分子生物学大实验——目的基因的克隆及表达
分子生物学实验中的克隆技术使用方法解析

分子生物学实验中的克隆技术使用方法解析克隆技术是分子生物学中常用的实验方法之一,它可以复制DNA分子,从而产生大量相同的DNA片段。
这项技术的应用非常广泛,包括基因工程、疾病研究、生物医药等领域。
本文将从克隆技术的原理、步骤和应用等方面进行解析。
克隆技术的原理是利用DNA分子的复制特性,通过PCR(聚合酶链式反应)或细菌转化等方法,将目标DNA片段复制出来。
首先,需要从源DNA中选择目标片段,可以通过限制性内切酶切割DNA,或利用PCR扩增目标片段。
然后,将目标片段与载体DNA连接,形成重组DNA。
最后,将重组DNA导入宿主细胞,使其复制并表达目标片段。
克隆技术的步骤包括DNA提取、DNA切割、连接、转化和筛选等。
首先,需要从细胞或组织中提取DNA。
DNA提取的方法有多种,包括酚-氯仿法、盐法、离心法等。
其次,需要选择适当的限制性内切酶对DNA进行切割。
限制性内切酶是一类能够识别特定DNA序列并切割的酶,它们可以将DNA切割成特定的片段。
然后,将目标片段与载体DNA进行连接。
载体DNA可以是质粒、噬菌体或人工染色体等,它们能够稳定地复制和传递目标片段。
连接的方法有多种,包括DNA连接酶法、化学连接法等。
连接完成后,将重组DNA导入宿主细胞,使其复制并表达目标片段。
最后,通过筛选方法,选择含有目标片段的克隆进行进一步研究。
克隆技术在分子生物学研究中有着广泛的应用。
首先,它可以用于基因工程,包括基因的克隆、表达和改造等。
通过克隆技术,科学家可以将感兴趣的基因从一个生物体中克隆到另一个生物体中,从而实现基因的转移和表达。
其次,克隆技术也可以用于疾病研究。
通过克隆疾病相关基因,科学家可以深入研究其功能和作用机制,为疾病的治疗和预防提供理论依据。
此外,克隆技术还可以用于生物医药领域,包括药物研发、疫苗生产等。
通过克隆技术,科学家可以大规模复制目标基因,从而实现药物和疫苗的生产。
当然,克隆技术也存在一些问题和挑战。
分子生物学实验技术实验内容讲解

2006年《分子生物学实验技术》实验内容一、RT-PCR(一)总RNA的提取实验安排:每两人抽提一管。
为了使操作同步以节省时间,各组样品请一起离心。
操作步骤:1、将100μl液体样品加入1.5ml Ep管中,再加入900μl冰预冷的LS-Biotragents TM(苯酚和异硫氰酸胍的混合物)。
2、将样品剧烈混合后,在室温放置5min。
3、加入200μl氯仿,颠倒Ep管混和两次,并剧烈振荡混和10s。
4、在4℃条件下,以10000×g离心15min。
5、将上层水相转移到一个新的Ep管中,加入等体积的异丙醇(Isopropanol)并混匀,然后在4℃放置至少10min。
6、在4℃条件下,以10000×g离心15min后,小心并尽可能地去除全部上清夜。
7、用1ml 75%乙醇洗涤RNA沉淀和管壁。
8、将RNA沉淀进行干燥(不能完全干燥)处理后,用10μl无RNase污染的水(RNase-Free Water)将RNA溶解并于-20℃保存。
注意事项:1、所有的玻璃器皿均应在使用前于180℃的高温下干烤6hr或更长时间。
2、所用的塑料材料,如吸头、离心管等需用0.1% DEPC水浸泡过夜。
3、配制的溶液应尽可能用0.1% DEPC,在37℃处理12hr以上。
然后用高压灭菌除去残留的DEPC。
不能高压灭菌的试剂,应当用DEPC处理过的无菌双蒸水配制,然后经0.22μm滤膜过滤除菌。
4、操作人员需在超净工作台上操作,并戴一次性口罩、手套,实验过程中手套要勤换。
(二)反转录实验安排:每人做一管。
反应体系(20μl):按下列顺序加样反应条件:42℃ 1h注意事项:1、加样时,一般从体积大的开始加,样品最后加。
如在一般的PCR反应体系中,应先加水、Buffer、dNTPs、引物,最后加酶和模板。
2、液体应直接加到管底,且每加一种试剂后应更换新的吸头。
3、加完所有试剂后,应用手指轻弹混匀,然后低速离心数秒以收集管壁上沾有的液体。
分子生物学实验技术ppt课件

质粒转化大肠杆菌的过程
感受态
非定向克隆 +
或
定向克隆
克隆的片段只能按
+ 特定方向连接基因组DNA的构建基因组DNA的类型
质粒(﹤10kb)噬菌体质经双向电泳之后,用蛋白质水解酶裂解成肽段,可 用于质谱分析。通过电离源将蛋白质分子转化为气相离子, 然后用质谱分析仪的电场、磁场将具有特定质量与电荷比 值(M/Z值)的蛋白离子分离开,经过离子检测器收集分离 的离子,确定离子的M/Z值,分析鉴定未知蛋白质。
两种离子发生方法: 基质辅助激光解吸附/离子化(MALDI)、电喷雾离子化 (ESI)
噬菌体展示技术
噬菌体展示技术是将编码目的蛋白的基 因与编码噬菌体表面蛋白的基因融合后, 以融合蛋白的形式表达在噬菌体表面的一 种技术。
将不同蛋白的cDNA插入噬菌体载体进 行表达,得到表达不同蛋白的一定规模的 噬菌体展示库 。
将“诱饵”蛋白固定化,基于“诱饵”蛋白与 “猎物”蛋白之间的相互作用,可将展示库 中与固定化的“诱饵”蛋白有相互作用的“猎 物”蛋白分离纯化出来,再对“猎物”蛋白进 行质谱鉴定。
四、蛋白组学研究
蛋白质分离 蛋白质分析 蛋白质相互作用的研究方法: 酵母双杂交技术,噬菌体展示技术,表
面等离子共振技术,荧光共振能量转移 技术,蛋白质微阵列芯片技术,免疫共 沉淀技术,pull-down技术
蛋白质分离
最常用的蛋白质分离技术是20世纪70年代发明的双 向电泳(2-DE),是根据蛋白质的等电点不同在pH 梯度介质中进行第一次分离,即等点聚焦(IEF),然 后根据蛋白质分子量的不同进行第二次分离,即 SDS-聚丙烯酰胺凝胶电泳。
重叠延伸PCR原理
重叠延伸PCR技术由于使用了具有互补末端的引物, 使PCR 产物形成了重叠链,从而在随后的扩增反应中通过 重叠链的延伸,将不同来源的扩增片段重叠拼接起来。可 简单迅速的将两个DNA片段连在一起,用于嵌合基因的构 建
基因克隆与表达及功能鉴定研究

基因克隆与表达及功能鉴定研究在现代生命科学领域中,基因克隆与表达以及功能鉴定是非常重要的研究方向之一,它涉及到许多生物医学、农业、工业和环境等领域的研究和实际应用。
本文将从基因克隆与表达的基本原理、方法、技术和应用,以及功能鉴定的原理、方法、技术和应用等方面进行探讨。
一、基因克隆与表达基因克隆是指通过分子生物学技术,将含有某个或某些特定基因的DNA序列从一个大的DNA分子(如染色体)中分离出来,然后插入到特定的载体DNA中,形成重组DNA分子的过程。
基因表达是指基因信息的转录和翻译过程,将基因的DNA序列转录成RNA分子,然后翻译成蛋白质分子的过程。
基因表达是生物体形成和发展的基础,也是生命活动的重要表现形式。
1. 基因克隆原理基因克隆的主要原理是利用限制酶、DNA连接酶、DNA聚合酶以及质粒或噬菌体等DNA载体的特性,将特定DNA序列插入到载体DNA中,形成重组DNA分子。
限制酶是一种能够识别、切割DNA分子特定序列的酶,其识别序列具有一定的特异性。
DNA连接酶是一种能够连接两个DNA分子的酶,常用的有T4 DNA连接酶和快速连接酶等。
DNA聚合酶是一种能够在DNA模板上合成互补链的酶,其作用是在重组DNA分子中完成互补链的合成。
2. 基因克隆方法基因克隆的主要方法有限制性片段长度多态性(RFLP)分析、聚合酶链式反应(PCR)克隆、原核表达克隆和真核表达克隆等。
RFLP分析是一种利用限制酶对DNA序列进行切割,并根据不同的RFLP位点进行区分的方法,其主要应用于基因型鉴定和进化研究等领域。
PCR克隆是一种利用PCR技术扩增目标基因或DNA片段,并将扩增产物克隆到载体DNA中的方法,其主要应用于基因检测、DNA测序和分子克隆等领域。
原核表达克隆是一种利用质粒或噬菌体等原核生物作为DNA载体,将外源基因转入细菌或古细菌等原核生物细胞中,通过蛋白质表达实现基因功能研究的方法。
真核表达克隆是一种利用真核生物(如哺乳动物、鸟类、昆虫、线虫等)作为DNA载体,将外源基因转入具有表达能力的真核细胞中,通过蛋白质表达实现基因功能研究的方法。
分离目的基因实验报告(3篇)

第1篇一、实验目的本实验旨在通过分子生物学技术,学习并掌握目的基因的分离方法,包括基因组DNA提取、目的基因的克隆、扩增和鉴定等步骤。
通过实验,使学生熟悉实验原理、操作步骤和注意事项,提高学生的动手能力和实验技能。
二、实验原理目的基因分离是指从生物基因组中提取出特定的基因片段,并进行克隆、扩增和鉴定。
实验步骤主要包括以下几部分:1. 基因组DNA提取:利用各种方法从生物组织中提取出基因组DNA。
2. 目的基因的克隆:利用PCR技术扩增目的基因,并克隆到载体上。
3. 目的基因的鉴定:通过限制性内切酶酶切、DNA测序等方法对克隆的目的基因进行鉴定。
4. 目的基因的表达:将目的基因导入宿主细胞,进行表达和功能验证。
三、实验材料与试剂1. 实验材料:大肠杆菌、质粒载体、目的基因DNA模板等。
2. 试剂:DNA提取试剂盒、PCR试剂、限制性内切酶、DNA连接酶、DNA测序试剂盒等。
四、实验步骤1. 基因组DNA提取(1)取适量生物组织,按照DNA提取试剂盒说明书进行操作。
(2)提取的基因组DNA用琼脂糖凝胶电泳检测,确保DNA提取质量。
2. 目的基因的克隆(1)设计特异性引物,用于PCR扩增目的基因。
(2)按照PCR试剂盒说明书进行PCR扩增,获得目的基因。
(3)将PCR产物与载体连接,转化大肠杆菌。
(4)通过蓝白斑筛选,获得阳性克隆。
3. 目的基因的鉴定(1)对阳性克隆进行酶切鉴定,验证目的基因是否成功克隆。
(2)对阳性克隆进行DNA测序,确定目的基因序列。
4. 目的基因的表达(1)将目的基因克隆到表达载体上,构建表达系统。
(2)将表达载体导入宿主细胞,进行目的基因的表达。
(3)检测目的基因的表达产物,验证目的基因的功能。
五、实验结果与分析1. 基因组DNA提取:提取的基因组DNA在琼脂糖凝胶电泳中呈现清晰的主带,说明DNA提取成功。
2. 目的基因的克隆:通过PCR扩增,获得目的基因片段,大小与预期相符。
分子生物学实验室常见实验

分子生物学实验室常见实验1.基因克隆实验:基因克隆实验是一种常见的分子生物学实验,其目的是将感兴趣的DNA序列克隆到重组DNA分子中。
这个实验通常包括DNA的摘取、PCR扩增、限制性内切酶的消化、连接载体、转化大肠杆菌等步骤。
2. 蛋白质表达实验:蛋白质表达实验是一种常见的分子生物学实验,其目的是将感兴趣的蛋白质表达到大肠杆菌等宿主细胞中。
这个实验通常包括将感兴趣的基因克隆到表达载体中,表达载体转化至宿主细胞,利用诱导剂等物质诱导表达蛋白质等步骤。
3. PCR实验:PCR实验是一种基于酶催化反应的分子生物学实验。
该实验通过模板DNA、引物、酶及核苷酸等原料,经一系列温度变化,扩增目标DNA片段。
该实验通常用于基因克隆、DNA测序、点突变检测等领域。
4. DNA测序实验:DNA测序实验是一种常见的分子生物学实验,其目的是确定DNA序列。
这个实验通常包括PCR扩增、DNA纯化、测序反应、数据分析等步骤。
5. RNA干扰实验:RNA干扰实验是一种常见的分子生物学实验,其目的是利用RNA干扰技术抑制特定基因的表达。
这个实验通常包括制备siRNA、合成siRNA、转染细胞等步骤。
6. 蛋白质纯化实验:蛋白质纯化实验是一种常见的分子生物学实验,其目的是将感兴趣的蛋白质从混合物中提纯出来。
这个实验通常包括细胞裂解、纯化、检测等步骤。
7. 荧光检测实验:荧光检测实验是一种常见的分子生物学实验,其目的是利用荧光分子标记分子或细胞等,观察其分布、表达及功能等。
这个实验通常包括荧光染色、荧光显微镜观察等步骤。
8. 基因编辑实验:基因编辑实验是一种新兴的分子生物学实验,其目的是通过基因编辑技术,直接改变DNA序列,从而实现对基因的修饰。
这个实验通常包括CRISPR/Cas9等基因编辑技术的设计、实现、检测等步骤。
分子生物学实验报告
分子生物学实验报告----绿色荧光蛋白(GFP)基因的克隆、表达和纯化一、实验背景绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3个外显子组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋白,相对分子质量为27.0 kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
实验使用的EGFP蛋白取自原核-真核穿梭质粒pEGFP-NB3B的蛋白质编码序列。
此质粒原本被设计于在原核系统中进行扩增,并可在真核哺乳动物细胞中进行表达。
本质粒主要包括位于PCMV真核启动子与SV40 真核多聚腺苷酸尾部之间的EGFP编码序列与位于EGFP上游的多克隆位点;一个由SV40 早期启动子启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动子可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
表达EGFP 蛋白使用的pET-28 原核载体包含有在多克隆位点两侧的His-tag polyHis 编码序列;用于表达蛋白的T7 启动子,T7 转录起始物以及T7 终止子;选择性筛选使用的lacI 编码序列及卡那霉素抗性序列,pBR322 启动子,以及为产生单链DNA 产物的f1 启动子。
分子克隆的实验报告(3篇)
第1篇一、实验目的本实验旨在学习分子克隆技术的基本原理和操作步骤,掌握目的基因的扩增、克隆及表达,为后续相关研究奠定基础。
二、实验原理分子克隆技术是指将目的DNA片段从供体细胞中分离出来,通过体外重组、转化和转导等方法,将其插入到克隆载体中,再将其引入宿主细胞进行复制和扩增。
本实验采用无缝克隆技术,通过T5核酸外切酶、DNA聚合酶和DNA连接酶三种酶的共同作用,实现单片段或多片段与载体连接。
三、实验材料1. 试剂:限制性内切酶、DNA连接酶、T5核酸外切酶、DNA聚合酶、dNTPs、Taq DNA聚合酶、PCR引物、载体DNA、目的基因DNA、质粒提取试剂盒、琼脂糖凝胶电泳试剂盒等。
2. 仪器:PCR仪、凝胶成像仪、电泳仪、紫外灯、超净工作台、离心机、恒温水浴锅、移液器等。
四、实验步骤1. 目的基因扩增(1)设计引物:根据目的基因的序列设计特异性引物,引物长度一般在18-25bp,5'端添加限制酶切位点。
(2)PCR反应:配制PCR反应体系,加入引物、模板DNA、dNTPs、Taq DNA聚合酶等,进行PCR反应。
2. 载体线性化(1)酶切:使用限制性内切酶对载体DNA进行酶切,获得线性化的载体。
(2)去磷酸化:对单酶切得到的线性化载体进行去磷酸化处理。
3. 目的基因与载体连接(1)同源臂连接:将目的基因PCR产物和线性化载体进行同源臂连接,确保目的基因正确插入载体。
(2)连接反应:配制连接反应体系,加入目的基因PCR产物、线性化载体、DNA连接酶等,进行连接反应。
4. 转化与筛选(1)转化:将连接产物转化至宿主细胞中。
(2)筛选:通过抗生素筛选、酶切鉴定和测序等方法筛选出含有目的基因的克隆。
5. 目的基因表达(1)重组质粒提取:从筛选出的阳性克隆中提取重组质粒。
(2)重组质粒转化:将重组质粒转化至表达宿主细胞中。
(3)表达产物检测:通过Western blot、ELISA等方法检测目的蛋白的表达水平。
克隆基因提取实验报告(3篇)
第1篇一、实验目的本实验旨在学习并掌握克隆基因提取的基本原理和操作步骤,通过实验操作,提取目的基因,为后续的基因克隆、表达和功能研究奠定基础。
二、实验原理克隆基因提取主要利用DNA提取技术,通过破碎细胞、释放DNA、去除杂质等步骤,得到高纯度的DNA。
本实验采用碱裂解法提取目的基因,该方法具有操作简单、提取效率高、DNA纯度好等优点。
三、实验材料1. 实验试剂:NaCl溶液、Tris-HCl缓冲液、无水乙醇、异丙醇、二苯胺染液、DNA提取试剂盒等。
2. 实验仪器:高速离心机、电子天平、移液器、PCR仪、凝胶成像系统等。
3. 实验样品:目的基因载体(含目的基因)、细菌菌液等。
四、实验步骤1. 细菌培养:将目的基因载体转化至大肠杆菌,挑取单克隆菌落,接种于含有适量抗生素的LB液体培养基中,37℃、200 r/min培养过夜。
2. 酵母提取物制备:将过夜培养的菌液按1:100比例稀释,加入酵母提取物、葡萄糖等,37℃、200 r/min培养至对数生长期。
3. 细菌裂解:将培养好的菌液按照1:10比例加入裂解液,55℃水浴30 min,期间每隔5 min振荡1次,使菌体充分裂解。
4. DNA沉淀:将裂解液按照1:2比例加入等体积的异丙醇,混匀,4℃、12 000r/min离心10 min,弃上清液。
5. DNA洗涤:将沉淀用70%乙醇洗涤1次,4℃、7 500 r/min离心5 min,弃上清液。
6. DNA溶解:将沉淀用适量TE缓冲液溶解,-20℃保存。
7. DNA纯化:按照DNA提取试剂盒说明书进行操作,得到高纯度的目的基因。
8. 验证:将提取的目的基因进行PCR扩增,观察扩增结果,确认目的基因提取成功。
五、实验结果与分析1. PCR扩增结果:通过PCR扩增,成功获得目的基因,扩增产物大小与预期相符。
2. DNA纯度:利用NanoDrop2000检测提取的目的基因,A260/A280比值在1.8-2.0之间,表明DNA纯度较高。
基因克隆与表达的研究方法
基因克隆与表达的研究方法基因克隆和表达是生命科学中重要的研究方法,它们在基因工程、药物研发、癌症治疗等领域发挥着重要作用。
在克隆和表达一个基因之前,需要先建立一个可重复的实验方法,以确保实验结果的准确性和可靠性。
本文将介绍基因克隆和表达的一些通用方法和技术。
1. PCR扩增PCR扩增是一种常用的克隆方法,它可以在短时间内高效地扩增DNA序列。
这种方法需要一对引物,在PCR反应中引物定向扩增目标序列。
PCR反应需要一个DNA模板、引物和聚合酶,在合适的反应条件和温度下进行。
PCR扩增后的产物可以纯化、酶切、克隆到表达载体上。
2. 限制性内切酶消化限制性内切酶消化是一种分子生物学技术,可以将DNA分子切成不同的长度,并生成暴露的粘性末端。
这样的末端可以与其他的DNA分子的互补末端连接起来,从而实现DNA的克隆。
在DNA克隆中,选择合适的限制性内切酶可以实现目标DNA序列的克隆。
3. 匀浆凝胶电泳匀浆凝胶电泳是一种检测DNA大小的技术,它可以用于确认PCR扩增产物的大小,鉴定DNA克隆的有效性以及纯化DNA等。
在匀浆凝胶电泳中,DNA样品被负载到凝胶上,并在电场作用下迁移。
根据DNA分子大小的不同,可以通过在凝胶上形成特定的DNA带和条带,从而检测DNA分子的大小。
4. 蛋白表达的研究方法蛋白表达是生命科学研究中重要的实验方法,可以获得对生命过程和重要分子的深入了解。
在蛋白表达中,需要克隆一个给定的基因到一个特定的表达载体上。
表达载体中包含能够转录和翻译蛋白质所需的所有元件。
在表达系统中,可以使用细胞培养、原核生物、真核生物等不同的宿主来表达蛋白。
5. 功能分析的研究方法在获得基因克隆和表达蛋白之后,需要通过功能分析进一步了解目标基因和蛋白的生物学功能。
在功能分析中,常用的方法包括基因敲除、蛋白互作、基因组学、蛋白质修饰等。
通过这些方法,可以深入研究生物学体系的信号传导、调节机制、发育和疾病机制等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子生物学大实验——目的基因的克隆及表达第一节基因操作概述 (2)一、聚合酶链式反应(PCR) (2)二、质粒概述 (4)三、凝胶电泳 (5)四、大肠杆菌感受态细胞的制备和转化 (6)五、重组质粒的连接 (6)六、限制性内切酶消化 (7)七、SDS-PAGE蛋白质电泳 (7)第二节材料、设备及试剂 (7)一、材料 (7)二、设备 (8)三、试剂: (8)第三节操作步骤 (9)一、目的基因的获得: (9)二、pET-21bT(pET-21bR、pET-21b)载体的获得: (11)三、pET-21b等与目的片段的连接作用 (12)四、转化大肠杆菌DH5α进行阳性克隆子筛选与鉴定 (12)五、转化转化大肠杆菌BL21plyst,摇菌进行SDS-PAGE电泳。
(13)六、融合蛋白的毒力测定 (15)第四节本实验的实验报告 (15)第一节基因操作概述一、聚合酶链式反应(PCR)PCR(Polymerase Chain Reaction,聚合酶链反应)是一种选择性体外扩增DNA或RNA 的方法。
它包括三个基本步骤:(1)变性(Denature):目的双链DNA片段在94℃下解链;(2)退火(Anneal):两种寡核苷酸引物在适当温度(50℃左右)下与模板上的目的序列通过氢键配对;(3)延伸(Extension):在Taq DNA聚合酶合成DNA的最适温度下,以目的DNA为模板进行合成。
由这三个基本步骤组成一轮循环,理论上每一轮循环将使目的DNA扩增一倍,这些经合成产生的DNA又可作为下一轮循环的模板,所以经25~35轮循环就可使DNA扩增达106倍。
(一)、PCR反应中的主要成份1、引物:PCR反应产物的特异性由一对上下游引物所决定。
引物的好坏往往是PCR 成败的关键。
引物设计和选择目的DNA序列区域时可遵循下列原则:(1)引物长度约为16~30bp,太短会降低退火温度影响引物与模板配对,从而使非特异性增高。
太长则比较浪费,且难以合成。
(2)引物中G+C含量通常为40%~60%,可按下式粗略估计引物的解链温度Tm =4(G+C)+2(A+T)。
(4)引物3'端最好与目的序列阅读框架中密码子第一或第二位核苷酸对应,以减少由于密码子摆动产生的不配对。
(6)两引物之间尤其在3'端不能互补,以防出现引物二聚体,减少产量。
(7)引物5'端对扩增特异性影响不大,可在引物设计时加上限制酶位点、核糖体结合位点、起始密码子、缺失或插入突变位点以及标记生物素、荧光素、地高辛等。
通常应在5'端限制酶位点外再加1~2个保护碱基。
(8)引物不与模板结合位点以外的序列互补。
一般PCR反应中的引物终浓度为0.2~1.0μmo L /L。
引物过多会产生错误引导或产生引物二聚体,过低则降低产量。
2、4种三磷酸脱氧核苷酸(dNTP):dNTP应用NaOH将pH调至7.0,并用分光光度计测定其准确浓度。
dNTP原液可配成5~10mmol/L并分装,-20℃贮存。
一般反应中每种dNTP 的终浓度为20~200μmol/L。
3、Mg2+:Mg2+浓度对Taq DNA聚合酶影响很大,它可影响酶的活性和真实性,影响引物退火和解链温度,影响产物的特异性以及引物二聚体的形成等。
通常Mg2+浓度范围为0.5~2mmol/L。
对于一种新的PCR反应,可以用0.1~5mmol/L的递增浓度的Mg2+进行预备实验,选出最适的Mg2+浓度。
4、模板:PCR反应必须以DNA为模板进行扩增,模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增效果稍好)。
就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。
一般反应中的模板数量为102~105个拷贝,对于单拷贝基因,这需要0.1μg的人基因组DNA,10ng的酵母DNA,1ng的大肠杆菌DNA。
扩增多拷贝序列时,用量更少。
灵敏的PCR可从一个细胞,一根头发,一个孢子或一个精子提取的DNA中分析目的序列。
模板量过多则可能增加非特异性产物。
DNA中的杂质也会影响PCR的效率。
5、Taq DNA聚合酶:一般Taq DNA聚合酶活性半衰期为92.5℃130min,95℃40min,97℃5min。
现在人们又发现许多新的耐热的DNA聚合酶,这些酶的活性在高温下活性可维持更长时间。
Taq DNA聚合酶的酶活性单位定义为74℃下,30min,掺入10nmol/LdNTP到核酸中所需的酶量。
Taq DNA聚合酶的一个致命弱点是它的出错率,一般PCR中出错率为2×10-4核苷酸/每轮循环。
在100μlPCR反应中,1.5~2单位的Taq DNA聚合酶就足以进行30轮循环。
所用的酶量可根据DNA、引物及其它因素的变化进行适当的增减。
酶量过多会使产物非特异性增加,过少则使产量降低。
6、反应缓冲液:反应缓冲液一般含10~50mmol/LTris·Cl(20℃下pH8.3~8.8),50mmol/LKCl和适当浓度的Mg2+。
Tris·Cl在20℃时pH为8.3~8.8,但在实际PCR反应中,pH为6.8~7.8。
50mmol/L的KCl有利于引物的退火。
另外,反应液可加入5mmol/L 的二硫苏糖醇(DDT)或100μg/ml的牛血清白蛋白(BSA),它们可稳定酶活性。
(二)、PCR反应参数1、变性:在第一轮循环前,在94℃下变性5~10min非常重要,它可使模板DNA完全解链,然后加入Taq DNA聚合酶(hot start),这样可减少聚合酶在低温下仍有活性从而延伸非特异性配对的引物与模板复合物所造成的错误。
变性不完全,往往使PCR失败,因为未变性完全的DNA双链会很快复性,减少DNA产量。
一般变性温度与时间为94℃1min。
在变性温度下,双链DNA解链只需几秒钟即可完全,所耗时间主要是为使反应体系完全达到适当的温度。
2、退火:引物退火的温度和所需时间的长短取决于引物的碱基组成,引物的长度、引物与模板的配对程度以及引物的浓度。
实际使用的退火温度比扩增引物的Tm值约低5℃。
一般当引物中GC含量高,长度长并与模板完全配对时,应提高退火温度。
退火温度越高,所得产物的特异性越高。
通常退火温度和时间为37℃~55℃,1~2min。
3、延伸:延伸反应通常为72℃,接近于Taq DNA聚合酶的最适反应温度75℃。
实际上,引物延伸在退火时即已开始,因为Taq DNA聚合酶的作用温度范围可从20℃~85℃。
延伸反应时间的长短取决于目的序列的长度和浓度。
4、循环次数:当其它参数确定之后,循环次数主要取决于DNA浓度。
一般而言25~30轮循环已经足够。
循环次数过多,会使PCR产物中非特异性产物大量增加。
通常经25~30轮循环扩增后,反应中Taq DNA聚合酶已经不足,如果此时产物量仍不够,需要进一步扩增。
二、质粒概述把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。
细菌质粒是重组DNA技术中常用的载体。
质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1~200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。
质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。
质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。
质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。
质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。
与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。
大多质粒载体带有一些多用途的辅助序列,这些用途包括通过组织化学方法肉眼鉴定重组克隆、产生用于序列测定的单链DNA、体外转录外源DNA序列、鉴定片段的插入方向、外源基因的大量表达等。
一个理想的克隆载体大致应有下列一些特性:(1)分子量小、多拷贝、松驰控制型;(2)具有多种常用的限制性内切酶的单切点;(3)能插入较大的外源DNA片段;(4)具有容易操作的检测表型。
常用的质粒载体大小一般在1kb至10kb之间,如PBR322、PUC系列、PGEM系列和pBluescript(简称pBS)等。
在细菌细胞内,共价闭环质粒以超螺旋形式存在。
在提取质粒过程中,除了超螺旋DNA 外,还会产生其它形式的质粒DNA。
如果质粒DNA两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成松驰型的环状分子,称开环DNA(Open circular DNA,简称ocDNA);如果质粒DNA的两条链在同一处断裂,则形成线状DNA(Linear DNA)。
当提取的质粒DNA电泳时,同一质粒DNA其超螺旋形式的泳动速度要比开环和线状分子的泳动速度快。
三、凝胶电泳琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的标准方法。
该技术操作简便快速,可以分辨用其它方法(如密度梯度离心法)所无法分离的DNA片段。
当用低浓度的荧光嵌入染料溴化乙啶(Ethidium bromide,EB)染色,在紫外光下至少可以检出1~10ng的DNA条带,从而可以确定DNA片段在凝胶中的位置。
此外,还可以从电泳后的凝胶中回收特定的DNA 条带,用于以后的克隆操作。
琼脂糖可以制成各种形状、大小和孔隙度。
琼脂糖凝胶分离DNA片度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA片段。
琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。
目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。
琼脂糖主要在DNA制备电泳中作为一种固体支持基质,其密度取决于琼脂糖的浓度。
在电场中,在中性pH值下带负电荷的DNA向阳极迁移,其迁移速率由下列多种因素决定:1、DNA的分子大小:线状双链DNA分子在一定浓度琼脂糖凝胶中的迁移速率与DNA分子量对数成反比,分子越大则所受阻力越大,也越难于在凝胶孔隙中蠕行,因而迁移得越慢。
2、琼脂糖浓度一个给定大小的线状DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。
DNA电泳迁移率的对数与凝胶浓度成线性关系。
凝胶浓度的选择取决于DNA分子的大小。
分离小于0.5kb的DNA片段所需胶浓度是1.2~1.5%,分离大于10kb的DNA分子所需胶浓度为0.3~0.7%,DNA片段大小间于两者之间则所需胶浓度为0.8~1.0%。
3、DNA分子的构象当DNA分子处于不同构象时,它在电场中移动距离不仅和分子量有关,还和它本身构象有关。