全国高中物理竞赛复赛试题及答案

合集下载

高中生物理竞赛复赛试题及答案

高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。

假定空气和水蒸气均可以当作理想气体处理。

二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。

1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。

三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。

圆环处于超导状态,环内电流为100A 。

经过一年,经检测发现,圆环内电流的变化量小于610A -。

试估算该超导材料电阻率数量级的上限。

提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。

四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。

双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。

一般双星系统距离其他星体很远,可以当作孤立系统处理。

现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。

他们正绕两者连线的中点作圆周运动。

1. 试计算该双星系统的运动周期T 计算。

2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。

为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

2024年9月第41届全国中学生物理竞赛复赛试题参考解答

2024年9月第41届全国中学生物理竞赛复赛试题参考解答

第41届全国中学生物理竞赛复赛试题参考解答(2024年9月21日9:00-12:00)一、(45分) (1)(1.1)记质量为M 的振子偏离平衡位置的位移为x (向左为正),单摆的偏转角为θ(向左为正),摆臂上的张力为T ,按牛顿第二定律,摆锤在水平方向上的运动方程为m ẍ+lθcos θ−lθ sin θ =−T sin θ ①在竖直方向上的运动方程为m −l sin θθ−lθ cos θ =m g −T cos θ ② 利用小幅度振动条件,保留到小量θ的领头阶,有sin cos 1 , ③将③式代入①②式,并保留到小量θ的领头阶,得T mg ④ ẍ+lθ+g θ=0⑤【注: 利用悬点不动的非惯性系也可更方便地得到上述结果。

在悬点不动的非惯性系中,摆锤额外受到横向的惯性力−mẍ,有角向运动方程mlθ=−m g sin θ−mẍcosθ ①′ 同时也有径向运动方程2θcosθsin ml mx g T m ②′进一步利用小摆幅条件,保留到小量θ的领头阶,即得⑤④式。

】质量为M 的振子在水平方向上做一维运动, 由牛顿第二定律得Mẍ=−kx +T sin θ+H cos ωt ⑥由③④⑥式得Mẍ+kx −m g θ=H cos ωt ⑦只考虑系统在强迫力下的稳定振动,稳定振动的圆频率为ω,设cos(x x A t ) ⑧ cos()l B t ⑨其中φ 、φ 是稳定振动与所受强迫力之间的位相差。

将⑧⑨式代入方程⑤⑦后,所得出的两个方程对任意时间 t 均成立,故有00x ,⑩进而有22M m k A m B H⑪ 22200A B⑫由⑪⑫式得2202222200()()()HA k M m⑬222222222000()()H B A k M m⑭其中(1.2)由⑬式可知,当没有阻尼器时(这时0m ),有2HA k M ⑮即当风的频率为⑯时,大楼受迫振动幅度最大。

当风的频率取⑮式所示的值、但有阻尼器时,由⑬式得k g H H kl Mg M l A g k gkm m l M⑰为了调节阻尼器的参数m 、l 使得A 最小,可取Mgl k, ⑱或m 尽可能大。

第25届全国高中生物理竞赛答案(复赛)

第25届全国高中生物理竞赛答案(复赛)

第25届全国中学生物理竞赛复赛理论试题参考解答一、答案1. 14103.1⨯ 2. 31122kg m s -⋅⋅ 51.0610-⨯(答51.0510-⨯也给分)3.34T T 二、参考解答:1. 椭圆半长轴a 等于近地点和远地点之间距离的一半,亦即近地点与远地点矢径长度(皆指卫星到地心的距离)n r 与f r 的算术平均值,即有 ()()()()n f n f n f111222a r r H R H R H H R =+=+++=++⎡⎤⎣⎦ (1) 代入数据得43.194610a =⨯km (2) 椭圆半短轴b 等于近地点与远地点矢径长度的几何平均值,即有b = (3)代入数据得41.94210km b =⨯ (4) 椭圆的偏心率ab a e 22-=(5) 代入数据即得0.7941e = (6)2. 当卫星在16小时轨道上运行时,以n v 和f v 分别表示它在近地点和远地点的速度,根据能量守恒,卫星在近地点和远地点能量相等,有22n f n f1122GMm GMmm m r r -=-v v (7) 式中M 是地球质量,G 是万有引力常量. 因卫星在近地点和远地点的速度都与卫星到地心的连线垂直,根据角动量守恒,有n n f f m r m r =v v (8) 注意到g RGM=2(9)由(7)、(8)、(9)式可得n =v (10)n f n f r r ==v v (11) 当卫星沿16小时轨道运行时,根据题给的数据有n n r R H =+ f f r R H =+ 由(11)式并代入有关数据得f 1.198=v km/s (12)依题意,在远地点星载发动机点火,对卫星作短时间加速,加速度的方向与卫星速度方向相同,加速后长轴方向没有改变,故加速结束时,卫星的速度与新轨道的长轴垂直,卫星所在处将是新轨道的远地点.所以新轨道远地点高度4f f 5.093010H H '==⨯km ,但新轨道近地点高度2n6.0010H '=⨯km .由(11)式,可求得卫星在新轨道远地点处的速度为 f 1.230'=v km/s (13) 卫星动量的增加量等于卫星所受推力F 的冲量,设发动机点火时间为∆t ,有()f f m F t '-=∆v v (14) 由(12)、(13)、(14)式并代入有关数据得∆t=21.510s ⨯ (约2.5分) (15) 这比运行周期小得多.3. 当卫星沿椭圆轨道运行时,以r 表示它所在处矢径的大小,v 表示其速度的大小,θ表示矢径与速度的夹角,则卫星的角动量的大小sin 2L rm m θσ==v (16 ) 其中1sin 2r σθ=v (17)是卫星矢径在单位时间内扫过的面积,即卫星的面积速度.由于角动量是守恒的,故σ是恒量.利用远地点处的角动量,得f f 12r σ=v (18)又因为卫星运行一周扫过的椭圆的面积为πS ab = (19) 所以卫星沿轨道运动的周期σST =(20)由(18)、(19)、(20) 式得f f2πabT r =v (21) 代入有关数据得45.67810T =⨯s (约15小时46分) (22)注:本小题有多种解法.例如,由开普勒第三定律,绕地球运行的两亇卫星的周期T 与T 0之比的平方等于它们的轨道半长轴a 与a 0之比的立方,即2300T a T a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭若0a 是卫星绕地球沿圆轨道运动的轨道半径,则有202002πGMmma a T ⎛⎫= ⎪⎝⎭得22203204π4πT a GM gR ==从而得T =代入有关数据便可求得(22)式.4. 在绕月圆形轨道上,根据万有引力定律和牛顿定律有2m m 2m m2π()GM m mr r T = (23) 这里m m r r H =+是卫星绕月轨道半径,m M 是月球质量. 由(23)式和(9)式,可得23mm 22m4πr M M gR T = (24) 代入有关数据得m0.0124M M= (25)三、参考解答:足球射到球门横梁上的情况如图所示(图所在的平面垂直于横梁轴线).图中B 表示横梁的横截面,O 1为横梁的轴线;11O O '为过横梁轴线并垂直于轴线的水平线;A 表示足球,O 2为其球心;O 点为足球与横梁的碰撞点,碰撞点O 的位置由直线O 1OO 2与水平线11O O '的夹角θ 表示.设足球射到横梁上时球心速度的大小为v 0,方向垂直于横梁沿水平方向,与横梁碰撞后球心速度的大小为v ,方向用它与水平方向的夹角ϕ表示(如图).以碰撞点O 为原点作直角坐标系Oxy ,y 轴与O 2OO 1重合.以α0表示碰前速度的方向与y 轴的夹角,以α表示碰后速度的方向与y 轴(负方向)的夹角,足球被横梁反弹后落在何处取决于反弹后的速度方向,即角α的大小.以F x 表示横梁作用于足球的力在x 方向的分量的大小,F y 表示横梁作用于足球的力在y 方向的分量的大小,∆t 表示横梁与足球相互作用的时间,m 表示足球的质量,有x 0x x F t m m ∆=-v v (1) y y 0y F t m m ∆=+v v (2) 式中0x v 、0y v 、x v 和y v 分别是碰前和碰后球心速度在坐标系Oxy 中的分量的大小.根据摩擦定律有x y F F μ= (3) 由(1)、(2)、(3)式得 0x xy 0yμ-=+v v v v (4)根据恢复系数的定义有y 0y e =v v (5) 因0x00ytan α=v v (6) xytan α=v v (7) 由(4)、(5)、(6)、(7)各式得⎪⎭⎫⎝⎛+-=e e 11tan 1tan 0μαα (8) 由图可知αθϕ+= (9)若足球被球门横梁反弹后落在球门线内,则应有90ϕ≥ (10) 在临界情况下,若足球被反弹后刚好落在球门线上,这时90ϕ= .由(9)式得()tan 90tan θα-=(11)因足球是沿水平方向射到横梁上的,故θα=0,有⎪⎭⎫⎝⎛+-=e e 11tan 1tan 1μθθ (12) 这就是足球反弹后落在球门线上时入射点位置θ所满足的方程.解(12)式得tan θ=13)代入有关数据得tan 1.6θ= (14) 即58θ=(15)现要求球落在球门线内,故要求58θ≥ (16)四、参考解答:1. 当阀门F 关闭时,设封闭在M 和B 中的氢气的摩尔数为n 1,当B 处的温度为T 时,压力表显示的压强为 p ,由理想气体状态方程,可知B 和M 中氢气的摩尔数分别为 RTpV n BB 1=(1) 0MM 1RT pV n = (2) 式中R 为普适气体恒量.因1M 1B 1n n n =+ (3) 解(1)、(2)、(3)式得 1MB B 011n R V T V p V T =- (4) 或1MB B 0p T n R V p V V T =- (5) (4)式表明,T 1与p1成线性关系,式中的系数与仪器结构有关.在理论上至少要测得两个已知温度下的压强,作T 1对p1的图线,就可求出系数. 由于题中己给出室温T 0时的压强p 0,故至少还要测定另一己知温度下的压强,才能定量确定T 与p 之间的关系式.2. 若蒸气压温度计测量上限温度v T 时有氢气液化,则当B 处的温度v T T ≤时,B 、M 和E 中气态氢的总摩尔数应小于充入氢气的摩尔数.由理想气体状态方程可知充入氢气的总摩尔数 ()0B M E 20p V V V n RT ++=(6)假定液态氢上方的气态氢仍可视为理想气体,则B 中气态氢的摩尔数为 v B2B vp V n RT =(7) 在(7)式中,已忽略了B 中液态氢所占的微小体积.由于蒸气压温度计的其它都分仍处在室温中,其中氢气的摩尔数为()νM E 2M 2Ep V V n n RT ++= (8)根据要求有2B 2M 2E 2n n n n ++≤ (9) 解(6)、(7)、(8)、(9)各式得 ()B vv 0v00v E M V T p p T p T p V V --≥+ (10)代入有关数据得M E B 18V V V +≥ (11)五、答案与评分标准:1.59.022122=-=+(3分) 2 (2分)2.如图(15分.代表电流的每一线段3分,其中线段端点的横坐标占1分,线段的长度占1分,线段的纵坐标占1分)六、参考解答:如果电流有衰减,意味着线圈有电阻,设其电阻为R ,则在一年时间t 内电流通过线圈因发热而损失的能量为Rt I E 2=∆ (1) 以ρ 表示铅的电阻率,S 表示铅丝的横截面积,l 表示铅丝的长度,则有 SlR ρ= (2) 电流是铅丝中导电电子定向运动形成的,设导电电子的平均速率为v ,根据电流的定义有 I S ne =v (3) 所谓在持续一年的时间内没有观测到电流的变化,并不等于电流一定没有变化,但这变化不会超过电流检测仪器的精度∆I ,即电流变化的上限为mA 0.1=∆I .由于导电电子的数密度n 是不变的,电流的变小是电子平均速率变小的结果,一年内平均速率由v 变为 v -∆v ,对应的电流变化I neS ∆=∆v (4) 导电电子平均速率的变小,使导电电子的平均动能减少,铅丝中所有导电电子减少的平均动能为()221122k E lSn m m ⎡⎤∆=--∆⎢⎥⎣⎦v v v l S n m ≈∆v v (5) 由于∆I<<I ,所以∆v <<v ,式中∆v 的平方项已被略去.由(3)式解出 v ,(4)式解出 ∆v ,代入(5)式得2k lmI IE ne S∆∆=(6) 铅丝中所有导电电子减少的平均动能就是一年内因发热而损失的能量,即E E k ∆=∆ (7) 由(1)、(2)、(6)、(7)式解得2Δm I ne Itρ= (8)式中7365243600s =3.1510s t =⨯⨯⨯ (9)在(8)式中代入有关数据得261.410Ωm ρ-=⨯⋅ (10)所以电阻率为0的结论在这一实验中只能认定到m Ω104.126⋅⨯≤-ρ (11)七、参考解答:按照斯特藩-玻尔兹曼定律,在单位时间内太阳表面单位面积向外发射的能量为 4s s W T σ=(1)其中σ为斯特藩-玻尔兹曼常量,T s 为太阳表面的绝对温度.若太阳的半径为R s ,则单位时间内整个太阳表面向外辐射的能量为2s s s 4πP R W= (2) 单位时间内通过以太阳为中心的任意一个球面的能量都是s P .设太阳到地球的距离为r se ,考虑到地球周围大气的吸收,地面附近半径为R 的透镜接收到的太阳辐射的能量为 ()2s 2seπ14πP P R r α=- (3)薄凸透镜将把这些能量会聚到置于其后焦面上的薄圆盘上,并被薄圆盘全部吸收.另一方面,因为薄圆盘也向外辐射能量.设圆盘的半径为D R ,温度为D T ,注意到簿圆盘有两亇表面,故圆盘在单位时间内辐射的能量为24D D D 2πP R T σ=⋅⋅ (4)显然,当D P P = (5) 即圆盘单位时间内接收到的能量与单位时间内辐射的能量相等时,圆盘达到稳定状态,其温度达到最高.由(1)、(2)、(3)、(4)、(5)各式得 ()1224s D s 22se D12R R T T r R α⎡⎤=-⎢⎥⎣⎦(6) 依题意,薄圆盘半径为太阳的像的半径s R '的2倍,即D 2s R R '=.由透镜成像公式知s sseR R f r '= (7) 于是有sD se2R R f r = (8) 把(8)式代入(6)式得()124D s 218R T T f α⎡⎤=-⎢⎥⎣⎦(9) 代入已知数据,注意到s s (273.15)T t =+K , T D =1.4×103K (10)即有3o D D 273.15 1.110C t T =-=⨯ (11) 八、参考解答:1.根据爱因斯坦质能关系,3H 和3He 的结合能差为()332n p H He B m m m m c ∆=--+ (1)代入数据,可得763.0=∆B MeV (2) 2.3He 的两个质子之间有库仑排斥能,而3H 没有.所以3H 与3He 的结合能差主要来自它们的库仑能差.依题意,质子的半径为N r ,则3He 核中两个质子间的库仑排斥能为2C N2e E k r = (3)若这个库仑能等于上述结合能差,C E B =∆,则有2N 2Δke r B= (4)代入数据,可得N 0.944r =fm (5)3.粗略地说,原子核中每个核子占据的空间体积是 3N (2)r .根据这个简单的模型,核子数为A 的原子核的体积近似为33N N (2)8V A r Ar == (6)另一方面,当A 较大时,有 343V R π=(7) 由(6)式和(7)式可得R 和A 的关系为1/31/31/3N 06πR r A r A ⎛⎫== ⎪⎝⎭(8)其中系数1/30N 6πr r ⎛⎫= ⎪⎝⎭(9)把(5)式代入(9)式得17.10=r fm (10) 由(8)式和(10)式可以算出Pb 208的半径Pb 6.93fm R =。

2024物理竞赛复赛试题

2024物理竞赛复赛试题

选择题一质点做简谐运动,下列说法中正确的是:A. 质点通过平衡位置时,速度最大B. 质点通过平衡位置时,加速度最大(正确答案)C. 质点离平衡位置越远,机械能越大D. 质点离平衡位置越远,振动频率越大关于光的本性,下列说法中正确的是:A. 光的波粒二象性是指光既具有波动性,又具有粒子性(正确答案)B. 光的波粒二象性是指光就是波和粒子的结合体C. 光的干涉和衍射现象说明光是横波D. 光电效应现象说明光是纵波在电磁感应现象中,下列说法正确的是:A. 感应电流的磁场总是阻碍原磁通量的变化B. 感应电流的磁场总是与原磁场方向相反C. 感应电动势的大小跟线圈的匝数成正比(正确答案)D. 感应电动势的大小跟穿过线圈的磁通量变化率无关在相对论中,下列说法正确的是:A. 高速运动的物体,其长度会沿运动方向收缩(正确答案)B. 高速运动的物体,其质量会随速度的增加而减小C. 时间的流逝是绝对的,与观察者的运动状态无关D. 光速在不同惯性参考系中是不同的关于热力学定律,下列说法正确的是:A. 热量不能自发地从低温物体传到高温物体B. 一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热(正确答案)C. 物体的内能与物体的速度有关D. 第二类永动机违反了能量守恒定律在量子物理中,下列说法正确的是:A. 电子的波动性是其固有的属性,与观察方式无关(正确答案)B. 电子的轨道半径是确定的,可以精确测量C. 氢原子的能级是连续的D. 光电效应中,光电子的最大初动能与入射光的频率无关关于电磁场和电磁波,下列说法正确的是:A. 变化的电场一定产生变化的磁场B. 均匀变化的电场产生恒定的磁场(正确答案)C. 电磁波在真空中不能传播D. 电磁波在介质中的传播速度比在真空中大在力学中,关于牛顿运动定律的应用,下列说法正确的是:A. 跳绳时,绳对人的拉力大于人对绳的拉力B. 物体所受的合外力不为零时,其速度一定不为零C. 物体所受的合外力方向改变,其加速度方向一定改变(正确答案)D. 物体所受的合外力大小不变,其加速度大小一定不变(忽略物体质量变化)。

2023年全国中学生物理竞赛复赛试题参考解答

2023年全国中学生物理竞赛复赛试题参考解答

全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。

所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。

以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。

同理可求得 max 62l R =(5)评分标准: 本题15分。

式(1)、(2)各4分, 式(4)2分, 式(5)5分。

二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。

设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。

全国物理竞赛复赛试题

全国物理竞赛复赛试题

1、一个物体在光滑的水平面上以初速度v₀做匀速直线运动,突然受到一个与运动方向相同的恒力作用,则物体将A、继续做匀速直线运动B、速度增大,做匀加速直线运动C、加速度减小,做变加速直线运动D、速度减小,做匀减速直线运动(答案)B。

解析:物体在光滑水平面上原本做匀速直线运动,说明合力为零。

当受到一个与运动方向相同的恒力作用时,合力不再为零,且合力方向与运动方向相同,因此物体会做匀加速直线运动,速度增大。

2、关于光的折射现象,下列说法正确的是A、光从一种介质进入另一种介质时,传播方向一定改变B、光从一种介质进入另一种介质时,速度的改变量与入射角有关C、光从光密介质射入光疏介质时,若入射角大于临界角,则会发生全反射D、光从光疏介质射入光密介质时,折射角总是小于入射角(答案)D。

解析:A选项错误,因为当光线垂直界面入射时,传播方向不变。

B选项错误,光在介质中的速度由介质的折射率决定,与入射角无关。

C选项错误,应该是光从光密介质射入光疏介质时,若入射角大于或等于临界角,才会发生全反射。

D选项正确,根据折射定律,光从光疏介质射入光密介质时,折射角总是小于入射角。

3、在静电场中,下列说法中正确的是A、电势为零的点,电场强度也一定为零B、电场强度的方向处处与等势面垂直C、由静止释放的正电荷,仅在电场力作用下的运动轨迹一定与电场线重合D、电场中任一点的电场强度的方向总是指向该点电势降落的方向(答案)B。

解析:A选项错误,电势是相对的,可以人为规定某点为电势零点,但电场强度是由电场本身决定的,两者无必然联系。

B选项正确,电场强度的方向是电势降低最快的方向,因此与等势面垂直。

C选项错误,只有当电场线是直线,且电荷初速度为零或初速度方向与电场线方向相同时,电荷的运动轨迹才与电场线重合。

D选项错误,电场强度的方向是电势降低最快的方向,但不一定是电势降低的方向。

4、关于简谐振动,下列说法正确的是A、简谐振动的加速度大小与位移大小成正比,方向总与位移方向相同B、简谐振动的周期与振幅无关,仅由系统本身的性质决定C、物体做简谐振动时,经过相同的位移,速度大小一定相同D、物体做简谐振动时,速度减小时,加速度一定减小(答案)B。

物理竞赛复赛试题及答案

物理竞赛复赛试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h2. 根据牛顿第三定律,作用力和反作用力的大小()A. 相等B. 不相等C. 相等但方向相反D. 相等且方向相同3. 一个物体的动能与其速度的关系是()A. 正比B. 反比C. 无关D. 正比且平方关系4. 电场中某点的电势与该点到参考点的电势差成正比()A. 正确B. 错误二、填空题(每题5分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成______。

2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为______。

3. 根据欧姆定律,电阻R、电流I和电压V之间的关系是V = ______。

4. 光的折射定律表明,入射角和折射角的正弦值之比等于两种介质的折射率之比,即sinθ1/sinθ2 = ______。

三、计算题(每题10分,共40分)1. 一辆汽车以20 m/s的速度行驶,突然刹车,刹车时的加速度为-5m/s²。

求汽车完全停止所需的时间。

2. 一个质量为2 kg的物体从10 m的高度自由落体,忽略空气阻力,求物体落地时的速度。

3. 一个电路中包含一个5 Ω的电阻和一个9 V的电池,求电路中的电流。

4. 一个光波的波长为600 nm,求其频率。

四、实验题(每题20分,共20分)1. 描述如何使用弹簧秤测量物体的重力,并解释实验原理。

答案:一、选择题1. A2. A3. D4. B二、填空题1. 反比2. at3. IR4. n1/n2三、计算题1. 4 s2. √(2gh) = √(2*9.8*10) m/s ≈ 14.1 m/s3. I = V/R = 9/5 A = 1.8 A4. f = c/λ = (299,792,458)/(600*10^-9) Hz ≈ 5*10^14 Hz四、实验题1. 将物体挂在弹簧秤的挂钩上,读取弹簧秤的示数即为物体的重力。

高中物理复赛竞赛试题及答案

全国中学生物理竞赛复赛试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛解答与评分标准一参考解答:x以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v .(4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

第全国高中物理竞赛复赛题试卷及参考解答

额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。

第全国高中物理竞赛复赛理论试题及参考解答

虾对市爱抚阳光实验学校第25届生物理竞赛复赛试卷本卷共八题,总分值160分 一、〔15分〕1、〔5分〕蟹状星云脉冲星的辐射脉冲周期是0.033s 。

假设它是由均匀分布的物质构成的球体,脉冲周期是它的旋转周期,万有引力是唯一能阻止它离心分解的力,万有引力常量113126.6710G m kg s ---=⨯⋅⋅,由于脉冲星外表的物质未别离,故可估算出此脉冲星密度的下限是 3kg m -⋅。

2、〔5分〕在单位制中,库仑律写成122q q F kr =,式中静电力常量9228.9810k N m C -=⨯⋅⋅,电荷量q 1和q 2的单位都是库仑,距离r 的单位是米,作用力F 的单位是牛顿。

假设把库仑律写成更简洁的形式122q q F r =,式中距离r 的单位是米,作用力F 的单位是牛顿。

假设把库仑律写成更简洁的形式122q q F r =,式中距离r 的单位是米,作用力F 的单位是牛顿,由此式可这义一种电荷量q 的单位。

当用米、千克、秒表示此单位时,电荷单位= ;单位与库仑的关系为1单位= C 。

3、〔5分〕电子感加速器〔betatron 〕的根本原理如下:一个圆环真空室处于分布在圆柱形体积内的磁场中,磁场方向沿圆柱的轴线,圆柱的轴线过圆环的圆心并与环面垂直。

圆中两个的实线圆代表圆环的边界,与实线圆的虚线圆为电子在加速过程中运行的轨道。

磁场的磁感强度B 随时间t 的变化规律为0cos(2/)B B t T π=,其中T为磁场变化的周期。

B 0为大于0的常量。

当B 为正时,磁场的方向垂直于纸面指向纸外。

假设持续地将初速度为v 0的电子沿虚线圆的切线方向注入到环内〔如图〕,那么电子在该磁场变化的一个周期内可能被加速的时间是从t= 到t= 。

二、〔21分〕嫦娥1号奔月卫星与3号别离后,进入绕地运行的椭圆轨道,近地点离地面高22.0510n H km =⨯,远地点离地面高45.093010f H km =⨯,周期约为16小时,称为16小时轨道〔如图中曲线1所示〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中物理竞赛复赛试题及答案第二十届全国中学生物理竞赛复赛试卷一、(15分)给定一个半径为R的均匀带电球体a,球心为O。

已知球表面处的电势为U=1000V,取无限远处的电势为零。

一个动能为2000eV的质子b以与O O平行的方向射向a。

设b与O O线之间的垂直距离为l,求l的最大值,使得质子b能够与带电球体a的表面相碰。

再将质子换成电子,求l的最大值。

二、(15分)一个U形管包含两支管A、B和水平管C,它们都是由内径均匀的细玻璃管制成的。

三部分的截面积分别为SA=1.0×10^-2 cm^2,SB=3.0×10^-2 cm^2,SC=2.0×10^-2cm^2.在C管中有一段空气柱,两侧被水银封闭。

当温度为t1=27℃时,空气柱长为l=30cm,C中气柱两侧的水银柱长分别为a=2.0cm和b=3.0cm,A、B两支管都很长,其中的水银柱高均为h=12cm。

大气压强保持为p=76cmHg不变。

不考虑温度变化时管和水银的热膨胀。

试求气柱中空气温度缓慢升高到t=97℃时空气的体积。

三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想。

其设想如下:沿地球的一条弦挖一通道,在通道的两个出口处A 和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放。

只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道。

设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小。

这样待发卫星便有可能绕地心运动,成为一个人造卫星。

若人造卫星正好沿地球表面绕地心做圆周运动,则地心到该通道的距离为多少?已知M=20m,地球半径R=6400km。

假定地球是质量均匀分布的球体,通道是光滑的,两物体间的碰撞是弹性的。

四、(20分)一个半径为R、折射率为n的玻璃半球放在空气中,平表面中央半径为h的区域被涂黑。

一平行光束垂直入射到此平面上,正好覆盖整个表面。

Ox为以球心O为原点,与平而垂直的坐标轴。

通过计算,求出坐标轴Ox上玻璃半球右边有光线通过的各点(有光线段)和无光线通过的各点(无光线段)的分界点的坐标。

V V,(2)其中p和V分别表示气柱中的空气的初始压强和体积,h表示水银柱的高度,V表示水银柱下方空气的体积。

根据理想气体状态方程,可得pV nRT,(3)其中n为气体的摩尔数,R为气体常数,T为气体的温度。

将式(1)和式(2)代入式(3)中,得到p h)(V V)=nRT,(4)展开式(4),并忽略V与V的乘积,得到pV hV p V=nRT,(5)将式(3)代入式(5)中,得到pV hV p V=pV,(6)化简得到V=Vh/p,(7)代入数据可得V=0.76cm3。

故答案为0.76cm3.在温度为300K时,气柱中的空气的压强和体积分别为p 和V。

水银柱的高度为h,水银柱下方空气的体积为ΔV。

根据理想气体状态方程pV=nRT,代入(p+h)(V-ΔV)=nRT中,可得ΔV=Vh/p。

代入数据计算得ΔV=0.76cm3,即为所求答案。

2)当气柱中空气的温度升高时,气柱两侧的水银将被缓慢压入A管和B管。

假设温度升高到T2时,气柱右侧水银刚好全部压到B管中,使管中水银高度增加Δh = bS/C。

3)由此造成气柱中空气体积的增加量为ΔV' = XXX。

4)与此同时,气柱左侧的水银也有一部分进入A管,进入A管的水银使A管中的水银高度也应该增加Δh,使两支管的压强平衡,由此造成气柱空气体积增加量为ΔV'' = ΔhSA。

5)因此,当温度为T2时,空气的体积和压强分别为V2 = V1 + ΔV' + ΔV'' 和p2 = p1 + Δh。

根据状态方程p1V1/T1 = p2V2/T2,代入数据可得T2 = 347.7K,这个值小于题目给定的最终温度T = 273 + t = 370K,因此温度将继续升高。

从此时起,气柱中的空气作等压变化。

当温度达到T时,气柱体积为V = T1V2/T2.代入数据可得V = 0.72cm3.评分标准:本题15分。

得分标准为:式(6)给6分,式(7)1分,式(9)2分,式(10)5分,式(11)1分。

参考解答:在通道内,距地心O为r的物体受到地球的引力可以表示为F = GM'm/(2r),其中M'是以地心O为球心、以r为半径的球体所对应的那部分地球的质量。

如果以ρ表示地球的密度,那么这部分地球的质量可以表示为M' = 4/3πr^3ρ。

因此,质量为m的物体所受地球的引力可以改写为F = πGρmr^2.作用于质量为m的物体的引力在通道方向的分力大小为f = Fsinθ,其中θ为r与通道的中垂线OC间的夹角,力的方向指向通道的中点C。

在地面上,物体的重力可以表示为mg = GMm/R^2,其中M是地球的质量。

由以上各式可以求得f = mgx/R,其中x为物体位置到通道中点C的距离。

因此,f与弹簧的弹力有同样的性质,相应的“劲度系数”为k = mg/R。

物体将以C为平衡位置作简谐振动,振动周期为T = 2πR/g。

取x = 0处为“弹性势能”的零点,设位于通道出口处的质量为m的静止物体到达x = h2处的速度为v,则根据能量守恒,有1/2 mv^2 = k(R - h2)^2/2.本文是一篇物理题的解答,讲述了如何计算物体在通道中的运动轨迹。

文章中存在格式错误和段落不清晰的问题,需要进行修改和改写。

修改后的文章如下:本文讲述了如何计算物体在通道中的运动轨迹。

式中h表示地心到通道的距离。

解以上有关各式,得到式(11):2v2R h2g(11)R可以看出,到达通道中点C的速度与物体的质量无关。

设想让质量为M的物体静止于出口A处,质量为m的物体静止于出口B处,现将它们同时释放,因为它们的振动周期相同,故它们将同时到达通道中点C处,并发生弹性碰撞。

碰撞前,两物体速度的大小都是v,方向相反,刚碰撞后,质量为M的物体的速度为V,质量为m的物体的速度为v,若规定速度方向由A向B为正,则有式(12)和式(13):Mv mv MV mv,(12)2Mv mv MV2mv2(13)解式(12)和式(13),得到式(14):3M mv v(14)M m质量为m的物体是待发射的卫星,令它回到通道出口B处时的速度为u,则有式(15):2k(R h2)mu2mv2(15)由式(14)、(15)、(16)和式(9)解得式(16):2h28M(M m)Ru g(16)R(M m)2u的方向沿着通道。

根据题意,卫星上的装置可使u的方向改变成沿地球B处的切线方向,如果u的大小恰能使小卫星绕地球作圆周运动,则有式(17):Mmu2G2m(17)RR由式(16)、(17)并注意到式(6),可以得到式(18):7M210Mm m218)2M(M m)已知M=20m,则得到式(19):h0.925R5920km(19)评分标准:本题20分。

解答中的式子和推导过程都非常清晰明了,让人容易理解。

把式(5)中应舍弃的解去掉,令$h\to 0$,则$x$处应为玻璃半球在光轴$Ox$上的傍轴焦点,由上式R=\frac{n(n\pm 1)}{(n-1)(n+1)(n^2-1)}$$由图可知,应有$x>R$,故式(5)中应排除$\pm$号中的负号,所以$x$应表示为x=\frac{n^2R^2-h^2+nR^2-n^2h^2}{n^2-1}\quad (6)$$上式给出$x$随$h$变化的关系。

因为半球平表面中心有涂黑的面积,所以进入玻璃半球的光线都有$h\geq h$,其中折射光线与$Ox$轴交点最远处的坐标为x=\frac{2n^2R^2-h+nR^2-n^2h^2}{n^2-1}\quad (7)$$在轴上$x>x$处,无光线通过。

随$h$增大,球面上入射角$i$增大,当$i$大于临界角$i_C$时,即会发生全反射,没有折射光线。

与临界角$i_C$相应的光线有h_C=R\sin i_C=R\sqrt{1-\frac{1}{n^2}}$$这光线的折射线与轴线的交点处于x_C=\frac{nR}{n-1}\quad (8)$$在轴$Ox$上$R<x<x_C$处没有折射光线通过。

由以上分析可知,在轴$Ox$上玻璃半球以右$x_C\leqx\leq x_C$的一段为有光线段,其它各点属于无光线段。

$x$与$x_C$就是所要求的分界点,如图复解20-4-2所示。

评分标准:本题20分。

求得式(7)并指出在$Ox$轴上$x>x_C$处无光线通过,给10分;求得式(8)并指出在$Ox$轴上$x<x_C$处无光线通过,给6分;得到式(9)并指出$Ox$上有光线段的位置,给4分。

五、参考解答放上圆柱B后,圆柱B有向下运动的倾向,对圆柱A和墙面有压力。

圆柱A倾向于向左运动,对墙面没有压力。

平衡是靠各接触点的摩擦力维持的。

现设系统处于平衡状态,取圆柱A受地面的正压力为$N_1$,水平摩擦力为$F_1$;圆柱B受墙面的正压力为$N_2$,竖直摩擦力为$F_2$,圆柱A受圆柱B的正压力为$N_3$,切向摩擦力为$F_3$;圆柱B受圆柱A的正压力为$N_3'$,切向摩擦力为$F_3'$,如图复解20-5所示。

各力以图示方向为正方向。

已知圆柱A与地面的摩擦系数$\mu_1=0.20$,两圆柱间的摩擦系数$\mu_3=0.30$。

设圆柱B与墙面的摩擦系数为$\mu_2$,过两圆柱中轴的平面与地面的交角为$\varphi$。

设两圆柱的质量均为$M$,为了求出$N_1$、$N_2$、$N_3$以及为保持平衡所需的$F_1$、$F_2$、$F_3$之值,下面列出两圆柱所受力和力矩的平衡方程:圆柱A:$Mg-N_1+N_3\sin\varphi+F_3\cos\varphi=0$(1)F_1-N_3\cos\varphi+F_3\sin\varphi=0$(2)圆柱B:$N_2-Mg-N_3'\sin\varphi-F_3'\cos\varphi=0$(3)F_2-N_3'\cos\varphi-F_3'\sin\varphi=0$(4)两圆柱的切向摩擦力$F_3$和$F_3'$的方向未知,需要分别考虑两种情况。

本文讲述了两个圆柱在地面和墙面上的平衡问题。

根据受力分析,得到了N1、N2、N3和F的联立方程,并解出了平衡时需要的力的大小。

但是,F1、F2、F3三个力是否能够达到所需的数值F,取决于摩擦系数的大小。

如果其中一个力不能达到所需的F值,那么就会发生滑动而不能保持平衡。

相关文档
最新文档