2019年全国普通高等学校运动训练、民族传统体育专业单招考试数学模拟试卷02
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学试题

全国普通高等学校运动训练、民族传统体育专业单独统一招生考试一、选择题:(本大题共10 小题,每小题6 分,共60 分)(1)若集合7A {x0x ,x N},则A的元素共有2()A、2 个B、3个C、4 个D、无穷多个(2)圆x2y22y 70的半径是()A9B8C22 D 6(3)下列函数中是减函数的是()A. y xB. yx3C. y 2x x sin xD.y e x e x2(4)函数f(x)2x x2的值域是()A(,1)B8(1,)C[0,2] D [0,1](5)函数y 3s in4x 3cos4x 1的最小正周期和最小值分别是()A 和13B 和123C 和13D 和12322(6)已知ABC钝角三角形,A 30,BC 4,AC 43,则B ()A 135B 120C 60D 302(7)设m,n为两条直线,,为两个平面,有下面四个命题:(1)若m ,n 则m∥n;(2)若m∥,n∥则m∥n(3)若m ,n 则∥;(2)若m∥,m∥,则∥其中正确的命题是()A(1)(3)B(2)(3)C(1)(4)D (2)(4)(8)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案共有()种。
A 165B 120C 75D 60x2y2(9)双曲线1的一条渐近线的斜率为3,则它的离心率是(916)23A A3C2 D 43(10)已知f(x)是奇函数,当x 0时,f(x)x2ln(x 1x2),则当x 0时,f(x) A x ln(x 1x) B x ln(x 1x)C x2ln(x 1x2)D x2ln(x 1x2)二、填空题(本大题共6 小题,每小题6 分,共36 分)(11)不等式12xx 30的解集为()3(12)若椭圆的焦点为(3,0)(3,0),离心率为,则该椭圆5的标准方程为()(13)若tan()2,则t an()(44)2(14)(若向量a,b满足,a 1,b 2,a b ,则c os a,b ()32222(15)(2x 1)4的展开式中x3的系数是())(16)若0a 1,且log (2a21)log(3a)0,则a的取值范围是(a a三、解答题(本大题共3小题,共54分)(17)某校组织跳远达标测验,已知甲同学每次达标的概率为 3/4.他测试时跳了4次。
【全国体育单招】2021年全国普通高等学校运动训练、民族传统体育专业单独统一招生数学模拟试卷二

2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生数学模拟试卷(二)时间:90分钟满分:150分钟一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1、已知集合A={x|x>2},B={0,1,2,3,4},则A∩B的子集个数为()A.1B.2C.3D.42、在等差数列{a n}中,已知a3+a5+a7=15,则a1+a9=()A.4B.6C.8D.103、若cos(+α)=2cos(α+π),则sin2α=()A.﹣B.C.﹣D.4、函数y=的定义域为()A.(﹣∞,3)B.(﹣∞,3]C.(3,+∞)D.[3,+∞)5、函数y=2x与y=2﹣x关于()对称A.x轴B.y轴C.y=x D.原点6、函数f(x)=tan(x﹣)的最小正周期为()A.B.πC.2πD.4π7、函数的单调递增区间是()A.B.C.[4,+∞)D.8、已知椭圆,则该椭圆的离心率为()A.B.C.D.9、双曲线9y2﹣16x2=144的渐近线方程是()A.B.C.D.10、已知a=ln3,b=log0.3e,c=0.30.2,则a,b,c的大小关系为()A.b<c<a B.a<b<c C.a<c<b D.c<a<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11、从生物学中我们知道,生男生女的概率基本是相等的,某个家庭中先后生了两个小孩,已知两个小孩中有男孩,则两个小孩中有女孩的概率为.12、已知向量=(2,m),=(1,﹣2),若⊥,则m=.13、一元二次不等式3x2﹣4x+6>0的解集为.14、在的展开式中,常数项为.15、已知{a n}为等比数列,若a3=3,a5=12,则a7=.16、三棱锥P﹣ABC中,PA⊥平面ABC,直线PB与平面ABC所成角的大小为30°,,∠ACB=60°,则三棱锥P﹣ABC的外接球的表面积为.三、解答题:本大题共3小题,每小题18分,共54分。
2019年全国普通高等学校运动训练、民族传统体育专业单招考试数学模拟试卷04

2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学模拟试卷(四)注意事项:1.本试题卷包括选择题、填空题和解答题三部分共19小题,共150分; 2.本卷考试时间:120分钟3.用钢笔或圆珠笔直接答在试题卷中,答卷前将密封线内的项目填写清楚.一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如果集合{}1,2,3,4,5,6,7,8U =,{}1,35,8A =,,{}2,4,8B =,那么(A U)B 等( )A. {}1,23,4,5,8,B. {}24,C. {}8,2D. {}2,4,7 2. 已知(1,2),(1,)a b x =-=,若a b ⊥,则x 等于( ) A.21 B. 21- C. 2 D. -2 3. 把函数y=x 2-1的图像按向量a =(2,3)平移,得到y=f (x )的图像,则f (x ) = ( )A. (x -2)2-4B. (x +2)2-4C. (x -2)2+2D. (x +2)2+2 4. 已知函数)1(156≠∈-+=x R x x x y ,那么它的反函数为 ( ) A. ()1156≠∈-+=x R x x x y 且 B. ()665≠∈-+=x R x x x y 且 C. ⎪⎭⎫ ⎝⎛-≠∈+-=65561x R x x x y 且 D. ()556-≠∈+-=x R x x x y 且 5. 不等式024<--x x •的解集是 ( ) A. {x|0<x<1} B. {x|2<x<4} C. {x|x<2或x>4} D. {x|-∞<x<0} 6. 已知点(1,cos )θ到直线sin cos 1x y θθ+=(0)2πθ<≤的距离为14,则θ等于 ( )A.6πB.4πC.3πD.2π7. 设f (x )是定义在(,)-∞+∞内的奇函数,且是减函数。
2019运动训练、民族传统体育专业单独统一招生考试模拟试卷考前冲刺题(汇编)

2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试模拟试卷(考前冲刺一)一、语文知识:本大题共10小题,每小题4分,共40分。
1.下面加点字的读音完全正确的一组是( )A.焖.(mèn)饭胴.(dòng)体胼手胝.(dī)足B.劲.(jìng)敌汤匙.(chí) 心宽体胖.(pàn)C.斐.(fěi)然牵掣.(zhì) 相形见绌.(chù)D.角.(jué)色脑髓.(suǐ) 否.极泰来(pǐ)2.下列各组词语中,没有错别字的一组是( )A.绵亘饮鸠止渴针贬时弊B.通牒宵衣肝食奴颜婢膝C.璀璨越俎代庖未雨绸缪D.累赘杀一儆百陨身不恤3.依次填入下列语句横线处的词语,最恰当的一组是( )(1)海外华侨华人纷纷发表声明或谈话,坚决拥护《反分裂国家法》。
(2)小说中的典型形象虽然有生活的,但仍属于虚构的形象。
(3)连战说,他这次访问是自己离开大陆59年后首次踏足大陆,带有很多的感伤,不是千山隔阻,而是历史的。
A.制定原型辛酸B.制定原形辛酸C.制订原形心酸D.制订原型心酸4.下列句子中加点成语使用恰当的一句是( )A.诚轻学生过里负担需要整个社会的关心、参与,但学校更应该在具体的教学实践中身体力...行.,努力把减负工作落到实处。
B.有的同学只是急于抄写试题答案,而不去探究解题过程和方法,这种买椟还珠....、本末倒置的做法是不足取的。
C.在现实生活中,吃亏上当的人可谓多矣,这是因为爱占小便宣的人络绎不绝....。
D.作为一个哲学家,他的思维是严密的,他的推理陈陈相因....,环环相扣。
5.下列各选项中,加点的熟语使用恰当的一项是( )A.桃李不言....,这件丑事即使不宣传,也会有人知道的。
....,.下自成蹊B.有关部门整房地产市场,那些八字还没一撤......就热热间售房的开发商,终于尝到了自己酿造的苦酒。
最新全国普通高校运动训练民族传统体育专业单独统一招生考试资料

2019全国普通高校运动训练民族传统体育专业单独统一招生考试语文一、语文知识:本大题共10小题,每题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下各组词语中加点的字,该音全都相同的一项是( )A.卷曲席卷开卷有数B.数秒历数数九寒冬C.度量弧度审时度势 D难堪责难难能可贵2.下列格组词语中,书写完全正确的一项是( )A.荣膺凝聚力再接再厉B.精湛充其量耐人询味C.俯瞰抱冷门空谷足音D.酬划抚恤金墨守成规3:依次填入下面一段文字横线处的词语,最恰当的一项是( )开展阳光体育运动,要广泛健康理念,建立评比制度,以唤起全社会对学生体质健康的关法,吸引家庭和社会力量共同支持阳光体育运动的开展。
A.传达表扬反而B.传播表彰反而C.传播表彩进而D.传达表场进而4.下列各句中加点熟语的使用,不正确的一项是( )A..彼一时,此一时,........现在训练条件好了,我们更应珍每一次训练,提高成绩。
B.如果训练出了问题,我一定要抓住机会,头痛医头,脚痛医脚.........,及时解决C.他高考成绩没有预期的好,这让他在填报志题时高不成,低不就,........左右为难。
D.摩托车赛手在比赛中摔倒,虽然有惊无险,但当时还是让观众为他捏一把汗....。
.5,下列各句中加点成语的使用,不正确的一项是( )A.如果在训练时不刻苦不认真,心猿意马....,那么在正式比赛中就很难取得好的成绩。
B.有关部门统等了各方面的调研实践,集思广益....,最终制定了这项运动的指导纲要。
C.现阶段,体育产业进入了高速发展时期,群众对体有产品的接受度可谓甚嚣尘上....。
D.竞技体育、学校体育与群众体育,三者应该相互协调、相辅相成。
不能有所偏颜。
6.下列句子中,有语病的一项是( )A.赛会申办能否成功,主要取決于申办城市基础设施的建设是不是完善。
B.作为温克族最具特色的传统体育项目,“抢枢”运动已有千年历史。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)

2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
01全国普通高校运动训练民族传统体育专业单独统一招生考试数学模拟试卷1含答案

全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷1一、单选题1.若集合{}2,1,0,1,2M =--,211,R 2N y y x x ⎧⎫==-+∈⎨⎬⎩⎭,则M N ⋂=()A .{}2,1,0,1--B .{}2,1,0--C .{}1,2D .{}22.函数()f x )A .1,3⎛⎫-+∞ ⎪⎝⎭B .1,13⎛⎫- ⎪⎝⎭C .1,13⎡⎫-⎪⎢⎣⎭D .1,3⎛⎫-∞- ⎪⎝⎭3.已知70.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系为()A .a c b <<B .a b c<<C .c b a <<D .c<a<b4.“cos 2α=是“5,12k k Z παπ=+∈”的A .必要非充分条件B .充分非必要条件C .充要条件D .既非充分又非必要条件5.设计用232m 的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是()A .(38-m 3B .16m 3C .m 3D .14m 36.在ABC 中,若2AB =,3BC =,7cos 12B =,则AC =()A .6BC .D7.排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都为23,且各局之间互不影响,前两局中乙队以2:0领先,则最后乙队获胜的概率是()A .49B .1927C .1127D .40818.已知四棱锥P ABCD -的顶点都在球O 的球面上,PA ⊥底面ABCD ,1AB AD ==,2BC CD ==,若球O 的表面积为9π,则四棱锥P ABCD -的体积为()A .4B .43C .D .3二、填空题9.已知tan 3α=,tan()2αβ-=-,则tan β=___________.10.在ABC 中,1,2,||AB AC AB AC ==+= M 满足2BM MC =,则AM BC ⋅=______.11.设数列{}n a 的前n 项和为n S ,若13a =,且1112n n S a +=+,则{}n a 的通项公式n a =_______.12.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的上、下顶点分别为A ,B ,右顶点为D ,右焦点为F ,直线BF 与直线AD 交于点P ,若2AB OP =,则椭圆C 的离心率为________.三、解答题13.如图,在多面体ABCDE 中,AEB △为等边三角形,AD BC ∥,BC AB ⊥,CE =,22AB BC AD ===,F 为EB 的中点.(1)证明:AF ∥平面DEC ;(2)求多面体ABCDE 的体积.14.设抛物线2:2C y x =的焦点为F ,点(2,0),(2,0)A B -,直线l 过A 点且与抛物线C 交于,M N 两点.(1)当l x ⊥轴(M 在x BM 的方程;(2)设直线,BM BN 的斜率分别为12,k k ,证明:120k k +=.15.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)求甲队总得分为1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.参考答案:1.A【分析】求出二次函数2112y x =-+的值域即为集合N ,两集合取交集即可.【详解】{}2,1,0,1,2M =-- ,{}211,R 12N y y x x y y ⎧⎫==-+∈=≤⎨⎬⎩⎭,M N ∴⋂={}2,1,0,1--.故选:A【点睛】本题考查集合的交集运算,涉及二次函数的值域,属于基础题.2.B【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【详解】解:由题意得31010x x +>⎧⎨->⎩,解得:113-<<x ,故选B .【点睛】本题考查了求函数的定义域问题,考查对数函数的性质以及二次根式的性质,是一道基础题.3.D【分析】结合指数函数和对数函数性质,分别与中间值0和1比较.【详解】700.61<<,0.671>,0.6log 70<,∴c<a<b .故选:D.【点睛】本题考查比较幂与对数的大小.在比较不同类型的数的大小时可与中间值0或1等比较.4.A【分析】由cos 22α=,可得5522,,612k k k z ππαπαπ=±=±∈,利用充分条件与必要条件的定义可得结果.【详解】因为cos 22α=-,所以5522,,612k k k z ππαπαπ=±=±∈,即cos 22α=不能推出5,12k k Z παπ=+∈,反之,由5,12k k Z παπ=+∈可推出cos 2α=故“cos 2α=”是“5,12k k Z παπ=+∈”的必要不充分条件,故选A .【点睛】本题主要考查充要条件的概念,二倍角公式,属于简答题.充要条件的判断问题,是高考不可少的内容,特别是充要条件可以和任何知识点相结合,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法.5.B【详解】设长方体车厢的长为xm ,高为hm ,则222232x h xh +⨯=+,即216x h xh +=+,∴162x h xh xh =++≥,即160xh +≤,解得0<≤,∴08xh <≤.∴车厢的容积为3216()V xh m =≤.当且仅当2x h =且216x h xh +=+,即4,2x h ==时等号成立.∴车厢容积的最大值为316m .选B .6.D【分析】利用余弦定理可求AC .【详解】由余弦定理可得22272cos 1326612AC AB BC AB BC B =+-⨯⨯=-⨯⨯=,故AC =故选:D.7.B【分析】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,利用独立事件和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,由独立事件的概率公式可得()328327P A ⎛⎫== ⎪⎝⎭,因此,则最后乙队获胜的概率是()19127P A -=.故选:B.8.B【分析】推导出90ABC ADC ∠=∠= ,可得出四边形ABCD 的外接圆直径为AC =球直径为26PC R ==,结合PA ⊥底面ABCD 可得答案.【详解】AB AD = ,BC BD =,AC AC =,ABC ∴ 与ADC △全等,ABC ADC ∠=∠∴,易知A 、B 、C 、D 四点共圆,则180ABC ADC ∠+∠= ,90ABC ADC ∴∠=∠= ,所以,四边形ABCD 的外接圆直径为AC 设四棱锥P ABCD -的外接球半径为R ,则249R ππ=,解得32R =,由PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC⊥又AB BC ⊥,且AP AB A = ,所以BC ⊥平面PAB ,又PB ⊂面PAB ,所以BC PB ⊥同理可证:CD PD⊥设为O 为PC 的中点,则由直角三角形的性质可得:OA OB OD OC ===所以O 四棱锥P ABCD -外接球的球心,即PC 为其直径,即23PC R ==2PA ∴===,1112122ABC S AB BC =⨯⨯=⨯⨯= 所以1142212333P ABCD ABC V S AP -=⨯⨯=⨯⨯⨯=故选:B【点睛】关键点睛:本题考查了四棱锥外接球问题的处理,考查推理能力与计算能力,解答本题的关键是由条件得出90ABC ADC ∠=∠= ,从而求出AC ,进一步得出PC 为球的直径,属于中等题.9.1-【分析】根据()a βαβ=--可知()tan tan a βαβ=--⎡⎤⎣⎦,结合两角差的正切公式进行计算即可.【详解】由已知可得,tan tan()3(2)tan tan[()]11tan tan()13(2)ααββααβααβ----=--===-+-+⨯-.故答案为:1-.10.83【解析】||AB AC += 1AB AC ⋅=- ,AM ,BC 分别用AB ,AC表示,利用数量运算即可求值.【详解】如图,1,2,||AB AC AB AC ==+=222()2AB AC AB AC AB AC ∴+=++⋅ ,1+4+23AB AC =⋅=1AB AC ∴⋅=-,又2BM MC = ,22()33BM BC AC AB ∴==- ,212()333AM AB BM AB AC AB AB AC=+=+-=+ 2212121()()33333AM BC AB AC AC AB AB AC AB AC ∴⋅=+⋅-=-+-⋅ 1818.3333=-++=故答案为:8311.23,143,2n n n -=⎧⎨⋅≥⎩.【分析】由题意,根据1n n n S S a --=计算写出13(2)n n a a n +=≥,再代入12112a a =+,计算2a ,从而验证213a a ≠,写出2n ≥时等比数列的通项公式,从而写出{}n a 的通项公式.【详解】∵1112n n S a +=+,∴()11122n n S a n -=+≥,∴111122n n n n n S S a a a -+-==-,即13(2)n n a a n +=≥.又13a =,112112S a a ==+,解得24a =.故213a a ≠.∴数列{}n a 从第二项起是公比为3的等比数列,故当2n ≥时,22243n n n a a q --==⋅.∴23,143,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:23,143,2n n n -=⎧⎨⋅≥⎩12【分析】首先根据几何关系确定AD BF ⊥,再根据斜率关系建立关于,,a b c 的等式,即可求解斜率.【详解】因为2AB OP =,所以AD BF ⊥,所以1AD BF k b bk a c=-⋅=-⋅,即2b ac =,所以22a c ac -=,即210e e +-=,解得12e =(负值舍去).13.(1)证明见详解【分析】(1)作出辅助线,构造平行四边形,由线线平行得到线面平行;(2)先证明出面面垂直,进而作出四棱锥的高,求出底面积和高,利用锥体体积公式进行求解.【详解】(1)取EC 中点M ,连结DM ,MF ,因为F 是EB 的中点,所以MF ∥BC ,∵AD BC FM ∥∥,12AD BC MF ==,∴四边形AFMD 为平行四边形∴AF ∥DM .又AF ⊄平面DEC ,DM ⊂平面DEC ,AF ∥平面DEC .(2)∵222EB CB EC +=,∴CB BE ⊥,又∵CB AB ⊥,AB BE B = ,∴CB ⊥平面ABE ,BC ⊂平面ABCD ∴平面ABCD ⊥平面ABE ,过E 作AB 的垂线,垂足为H ,则EH 为四棱锥E ABCD -的高.由题知EH =底面四边形ABCD 为直角梯形,其面积()12232S +⨯==,∴11333E ABCD V S EH -=⋅=⨯=.14.(1)220x y -+=;(2)证明见解析.【解析】(1)由l x ⊥轴(M 在x 轴上方),可得直线l 的方程,代入抛物线方程可求出点M 的坐标,进而可求出直线BM 的方程;(2)分直线l x ⊥轴和l 与x 轴不垂直两种情况讨论,联立直线与抛物线方程,结合韦达定理分别表示出12,k k ,即可证明出120k k +=.【详解】(1)直线l 的方程为2x =,代入抛物线方程得(2,2)M ,而(2,0)B -,可得直线:220BM x y -+=(2)当直线l x ⊥轴时,(2,2),(2,2),(2,0)M N B --,易得120k k +=;当直线l 与x 轴不垂直时,设直线1122:(2),(,),(,)l y k x M x y N x y =-,则22222222(2)2(42)40(0)(2)y xk x x k x k x k k y k x ⎧=⇒-=⇒-++=≠⎨=-⎩得21212242,4k x x x x k ++==所以121212121212(2)(2)28248022(2)(2)(2)(2)k x k x kx x k k kk k x x x x x x ---⋅-+=+==++++++综上知,120k k +=.【点睛】思路点睛:一般解决直线与抛物线的综合问题时:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.15.(1)29(2)19【分析】由对立事件的概率求法,结合独立事件的乘法公式、互斥事件的加法公式求甲队总得分为1分的概率、甲队总得分为2分且乙队总得分为1分的概率即可.【详解】(1)记“甲队总得分为1分”为事件B :甲队得1分,即三人中只有1人答对,其余两人都答错,其概率()22222222221111113333333339P B ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.∴甲队总得分为1分的概率为29.(2)记“甲队总得分为2分”为事件C ,记“乙队总得分为1分”为事件D .事件C即甲队三人中有2人答对,剩余1人答错,∴()2222222224 111 3333333339P C⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯=⎪ ⎪⎝⎭⎝⎭⎝⎭事件D即乙队3人中只有1人答对,其余2人答错,∴()1231231231 111111 2342342344P D⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.由题意,事件C与事件D相互独立,∴甲队总得分为2分且乙队总得分为1分的概率()()()411949 P CD P C P D==⨯=。
单独招生运动训练专业试卷习题2.doc

..⋯.⋯ ⋯ ⋯..校 ⋯学 ⋯⋯ 在 ⋯ 所⋯ ⋯线⋯ ⋯ ⋯ ⋯ ⋯⋯ ) ⋯ 县 ⋯ (⋯ ⋯ /.旗 ⋯) 市 ⋯.封( 盟⋯⋯⋯ ⋯⋯. ⋯ ⋯ ⋯ ⋯ ⋯ ⋯⋯ 号 ⋯ 密 证 ⋯ 份 ⋯ 身⋯⋯.⋯ ⋯⋯. ⋯ ⋯ ⋯⋯ 名 ⋯姓机密★启封并使用完毕前职业技术学院 2019 年单独招生运动训练专业试卷(本试卷共 4 页,满分 450 分,考试时间 180 分钟)卷一专业综合试题( 450 分)一 、单项选择题(本大题共40 小题,每小题 3 分,共 120 分。
)1、人类环境包括自然环境和()环境,它们是影响人体健康的重要因素A 、社会B 、运动C 、生活2、 健康是人一生关注的永恒主题,树立“ ()”的理念,将对人类的发展的社会进步,对我国在新世纪的改革与发展产生深远的影响。
A 、比赛第一B 、健康第一C 、友谊第一3、大脑只占人体重的2%,但它需要的氧气却要由心脏总流血量的20%来供应,比肌肉工作时所需血液量多 ()。
A 、 10%— 15%B 、 15%— 20%C 、 20%— 25%4、() 是指人的信仰、品德、情操、人格等处于积极向上、高尚和完善的状态。
A 、心理健康B 、道德健康C 、身体健康5、运动处方锻炼主要是采用()运动A 、有氧B 、无氧C 、有氧与无氧相结合的6、持续 5 分钟以上尚有余力的运动称为()。
A 、有氧运动B 、无氧运动C 、恒常运动7、根据运动时心率和强度相关关系标准,心率160 次 / 分钟的锻炼强度大约是() 。
A、 80% B 、 70% C 、 60%8、从运动生理来说,() 是全身耐力运动所需的最短时间。
A 、 5minB 、10minC 、15min9、健身锻炼的运动量一般用运动强度与() 的乘积来表示。
A 、运动量B 、运动负荷C 、运动时间10、国内外科研成果表明,最适宜的锻炼强度在65%~75%,即心率在()之间。
A 、 120~ 130 次/minB 、 110~ 140 次/minC 、 130~ 150 次 /min11、对青少年学生来说,以健身为目的的耐力练习心跳、脉搏应该维持在() 为宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招
生考试数学模拟试卷(二)
注意事项:
1.本试题卷包括选择题、填空题和解答题三部分共19小题,共150分; 2.本卷考试时间:120分钟
3.用钢笔或圆珠笔直接答在试题卷中,答卷前将密封线内的项目填写清楚.
一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合}4|{},0)1(|{2<=<-=x x N x x x M ,则 【 】
A .Φ=N M
B .M N M =
C .M N M =
D .R N M = 2.函数
)2
1
(12)(-≥+-=x x x f 的反函数是 【 】
A .在),21[+∞-
上为增函数 B .在),2
1
[+∞-上为减函数 C .在]0,(-∞上为增函数 D .在]0,(-∞上为减函数
3.下列函数中既是偶函数又在),0(+∞上是增函数的是 【 】
A .3x y =
B .1||+=x y
C .
12
+-=x
y D .|
|2
x y -=
4.已知等比数列}{n a 的前n 项和为*1,3N n a S n n
∈+=+,则实数a 的值是 【 】
A .-3
B .3
C .-1
D .1
5.下列结论正确的是 【 】
A .当0>x 且1≠x 时,2lg 1
lg ≥+x
x B .当0>x 时,21
≥+x
x C .当2≥x 时,x x 1
+
的最小值为2 D 、当20≤<x 时,x
x 1
-无最大值
6.过点),4(a A 与),5(b B 的直线与直线m x y +=平行,则=||AB 【 】
A .6
B 、2
C .2
D .不确定
7.甲、乙两人进行中国象棋对抗赛,据以往甲、乙两人比赛的记录统计发现,甲胜乙的概率为0.4,甲不输的概
率为0.9,则甲、乙两人下成和棋的概率是 【 】
A .0.36
B .0.5
C .0.1
D .0.04 8.已知下列命题(其中b a ,为直线,α为平面):
①若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
①若一条直线平行与一个平面,则垂直于这条直线的直线必垂直与这个平面; ①若αα⊥b a ,//,则b a ⊥;
①若b a ⊥,则过b 有唯一一个平面α与a 垂直
上述四个命题中,真命题是 【 】
A .①,①
B .①,①
C .①,①
D .①,①
9、在ABC ∆中,角A 、B 、C 所对边的长分别为c b a ,,.若bc a c b 5
6
2
2
2
=
-+,则)sin(C B +的值为【 】
A .54-
B .54
C .53-
D .5
3
10.设R y x ∈,,向量)4,2(),,1(),1,(===c y b x a ,且c b c a //,⊥,则=+|| 【 】
A .5
B .10
C .52
D .10 二、填空题:本大题共6小题,每小题6分,共36分。
把答案写在题中横线上
11.若双曲线1222
=-y a
x 的一个焦点为(2,0),则它的离心率为____________.
12.在等差数列){n a 中,已知1684=+a a ,则该数列前11项和=11s ____________.
13.设5
3
cos sin =
+βα,则=α2sin ____________. 14.在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是____________.
15.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为____________.
16.一个正方体的体积是8,则这个正方体的内切球的表面积是____________.
三、解答题:本大题共3小题,共54分.解答应写出文字说明、证明过程或演算步骤 17.已知函数b x x
a x f ++=)sin 2
cos
2()(2
.
D
C
(1)当1-=a 时,求)(x f 的单调递减区间;
(2)当],0[,0π∈<x a 时,)(x f 的值域是[5,8],求b a ,的值.
18.点A 、B 分别是椭圆120
362
2=+y x 长轴的左、右端点,点F 是椭圆的右焦点.点P 在椭圆上,且位于x 轴的上
方,PF PA ⊥. (1)求点P 的坐标;
(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB|,求椭圆上的点到M 的距离d 的最小值.
19.如右图,在正三棱柱111C B A ABC -中,D AB AA ,1=是AC 的中点. (1)求证://1C B 平面BD A 1; (2)求二面角D B A A --1的余弦值; (3)设2=AB ,求点C 到平面BD A 1的距离.
1A 1
B 1
C A
B。