非线性方程组数值解法

合集下载

5-非线性方程组的数值解法及最优化方法

5-非线性方程组的数值解法及最优化方法
然后通过各种下降法或优化算法求出模函数的极小值点,此 极小值点即为非线性方程组的一组解。
非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,


18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:

非线性方程的数值解法

非线性方程的数值解法
本文详细介绍了非线性方程的数值解法,主要包括二分法、一般迭代法、牛顿迭代法和弦截法等。其中,二分法作为一种重要的区间收缩法,被重点阐述。二分法通过不断将含根区间对分,逐步逼近方程的根。该方法首先确定初始含根区间,然后取区间中点进行函数值判断,根据函数值的符号变化来缩小含根区间。通过反复迭代,最终可以得到满足精度要求的近似根。二分法具有简单可靠、易于编程实现的优点,但对函数的光滑性要求较高。此外,本文还介绍了二分法的收敛性和误差控制方法,包括事先误差估计和事后误差估计,为实际应用提供了理论指导。除了二分法,本文还简要提及了一般迭代法、牛顿有广泛的应用。

第7章非线性方程组的数值解法

第7章非线性方程组的数值解法
( 1, 1 )
f 1 y f 2 2 y
2 y ( 1,1 ) 2
( 1,1 )
( y 3) ( 1, 1 )
( 1, 1 )
( x 1) ( 1 , 1 ) 2
( 1,1 )
f 1 f 2 2 2[ 2 * ( 3) ( 2 ) * ( 2 )] 4 f1 f2 g10 x ( 1,1) x ( 1,1) x f 1 f 2 g 2 2[ 2 * ( 3) 2 * ( 2 )] 20 20 y y f 1 y f 2 ( 1, 1 ) ( 1, 1 )

f ( x0 h, y0 k ) f ( x0 , y0 ) ( h k ) f ( x0 , y0 ) x y 1 2 ( h k ) f ( x 0 , y0 ) 2! x y 1 n ( h k ) f ( x 0 , y0 ) n! x y 1 n 1 ( h k ) f ( x0 h, y0 k ) ( n 1)! x y
2
2

0
得 f 1 f 1 ( g10 x g 20 y ) f 1 ( g10 ( g f 1 g f 1 ) 2 ( g 10 20 10 x y f 2 g 20 x f 2 g 20 x f 2 ) f2 y f 2 2 ) ( x y
1
f 1 ( x 0 , y0 ) f ( x , y ) 2 0 0
从n到n+1的迭代格式为:
f 1 ( x n , y n ) xn 1 x n x y y f 2 ( xn , yn ) n 1 n x

数值分析 第7章 非线性方程的数值解法..ppt;ppt

数值分析 第7章 非线性方程的数值解法..ppt;ppt
2
7.1 方程求根与二分法
7.1.1 引言 单变量非线性方程的一般形式 (1.1) f ( x) 0 其中 x R , f ( x) C[a, b], [a, b] 也可以是无穷区间.
f(x)是高次多项式函数或超越函数 如果函数 f (x) 是多项式函数,即
f ( x ) a0 x n a1 x n1 an1 x an (a0 0),
xk
可得一个近似根的序列 x0 , x1 , x2 , xk ,,
2
9

x* xk (bk ak ) / 2 (b a) / 2k 1 , x * xk , k ln(b a ) ln 1
ln 2
(1.3)
(4) 要使
只要二分足够多次(即 k 充分大),便有
建立迭代公式 各步迭代的结果如下表
表7 3 k xk k xk
x1 2.375, x2 12.39.
xk 1 3 xk 1 (k 0,1,2,).
发散
如果仅取6位数字,
结果x7 与 x8 完全相同, 说明:①迭代函数不唯一,②迭代点列可能收敛,也可 0 1 .5 5 1.32476 能发散,迭代收敛与否不仅与迭代函数有关,还与初 1 1.35721 6 1.32473 x7 即为所求的根. 始点有关。
(1.2)
其中 a0 0, ai (i 0,1,, n) 为实数,则称方程(1.1)为 n 次代数方程.
超越函数 不能表示为多项式的函数
如 (x)=3x5-2x4+8x2-7x+1 (x)=e2x+1-xln(sinx)-2 高次代数方程 超越方程
3
如果实数 x *满足 f ( x*) 0,则称 x * 是方程(1.1)的 根,或称 x *是 f (x)的零点. 若 f (x)可分解为 f ( x) ( x x*)m g ( x),

第7章 非线性方程的数值解法

第7章 非线性方程的数值解法

设 0为给定精 度要求,试确定分半次 数k 使
x* xk
ba 2k
由 于2k , 两 边 取 对 数 , 即 得
ba
k ln(b a) ln
ln 2
数值分析
18/47
§例1: 5.用2 二二分分法 求 法x3 4x2 10 0在[1,2]内 的 根 ,
要 求 绝 对 误 差 不 超 过1 102。 2
第七章 非线性方程的数值解法
数值分析
本章内容
§7.1 方程求根与二分法 §7.2 不动点迭代及其收敛性 §7.4 牛顿法 §7.5 弦截法
数值分析
2/47
本章要求
1. 掌握二分法基本原理,掌握二分法的算法 流程;
2. 掌握理解单点迭代的基本思想,掌握迭代 的收敛条件;
3. 掌握Newton迭代的建立及几何意义,了解 Newton迭代的收敛性;
27/47
§ 7.2 不动点迭代法及其收敛性
不动点迭代的几个重要问题: 1、迭代格式的构造; 2、初值的选取; 3、敛散性的判断;☆ 4、收敛速度的判断。
数值分析
28/47
§ 7.2 不动点迭代法及其收敛性
三.压缩映射原理(整体收敛性)
考虑方程x g( x), g( x) C[a, b], 若
则f (x)=0在[a, b]内必有一根。
二. 过程
将区间对分,判别f (x)的符号,逐步缩小有根区 间。
数值分析
14/47
§7.1.2 二分法
三. 方法
取xmid=0.5*(a+b)
若f(xmid) < (预先给定的精度),则xmid即为根。
否则,若f (a)*f (xmid)<0,则取a1=a,b1=xmid 若f (a)*f (xmid)>0,则取a1=xmid,b1=b 此时有根区间缩小为[a1, b1],区间长度为 b1-a1=0.5*(b-a)

非线性微分方程的数值解法

非线性微分方程的数值解法

非线性微分方程的数值解法非线性微分方程是数学中一个重要的研究领域,它在物理、工程和生命科学等领域中都有广泛的应用。

然而,求解非线性微分方程是一个相对困难的问题,因为它们往往没有解析解。

为了解决这个问题,数值解法成为了一种重要的工具。

在非线性微分方程的数值解法中,有几种常见的方法,比如有限差分法、有限元法和谱方法等。

这些方法各有优缺点,适用于不同类型的非线性微分方程。

下面将介绍其中的一些方法。

有限差分法是一种常见的数值解法,它将微分方程中的导数用差分来近似表示。

通过将区域离散化为网格,将微分方程转化为代数方程组,然后通过迭代求解这个方程组来获得数值解。

有限差分法简单易懂,适用于一些简单的非线性微分方程,但对于复杂的问题,可能需要较大的网格和更多的计算资源。

有限元法是一种更为灵活的数值解法,它将区域划分为许多小区域,然后在每个小区域上构建一个适当的试验函数。

通过将微分方程转化为一个变分问题,可以得到一个线性方程组,通过求解这个方程组可以得到数值解。

有限元法适用于各种类型的非线性微分方程,但需要更高的计算资源和更复杂的算法。

谱方法是一种基于特殊函数的数值解法,它利用特殊函数的性质来近似非线性微分方程的解。

谱方法在一些特定的问题中表现出色,比如边界层问题和奇异问题。

它的优点是精度高,收敛速度快,但对于一般的非线性微分方程,谱方法可能不太适用。

除了这些传统的数值解法,还有一些新的方法正在被研究和发展。

比如,神经网络方法和深度学习方法在解非线性微分方程方面取得了一些突破性的进展。

这些方法利用神经网络的强大拟合能力和学习能力,可以通过大量的数据来近似非线性微分方程的解。

虽然这些方法还处于发展阶段,但它们有着巨大的潜力。

总的来说,非线性微分方程的数值解法是一个复杂而又有挑战性的问题。

不同的数值解法适用于不同类型的非线性微分方程,选择适当的方法对于获得准确的数值解非常重要。

随着计算机技术的不断进步,数值解法在解决非线性微分方程问题中的应用将会越来越广泛。

非线性方程(组)的解法


lnim(bn
an )
lim
n
2n1
(b
a)
0
lim
n
an
lim
n
bn
x

x
cn
1 2
(an
bn
)为
x 的近似解。
7
二分法
迭代终止准则
an - bn

x - cn
bn an 2
2
8
2.2一般迭代法
2.2.1 迭代法及收敛性
对于 f (x) 0 有时可以写成 x (x) 形式 如: x3 x 1 0 x 3 x 1
12
例题
例2.2.1 试用迭代法求方程 f (x) x3 x 1 0
在区间(1,2)内的实根。 解:由 x 3 x 1建立迭代关系
xk1 3 xk 1 k=0,1,2,3…… 计算结果如下:
13
例题
精确到小数点后五位
x 1.32472 1 105
2
14
例题 但如果由x x3 1建立迭代公式
xk1 xk3 1 k 1,2,...
仍取 x0 1.5,则有 x1 2.375 ,x2 12.39 显 然结果越来越大,{xk }是发散序列
15
2.3 Newton迭代法
设x*是方程f (x) = 0的根, 又x0 为x* 附近的一个值,
将f (x) 在x0 附近做泰勒展式:
f (x)
二分法
用二分法(将区间对平分)求解。

a1
a, b1
b, c1
1 2
(a1
b1 )
若 f (a1) f (c1) 0,则[a1, c1] 为有根区间,否 则 [c1,b1]为有根区间

非线性方程数值解法详解


1 ( p) (
p!
)( xk
)
p
xk1
1
p!
(
p)
(1
)(
xk
)p
lim
k
xk1 xk p
1 ( p) ( )
p!
0
必要性 (略)
例 能不能用迭代法求解方程x=4-2x,如果不能
时,试将方程改写成能用迭代法求解的形式.
方程为x-4+2x =0.设f(x)= x-4+2x ,则f(1)<0,f(2)>0, f‘(x)= 1+2x ln2>0,故方程f(x)=0仅在区间(1, 2)内有唯一根.
(1) f(a)f(b)<0; (2) f'(x)0, x[a, b]; (3) f''(x)不变号, x[a, b]; (4) 初值x0 [a, b]且使f''(x0) f(x0)>0; 则 Newton 迭代法收敛于f(x)=0在[a, b]内的惟一 根.
例 研究求
a的Newton公式xk 1 Nhomakorabeaxk 1 xk
f (xk ) f (xk )
(k 0,1, 2,L )
逐次逼近方程f(x)=0的根α ,这种求根算法称为 Newton法(切线法),此公式称为 Newton迭代公式.
Newton迭代法的收敛性及收敛阶
Newton法的迭代函数是 (x) x f (x)
从而
(x)
f (x) f (x) [ f (x)]2
或f(x)的零点. 设有正整数m使得f(x)=(x-α)mg(x)
且g(α)0 ,则当m2时,称α为f(x)=0的m 重根;当m=1时,称α为f(x)=0的单根. 若α为f(x)=0的m重根,则

数值分析 第七章 非线性方程(组)的数值解法.

x0
y
,这样就可得缩小有根区间 a1 , b1
y=f(x) y=f(x)
x* a a1 x1 a2 x* x0 b1 b2 b a x0 a1 x1 a2 b b1 b2
23/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.2 二分区间法 ② 对压缩了的有根区间 a1 , b1 施行同样的手法, b 即取中点 x a 2 ,将区间 a1 , b1 再分为两半,然 后再确定有根区间 a 2 , b2 ,其长度是 a1 , b1 的 二分之一。
长h=(B-A)/n(n是正整数),在[A,B]内取定节点:xi=x0+ih (i=0,1,2,…,n),从左至右检查f (xi)的符号,如发现xi与端点x0 的函数值异号,则得到一个缩小的有根子区间[xi-1,xi]。
y
0 A
a1 b1 a2 b2
B
x
20/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.1 引言
数值解法的三个步骤 ① 判定根的存在性。即方程有没有根?如果有 根,有几个根? ② 确定根的分布范围。即将每一个根用区间隔 离开来,这个过程实际上是获得方程各根的 初始近似值。(隔离根) ③ 根的精确化。将根的初始近似值按某种格式 逐步精确化,直到满足预先要求的精度为止。
10/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
3/87 郑州大学研究生2014-2015学年课程 数值分析 Numerical Analysis
§7.1 引言 当 f (x)不是x的线性函数时,称对应的函数方程
f (x)=0为非线性方程。

非线性方程的数值解法研究

非线性方程的数值解法研究在数学和科学计算领域,非线性方程的求解是一个至关重要的问题。

非线性方程不像线性方程那样具有简单和直接的求解方法,它们的复杂性使得寻找精确解往往变得非常困难,甚至在很多情况下是不可能的。

因此,数值解法成为了处理非线性方程的重要手段。

首先,让我们来理解一下什么是非线性方程。

简单来说,非线性方程是指方程中包含未知数的非线性函数,例如幂次高于 1 的项、三角函数、指数函数等。

常见的非线性方程有二次方程、三次方程、指数方程、对数方程等等。

在实际应用中,非线性方程广泛出现在物理学、工程学、金融学、生物学等众多领域。

比如在物理学中,描述天体运动的方程往往是非线性的;在工程学中,结构力学和电路分析中的一些问题也会涉及非线性方程。

那么,为什么非线性方程的求解如此具有挑战性呢?这是因为非线性方程的解可能不是唯一的,甚至可能不存在。

而且,非线性方程的解可能对初始条件非常敏感,微小的变化可能导致完全不同的结果。

接下来,我们来探讨一些常见的非线性方程数值解法。

牛顿法是一种经典且广泛应用的方法。

它基于函数的泰勒展开,通过不断迭代来逼近方程的根。

基本思想是在每一步迭代中,根据当前点的函数值和导数值来确定下一个近似解的位置。

如果函数的导数容易计算,并且初始猜测值比较接近真实解,牛顿法通常收敛速度很快。

然而,如果初始猜测值不好,或者函数的导数在某些点不存在,牛顿法可能会失效。

割线法是牛顿法的一种改进。

它不需要计算函数的导数,而是通过两个初始猜测值来构造一条割线,然后用割线与 x 轴的交点作为新的近似解。

割线法虽然在计算导数困难的情况下很有用,但它的收敛速度通常比牛顿法慢。

二分法是一种简单而可靠的方法。

它基于区间收缩的原理,通过不断将包含根的区间一分为二,逐步缩小根所在的范围,从而逼近根的精确值。

二分法的优点是它总是收敛的,并且对函数的性质要求不高,只要函数在给定区间内连续且两端点函数值异号即可。

但二分法的收敛速度相对较慢,是线性收敛的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性方程组数值解法

非线性方程组数值解法是通过数值方法解决非线性方程组问题的一种解法。

非线性方程组不像普通的线性方程组,它们往往没有普遍的解析解,一般只有数值解。

因此,非线性方程组的数值解法非常重要。

非线性方程组数值解法的基本思想是,将非线性方程组分解为多个子问题,并采用一种迭代算法求解这些子问题。

最常见的数值方法有牛顿法、拟牛顿法和共轭梯度法等。

牛顿法是利用曲线上的点的二次近似,将非线性方程分解为两个子问题,转换为求解一个简单的一元方程的问题来求解非线性方程组的数值解。

拟牛顿法利用有限差分方法来求解非线性方程组的数值解,共轭梯度法利用解的搜索方向,进行有效的搜索,通过解的最优性条件收敛到解。

非线性方程组数值解法是目前应用最广泛的数值解法,它能很好地求解非线性方程组。

不仅能有效求解复杂的非线性方程组,还能求出较精确的数值解。

此外,非线性方程组数值解法运算速度快,可以对模型进行实时定位和跟踪,非常适合模拟复杂的动态系统。

总之,非线性方程组数值解法是一种求解复杂非线性方程组的有效解法,它的准确性高,运算速度快,广泛应用于现实世界中的多种工程与科学计算问题。

相关文档
最新文档