大题共 7 小题,其中第 16,17 题各 6 分,第 18,19 题各 8 分,第 20,21, 22 题各 9 分,共 55 分)
16.计算:
ห้องสมุดไป่ตู้
1 −1 3

2006

0
3 2

3 sin60°.
17.化简求值:
x2 x−2
+
2
4 −
x
x x
+2 +1
,
其中x =
2 −1
18.西部建设中,某工程队承包了一段 72 千米的铁轨的铺设任务,计划若干天完成,在铺 设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺 3 千米,结果提 前了 2 天完成任务。问原计划每天铺多少千米,计划多少天完成?
学海无涯
19.某校初三学生开展踢毽子比赛活动,每班派 5 名学生参加,按团体总分多少排列名次, 在规定时间内每人踢 100 个以上(含 100)为优秀.下表是成绩最好的甲班和乙班 5 名学生的比 赛数据(单位:个):
1号
2号
3号
4号
5号
总分
甲班 100
98
110
89
103
500
乙班 89
100
95
10.在直角坐标系中,⊙O 的圆心在原点,半径为 3,⊙A 的圆心 A 的坐标为(- 3 ,1),
半径为 1,那么⊙O 与⊙A 的位置关系为(
A、外离
B、外切
C、内切
) D、相交
二、填空题:(本大题共 5 题,每小题 3 分,共 15 分;请把答案填在下表内相应的题号下,否则不给分)
题号
11
12
13
学海无涯
面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的 1 的概率 2
是( )
A. 1 6
B. 1 3
C. 1 2
D. 2 3
y
O
6 题图
2
164
x
53
7 题图
A
ED
B
C
8 题图
A
C
B
9 题图 V
8.如图所示, ABCD 中∠C=108°BE 平分∠ABC,则∠AEB 等于 ( )
C. 10 x + 84
D. 10 x + 420
2
5
15
15
6. 二次函数 y = ax2+ bx +c 的图象如图所示, 则下列结论正确的是: (
)
A. a>0,b<0,c>0
B. a<0,b<0,c>0
C. a<0,b>0,c<0
D. a<0,b>0,c>0
7.一个均匀的立方体六个面上分别标有数字 1,2,3,4,5,6,如图是这个立方体表
14
15
答案
11.为了估计湖里有多少条鱼,我们从湖里捕上 100 条做上标记,然后放回湖里,经过一段 时间待带标记的鱼完全混合于鱼群中后,第二次捕得 200 条,发现其中带标记的鱼 25 条, 通过这种调查方式,我们可以估计湖里有鱼 ________条.
12. 如图,D 在 AB 上,E 在 AC 上,且∠B=∠C,那么补充下列一个条件

使△ABE≌△ACD
y
O
A
C
B
13 题图
B
O
C
x
A
12 题图
15 题图
13.如图同心圆,大⊙O 的弦 AB 切小⊙O 于 P,且 AB=6,则圆环的面积为

学海无涯
14.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全
省荔枝总产量为 50 000 吨,销售收入为 61 000 万元. 已知“妃子笑”品种售价为 1.5 万元
)
A.1 B. 2
C. 3 D. 4
2.下列图形既是轴对称图形, 又是中心对称图形的是:( )
3. 资料显示, 2005 年“十 一”黄金周全国实现旅游收入 约 463 亿元,用科学记
数法表示 463 亿这个数是:( )
A. 463×108 B. 4.63×108
C. 4.63×1010
D. 0.463×1011
A. 180° B.36° C. 72° D. 108°
9.如图,在△ABC 中,∠C =90°,AC>BC,若以 AC 为底面圆的半径,BC 为高的圆锥的侧
面积为 S1,若以 BC 为底面圆的半径,AC 为高的圆锥的侧面积为 S2 , 则(

A.S1 =S2
B.S1 >S2
C.S1 <S2 D.S1 ,S2 的大小大小不能确定
y C
B
P
O
Ax
图 12
(2) 如果在第二象限内有一点 P( a, 1 ),试用含 a 的式子表示四边形 ABPO 的面积,并求 2
4.“圆柱与球的组合体”如左图所示,则它的三视图是( )
主视图 左视图 俯视图
主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图
A.
B.
C.
D
5. 10 名学生的平均成绩是 x ,如果另外 5 名学生每人得 84 分,那么整个组的平均成绩
是()
A. x + 84
B. 10 x + 420
相关文档
最新文档