七年级上册数学期末模拟试卷模板.doc

合集下载

七年级上学期数学期末模拟试卷及答案-百度文库

七年级上学期数学期末模拟试卷及答案-百度文库

七年级上学期数学期末模拟试卷及答案-百度文库一、选择题1.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+2.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .553.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10094.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是( )A .这栋居民楼共有居民125人B .每周使用手机支付次数为28~35次的人数最多C .有25人每周使用手机支付的次数在35~42次D .每周使用手机支付不超过21次的有15人 5.下列说法中正确的是( ) A .0不是单项式 B .316X π的系数为16C .27ah的次数为2 D .365x y +-不是多项式6.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 7.若3x-2y-7=0,则 4y-6x+12的值为( ) A .12B .19C .-2D .无法确定8.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 9.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab < 10.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y - B .1019x y +C .1021x y -D .1017x y -11.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b12.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn13.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .814.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度16.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 17.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( )A .2B .﹣2C .8D .﹣818.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( ) A .24千米B .30千米C .32千米D .36千米19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190B .210C .231D .25320.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A .183B .157C .133D .9121.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定22.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+23.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >024.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a ,则这个两位数为( )A .a ﹣50B .a +50C .a ﹣20D .a +2025.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24026.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 27.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 28.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3B .4C .5D .629.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .1013cmC .25cmD .30cm30.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.2.A解析:A 【解析】 【分析】分析可得,第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负,依此即可得出第10行从左边数第5个数. 【详解】解:第n 行有n 个数,此行第一个数的绝对值为(1)12n n -+,且式子的奇偶,决定它的正负,奇数为正,偶数为负. 所以第10行第5个数的绝对值为:1095502⨯+=, 50为偶数,故这个数为:-50. 故选:A . 【点睛】本题考查探索与表达规律,能依据已给数据分析得出每行第一个数与行数之间的规律是解决此题的关键.3.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.4.D解析:D 【解析】 【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断. 【详解】解:A 、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确; B 、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C 、有的人每周使用手机支付的次数在35~42次,此结论正确;D .每周使用手机支付不超过21次的有3+10+15=28人,此结论错误; 故选:D . 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.C解析:C 【解析】 【分析】根据单项式与多项式的概念即可求出答案. 【详解】解:(A )0是单项式,故A 错误; (B )πx 3的系数为,故B 错误;(D )3x+6y-5是多项式,故D 错误;【点睛】本题考查单项式与多项式,解题的关键是熟练运用单项式与多项式的概念,本题属于基础题型.6.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.7.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.8.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键. 9.B解析:B【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.12.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B . 【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.13.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.16.B解析:B【解析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.17.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.18.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.19.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b)21的展开式中第三项的系数.【详解】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b)21第三项系数为1+2+3+…+19+20=210;故选:B.【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.20.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.21.B解析:B【解析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a =,211132a ==--, 312131()2a ==--,413213a ==-,⋯,由上可得,每三个数一个循环,2019÷3=673,201923a ∴=, 故选:B .【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.22.B解析:B【解析】【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+故选B【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.23.C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.24.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.25.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.26.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.27.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.28.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 29.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm , ∴底面周长=3030ππ⋅=cm ,∴BC =20cm ,AC =12×30=15(cm ),∴AB==(cm).25答:它需要爬行的最短路程为25cm.故选:C.【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.30.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。

初中人教版七年级上册数学期末模拟测试卷及答案.doc

初中人教版七年级上册数学期末模拟测试卷及答案.doc

淤溪初中七年级上数学期末模拟测试卷(三)一、选择题(本题共8小题,每小题3分,共24分〉1 •在-汽(一2)彳、一(一2)、-|-2|中,负数的个数是( )A. 4个B. 3个C. 2个D. 1个2•在1, -1, - 2这三个数中,任意两数之和的最大值是( )A. 1B. 0C. 一1D. 一33,国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( )A. 25 . 8X105B. 2 . 58X105C. 2.58X106D. 0.258X1()7 4.下列各式中运算正确的是()3a - 4a — - 1 B ・ a ?+a ?—a 4 C ・ 3a'+2a 3二5a 5 如图所示几何体的俯视图是( )O B- O c- 口 D. □6. 一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元)A 类 50 25B 类 200 20C 类40015例如,购买A 类会员年卡,一年内游泳20次,消费50+25 X 20-550元,若一年内在该游泳馆游泳的次数介于45-55次之间,则最省钱的方式为()A. 5. A.A.购买A 类会员年卡B. 购买B 类会员年卡C. 购买C 类会员年卡D. 不购买会员年卡7.下列结论中,不正确的是( A.两点确定一条直线 C.对顶角相等)B.两点之间的所有连线中,线段最短 D,过一点有且只有一条直线与已知直线平行 8.某商品的标价为200元8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 100二、填空题(本题共10小题,每小题3分,共30分〉9. -1.5的绝对值是 ____________ , -1.5的倒数是 ______________ ・Q JT10. 在-务 3.14, 0. 161616-, 2中,分数有____________________ 个.门・|x-3|+ (y+2) 2=0,则/为___________________ .12. —个几何体的表面展开图如图所示,则这个几何体是_____________13. 如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字IxL曰洋疋_______ -AB c DE14. 当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”・如果一个“梦想三角形”有一个角为108。

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①② B .②③ C .①④ D .③④3.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块4.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .240 5.a 是不为1的有理数,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A .3B .23C .12-D .无法确定6.甲、乙两人分别从A B 、两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达地后立刻以原路和提高后的速度向地返行,乙到达A 地后也立刻以原路和提高后的速度向B 地返行.甲、乙两人在开始 出发后的5小时36分钟又再次相遇,则A B 、两地的距离是( )A .24千米B .30千米C .32千米D .36千米7.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |8.下列解方程的步骤正确的是( )A .由2x +4=3x +1,得2x +3x =1+4B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .11111.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202012.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____.14.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a ,b 的代数式表示) .15.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .16.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.17.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第n 个正方形(实线)四条边上的整点个数共有_________个.18.对于有理数,m n ,定义一种新运算""⊗,规定m n m n m n ⊗=---.请计算23-⊗的值是__________.19.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______20.已知关于x 的一元一次方程520202020x x m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020y y m --=--的解为________. 21.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.22.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m n a a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.三、解答题23.发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表. 成绩x /分频数 百分比 5060x ≤< 5 5%6070≤<1515%x≤<20n7080x≤<m35%x8090x≤≤2525%90100请根据所给信息,解答下列问题:(1)m=______,n=______,并补全频数分布直方图;(2)若成绩在90分以上(包括90分)的为“优”等,则该校参与这次比赛的800名学生中成绩“优”等的约有多少人?24.已知代数式A=x2+3xy+x﹣12,B=2x2﹣xy+4y﹣1(1)当x=y=﹣2时,求2A﹣B的值;(2)若2A﹣B的值与y的取值无关,求x的值.25.有理数a、b在数轴上的位置如图所示:求:(1)a-b 0(填“>,<,=”)(2)|b-a|=26.如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?(3)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上相距10单位时电子蚂蚁Q刚好在C点,你知道C点对应的数是多少吗?27.幻方的历史很悠久,传说中最早出现在夏禹时代的“洛书”,用今天的数学符号翻译出来,就是一个三阶幻方,即将若干个数组成一个正方形数阵,任意一行、一列及对角线上的数字之和都相等.观察下图:(1)若图1为“和m幻方”,则a=,b=,m=;(2)若图2为“和m幻方”,请通过观察上图的三个幻方,试着用含p、q的代数式表示r,并说明理由.(3)若图3为“和m幻方”,且x为整数,试求出所有满足条件的整数n的值.28.一副三角尺按照如图所示摆放在量角器上,边PD与量角器0刻度线重合,边AP与量角器180︒刻度线重合,将三角尺ABP绕量角器中心点P以每秒4︒的速度顺时针旋转,当边PB与0︒刻度线重合时停止运动.设三角尺ABP的运动时间为t(秒)t=秒时,边PB经过的量角器刻度线对应的度数为_ ;(1)当5∠;(2)t=秒时,边PB平分CPD(3)若在三角尺ABP 开始旋转的同时,三角尺PCD 也绕点P 以每秒1的速度逆时针旋转,当三角尺ABP 停止旋转时,三角尺PCD 也停止旋转,①当t 为何值时,边PB 平分CPD ∠;②在旋转过程中,是否存在某一时刻,使得:3:2BPD APC ∠∠=.若存在,请求出t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a 与b 同号,又a+b <0,则a <0,b <0.故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.3.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116⨯+=块.…∴第9个图形中有黑色瓷砖59146⨯+=块.故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.4.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.5.B解析:B【解析】【分析】根据规则计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案.【详解】解:由题意可得,13a=,211 132a==--,31213 1()2a==--,413213a==-,⋯,由上可得,每三个数一个循环,2019÷3=673,20192 3a∴=,故选:B.【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.6.D解析:D【解析】【分析】第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.【详解】解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=535(小时)由题意可得:2×2x=(535-2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.【点睛】本题考查了一元一次方程的应用,理解题意,找到正确的等量关系是本题的关键.7.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.B解析:B【解析】【分析】先根据点在数轴上的位置,判断出a、b的正负,然后再比较出a、b的大小,最后结合选项进行判断即可.【详解】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a-b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D .【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.11.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,则a 1=a 5=a 9=…=,利用同样的方法可得到a 1=a 5=a 9=…=x -1,a 2=a 6=a 10=…-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12=…=0,所以已知a 999=a 3=-2x ,a 25=a 1=x-1,由此联立方程求得x 即可.【详解】∵a 1+a 2+a 3+a 4=a 2+a 3+a 4+a 5,a 5+a 6+a 7+a 8=a 6+a 7+a 8+a 9,…,∴a 1=a 5=a 9=…=x -1,同理可得a 2=a 6=a 10=…=-7,a 3=a 7=a 11=…=-2x ,a 4=a 8=a 12= 0∵a 1+a 2+a 3+a 4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815. 【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则.14.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b ),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b , ∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b )= a+98b . 故答案为:a+98b .【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.15.【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C 是线段AB 的中点,AB =8cm ,∴BC=AB =×8=4cm ,解析:【解析】【分析】先根据点C 是线段AB 的中点,AB =8cm 求出BC 的长,再根据CD =BC ﹣BD 即可得出结论.【详解】解:∵点C 是线段AB 的中点,AB =8cm ,∴BC =12AB =12×8=4cm , ∵BD =2cm ,∴CD =BC ﹣BD =4﹣2=2cm .故答案为2.【点睛】 本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.16.100【解析】【分析】根据利润率(售价进价)进价,先利用售价标价折数10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元按标价打8折后售价为:(元/件解析:100【解析】【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.17.4n .【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n 个正方形四条边上的整点个数.【详解】第1个正方形的整点个数为4=,第2个正方形的整点个数为8=解析:4n.【解析】【分析】依次求出每个正方形四条边上的整点个数,得到个数的变化规律,即可得到第n个正方形四条边上的整点个数.【详解】⨯,第1个正方形的整点个数为4=41第2个正方形的整点个数为8=4⨯2,第3个正方形的整点个数为12=4⨯3,,∴第n个正方形的整点个数为4n,故答案为:4n.【点睛】此题考查图形类规律的探究,根据图形求出前几个正方形四条边上整点的个数得到个数的变化规律是解题的关键.18.-6【解析】【分析】根据新定义规定的运算公式列式计算即可求得答案.【详解】.故答案为:.【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的解析:-6【解析】【分析】根据新定义规定的运算公式列式计算即可求得答案.【详解】232323-⊗=-----=--2356=-.-.故答案为:6【点睛】本题主要考查了有理数的混合运算,解题的关键是熟练掌握新定义规定的运算公式和有理数的混合运算顺序及运算法则.19.【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答. 【详解】设这个角的度数为x,,.故答案为: .【点睛】此题考查角的余角和补角定义及计算,设出所解析:35︒【解析】【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x,x x︒-=︒--︒,1803(90)20x=︒.35故答案为:35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.20.2024【解析】【分析】根据关于x的一元一次方程的解,可以得到m的值,把m的值代入关于y的方程式中,可以得到y的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-, ∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.21.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解析:42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵1799=899×2+1,∴奇数1799是从3开始的第899个奇数,∵(412)(411)=8602+-,(422)(421)9022+-=,∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.22.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅=则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051()()()()()()a a a a a a a a a a a a =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 101101101101101101a a a a a a =⋅⋅⋅⋅⋅⋅ 101101101101a ++++=10150a ⨯=5050a =故答案为:5050a .【点睛】 本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.三、解答题23.(1)35,20%,补全图见解析;(2)200(人)【解析】【分析】(1)根据第4组的频率是35%,求得m 的值,根据第3组频数是20,求得n 的值,然后补全频数直方图即可;(2)利用总数800乘以“优”等学生的所占的频率即可得出该校参加这次比赛的800名学生中成绩“优”等的人数.【详解】解:(1)由题可得,m=100×35%=35;n=20÷100=20%,补全频数直方图如下:故答案为:35,20%;(2)该校参加这次比赛的800名学生中成绩“优”等约有:800×25%=200(人).【点睛】本题考查频数(率)分布表,用样本估计总体,频数直方图.利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.24.(1)9;(2)x=4 7【解析】【分析】(1)先化简多项式,再代入求值;(2)合并含y的项,因为2A-B的值与y的取值无关,所以y的系数为0.【详解】(1)2A﹣B=2(x2+3xy+x﹣12)﹣(2x2﹣xy+4y﹣1)=2x2+6xy+2x﹣24﹣2x2+xy﹣4y+1=7xy+2x﹣4y﹣23当x=y=﹣2时,原式=7×(﹣2)×(﹣2)+2×(﹣2)﹣4×(﹣2)﹣23=9.(2)∵2A﹣B=7xy+2x﹣4y﹣23=(7x﹣4)y+2x﹣23.由于2A﹣B的值与y的取值无关,∴7x﹣4=0∴x=47.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.(1)>;(2)a -b【解析】【分析】(1)从数轴上可得:a >0,b <0且|a |<|b |,(2)先判断b-a 的正负,再根据绝对值的性质进行化简即可【详解】解:(1)根据数轴可得:a>0,b<0且|a|<|b|,则a >b ,a -b >0,故答案为:>;(2)从数轴上可得:a >0,b <0且|a |<|b |,则b -a <0,根据绝对值的法则可得:|b -a |= a -b ,故答案为:a -b .【点睛】本题考查用数轴表示有理数和绝对值化简,根据点在数轴上的位置判断出0a b >>是解题的关键.26.(1)40;(2)-260;(3)24或32.【解析】【分析】(1)与A 、B 两点距离相等的点是它们的中点,即(-20+100)÷2结果是M ;(2)此题是追及问题,可先求出P 追上Q 所需的时间,然后可求出Q 所走的路程,根据左减右加的原则,可求出点D 所对应的数;(3)此题是相遇问题,先求出相距10单位时所需的时间,相距10单位,分相遇前和相遇后计算,再求出点Q 走的路程,根据左减右加的原则,可求出-20向右运动到C 地点所对应的数.【详解】(1)根据题意可知,点M 为A 、B 的中点,∴(-20+100)÷2=40,答:点M 对应的数为40,故答案为:40;(2)点P 追到Q 点的时间为120÷(6-4)=60,即此时Q 点经过的路程为4×60=240,即-20-240=-260,答:点D 对应的数是-260,故答案为:-260;(3)分相遇前和相遇后两种情况讨论:他们相遇前相距10单位时,(120-10)÷(6+4)=11,及相同时间Q 点运动路程为:11×4=44,即-20+44=24;他们相遇后相距10单位时,(120+10)÷(6+4)=13,及相同时间Q 点运动路程为:13×4=52,即-20+52=32,答:点C 对应的数是24或32,故答案为:24或32.【点睛】本题考查了数轴上的动点问题,相遇和追及问题,有理数的运算,掌握数轴上的动点问题是解题的关键.27.(1)-5,9,3;(2)2p q r =+ ;(3)-3,-2,0,1.【解析】【分析】(1)根据题意先求出a 和b 的值,再假设中间的数为x 根据题干定义进行分析计算; (2)由题意假设中间数为x ,同时根据题意表示某些数值进而分析计算得出结论; (3)由题意根据(2)的关系式得出(1)3n x n +=+,进而进行分析即可.【详解】解:(1)由图分析可得:57777a a b +=-+⎧⎨+=-⎩,解得59a b =-⎧⎨=⎩, 假设中间的数为x ,如下图:根据图可得:22277x x x x +++-=++-解得1x =,所以2772123m x x =++-=+=+=.故答案为:-5,9,3.(2)2p q r =+,理由如下:假设中间数为x ,如图:由图可知:()()p m x q r m p x +--=+--,化简后得2p q r =+.(3)根据(2)中关系式可知:232n x nx -⋅=- 3n x nx -=-(1)3n x n +=+当10n +≠时,31n x n +=+, ∵x 为整数, ∴31n n ++为整数, 又∵32111n n n +=+++, ∴11,2n +=±±,∴3201n =--,,,, 又∵n 为整数,∴3201n =--,,,均满足条件, ∴所有满足条件的整数n 的值为:-3,-2,0,1.【点睛】本题考查代数式的新定义运算,根据题干新定义进行分析求解是解答此题的关键.28.(1)115°;(2)26.25;(3)①21秒,②18t =秒或25.2秒【解析】【分析】(1)0t =秒时,边PB 经过量角器刻度对应的度数是135︒,由由旋转知,4520︒⨯=,进而即可得到答案;(2)由旋转知,旋转角为4t 度,根据题意,列出关于t 的方程,即可求解;(3)①类似(2)题方法,列出关于t 的方程,即可求解;②分两种情况:当边PA 在边PC 左侧时,当边PA 在边PC 右侧时,用含t 的代数式分别表示出APC ∠与BPD ∠,进而列出方程,即可求解.【详解】()1当5t =秒时,由旋转知,4520︒⨯=, ABP 是等腰直角三角形,45APB ∴∠=,即:0t =秒时,边PB 经过量角器刻度对应的度数是135︒,∴旋转5秒时,边PB 经过量角器刻度对应的度数是13520115︒-=,故答案为:115︒;()2由旋转知,旋转角为4t 度,边PB 平分CPD ∠且60DPC ∠=,1418060451052t ∴=-⨯-=,解得:26.25t =, 故答案为:26.25;()3①同()2的方法得:1418060452t t =-⨯--,解得:21t =; ②当边PA 在边PC 左侧时,由旋转知,1804601205APC t t t ∠=---=-,1804551355BPD t t ∠=--=-, 23BPD APC ∠=∠,()3135512052t t ∴-=-,解得:18t =, 当边PA 在边PC 右侧时,由旋转知,4601805120APC t t t ∠=++-=-,[]180(454)5135BPD t t t ∠=--+=-或()1804451355BPD t t t ∠=-++=-, 23BPD APC ∠=∠,()3513551202t t ∴-=-或()3135551202t t -=-, 解得:18t =(不合题意舍去)或25.2t =,综上所述:18t =秒或25.2秒时,:3:2BPD APC ∠∠=.【点睛】本题主要考查一元一次方程与角的和差倍分关系的综合,根据等量关系,列出一元一次方程,是解题的关键.。

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >02.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( )A .3B .4C .5D .63.下列说法错误的是( )A .25mn -的系数是25-,次数是2B .数字0是单项式C .14ab 是二次单项式 D .23xy π的系数是13,次数是4 4.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a + C .35a -D .3(5)a - 5.如图所示,OB 是一条河流,OC 是一片菜田,张大伯每天从家(A 点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是( )A .B .C .D .6.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或27.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |8.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( )A .2cmB .4cmC .2cm 或6cmD .4cm 或6cm 9.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( )A .4B .5C .6D .7 10.下列解方程的步骤正确的是( )A .由2x +4=3x +1,得2x +3x =1+4B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 11.a ,b 在数轴上位置如图所示,则a ,b ,a -,b -的大小顺序是( )A .a b a b -<<<-B .b a b a <-<-<C .a b b a -<-<<D .b a a b <-<<-12.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个二、填空题13.计算(0.04)2018×[(﹣5)]2018的结果是_____.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.若∠α=35°16′28″,则∠α的补角为____________.16.如图是某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天,气温26C 出现的频率是__________.17.已知线段8cm AB =,在直线AB 上画线段5cm AC =,则BC 的长是______cm .18.关于x 的方程2x+m=1﹣x 的解是x=﹣2,则m 的值为__.19.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________20.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =……(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S =____________.21.大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.22.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.三、解答题23.下面是林林同学的解题过程:解方程212136x x ++-=.解:去分母,得:2(21)26x x +-+= 第①步去括号,得:4226x x +-+= 第②步移项合并,得:32x = 第③步系数化1,得:23x = 第④步 (1)上述林林的解题过程从第________步开始出现错误;(2)请你帮林林写出正确的解题过程.24.(1)已知:2(2)30m n -++=.线段AB=4()m n -cm ,则线段AB= cm .(此空直接填答案,不必写过程.)(2)如图,线段AB 的长度为(1)中所求的值,点P 沿线段AB 自点A 向点B 以2cm/s 的速度运动,同时点Q 沿线段BA 自点B 向点A 以3cm/s 的速度运动.①当P 、Q 两点相遇时,点P 到点B 的距离是多少?②经过多长时间,P 、Q 两点相距5cm ?25.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.26.观察下面的三行单项式x ,2x 2,4x 3,8x 4,16x 5…①﹣2x ,4x 2,﹣8x 3,16x 4,﹣32x 5…②2x ,﹣3x 2,5x 3,﹣9x 4,17x 5…③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2020个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当x =12时,256(A +14)的值.27.阅读理解:(阅读材料)在数轴上,通常用“两数的差”来表示“数轴上两点的距离”如图1中三条线段的长度可表示为:422,4(2)6,2(4)2AB CB DC =-==--==---=,⋅⋅⋅结论:数轴上任意两点表示的数为分别,()a b b a >,则这两个点间的距离为b a -(即:用较大的数去减较小的数)(理解运用)根据阅读材料完成下列各题:(1)如图2, ,A B 分别表示数1,7-,求线段AB 的长;(2)若在直线AB 上存在点C ,使得14CB AB =,求点C 对应的数值. (3),M N 两点分别从,A B 同时出发以3个单位、2个单位长度的速度沿数轴向右运动,求当点,M N 重合时,它们运动的时间;(4)在(3)的条件下,求当12MN AB =时,它们运动的时间.28.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.2.B解析:B【解析】【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得.【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个, 故选:B .【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键. 3.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.4.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.5.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.6.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.7.D解析:D【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2,∴|a|>|b|,a <﹣b ,b >a ,a <﹣2,故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.8.C解析:C【解析】【分析】分类讨论:点C 在线段AB 上,点C 在线段BC 的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM 的长.【详解】解:①当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-4=4(cm ),由线段中点的定义,得AM=12AC=12×4=2(cm ); ②点C 在线段BC 的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm ), 由线段中点的定义,得AM=12AC=12×12=6(cm ); 故选C .【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.9.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.10.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简.【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B .【点睛】 本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.11.D解析:D【解析】【分析】从数轴上a b 的位置得出b <0<a ,|b|>|a|,推出-a <0,-a >b ,-b >0,-b >a ,根据以上结论即可得出答案.【详解】从数轴上可以看出b <0<a ,|b|>|a |,∴-a <0,-a >b ,-b >0,-b >a ,即b <-a <a <-b ,故选D .【点睛】本题考查了数轴和有理数的大小比较,关键是能根据a 、b 的值得出结论-a <0,-a >b ,-b >0,-b >a ,题目比较好,是一道比较容易出错的题目.12.B解析:B【解析】【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈.【详解】解:∵第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,…∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=.故选:B .【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.二、填空题13..【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018.故答案为.【点睛】本题考 解析:201815.【解析】【分析】先将原式变形为[0.04×(﹣5)]2018,再根据乘方的定义计算可得.【详解】原式=[0.04×(﹣5)]2018=(﹣0.2)2018201815=. 故答案为201815.【点睛】 本题考查了有理数的乘方,解题的关键是掌握有理数的乘方的定义和运算法则. 14.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠=35°16′28″,∴的补角;故答案是144°43′32″.【点睛】本题主要考查了度分秒的计算和补角的解析:144°43′32″【解析】【分析】根据补角的计算方法计算即可;【详解】∵∠α=35°16′28″,∴α∠的补角18035162817959603516281444332''''''''''''=︒-︒=︒-︒=︒; 故答案是144°43′32″.【点睛】 本题主要考查了度分秒的计算和补角的计算,准确计算是解题的关键.16.3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】解析:3【解析】【分析】用气温26℃出现的天数除以总天数10即可得.【详解】由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,故答案为:0.3.【点睛】本题主要考查了频数(率)分布折线图,解题的关键是掌握频率的概念,根据折线图得出解题所需的数据.17.13或3【解析】【分析】根据线段的和与差运算法则,若点在延长线上时,即得;若点在之间,即得.【详解】当点在延长线上线段,当点在之间线段,综上所述:或故答案为:13或3【点解析:13或3【解析】【分析】根据线段的和与差运算法则,若点C 在BA 延长线上时,=+BC AB AC 即得;若点C 在AB 之间,=BC AB AC -即得.【详解】当点C 在BA 延长线上线段8cm AB =,5cm AC =∴==8+5=13cm +BC AB AC当点C 在AB 之间线段8cm AB =,5cm AC =∴==853cm --=BC AB AC综上所述:=13cm BC 或=3cm BC故答案为:13或3【点睛】本题考查线段的和与差,分类讨论确定点C 的位置是易错点,正确理解线段的无方向的性质是正确进行分类讨论的关键.18.7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.解析:7【解析】由题意得:2×(-2)+m=1-(-2),解得:m=7,故答案为7.19.-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b ,∵点A (表示整数a )在原点O 的左侧,点B (表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b ,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b ,∵点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧, ∴-a=2b ,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a ,b 之间的关系是解题关键.20.-【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【详解】解:S1=,S2=-S1-1=--1=-,S3==-,解析:-1a a+ 【解析】【分析】 根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【详解】解:S 1=1a ,S 2=-S 1-1=-1a -1=-1a a+,S 3=21S =-1a a +,S 4=-S 3-1=1111a a a -=-++ ,541S S ==-(a+1),S 6=-S 5-1=(a+1)-1=a ,S 7=611S a = ,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=-1a a+.故答案为:-1 aa+.【点睛】此题考查规律型中数字的变化类,根据数值的变化找出S n的值,每6个一循环是解题的关键.21.42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解析:42【解析】【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数1799的是从3开始的第899个数,然后确定出899所在的范围即可得解.【详解】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(2)(1)2m m+-,∵1799=899×2+1,∴奇数1799是从3开始的第899个奇数,∵(412)(411)=8602+-,(422)(421)9022+-=,∴第899个奇数是底数为42的数的立方分裂的奇数的其中一个,即m=42,故答案为:42.【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.22.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键.三、解答题23.(1)①;(2)2x =,过程见解析【解析】【分析】(1)找出林林错误的步骤,分析原因即可;(2)写出正确的解题过程即可.【详解】(1)上述林林解题过程从第①步开始出现错误,错误的原因是去括号没变号; 故答案为:①;(2)去分母得:()()22126x x +-+=,去括号得:4226x x +--=,移项合并得:36x =,解得:2x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤和运算法则是解本题的关键.24.(1)20;(2)①P 、Q 两点相遇时,点P 到点B 的距离是12cm ;②经过3s 或5s ,P 、Q 两点相距5cm .【解析】【分析】(1)根据绝对值和平方的非负数求出m 、n 的值,即可求解;(2)①根据相遇问题求出P 、Q 两点的相遇时间,就可以求出结论;②设经过xs ,P 、Q 两点相距5cm ,分相遇前和相遇后两种情况建立方程求出其解即可.【详解】解:(1)因为2(2)30m n -++=,所以m-2=0,n+3=0,解得:m=2,n=-3,所以AB=4()m n -=4×[2-(-3)]=20,即20AB =cm ,故答案为:20(2)①设经过t 秒时,P 、Q 两点相遇,根据题意得, 2320t t +=4t =∴P 、Q 两点相遇时,点P 到点B 的距离是:4×3=12cm ;②设经过x 秒,P 、Q 两点相距5cm ,由题意得2x+3x+5=20,解得:x=3或2x+3x-5=20,解得:x=5答:经过3s 或5s ,P 、Q 两点相距5cm .【点睛】本题考查平方和绝对值的非负性以及相遇问题的数量关系在实际问题中的运用,行程问题的数量关系的运用,分类讨论思想的运用,解答时根据行程问题的数量关系建立方程是解题关键.25.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=4,NP=23BP=2, ∴MN=MP+NP=6; 若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).26.(1)27x8;22020x2020;(2)(﹣1)n﹣1(2n﹣1+1)x n;(3)641 2【解析】【分析】(1)观察所给的第①与②行的式子可得它们的特点,第①行中第n个数是2n﹣1x n,第②行中第n个数是(﹣2)n x n;(2)观察第③行式子的特点,可得第n个数是(﹣1)n﹣1(2n﹣1+1)x n,即可求出解;(3)先求出A=28x9+(﹣2)9x9+(28+1)x9,再将x=12代入求出A,最后再求256(A+14)即可.【详解】解:(1)根据第①行式子的特点可得,第n个数是2n﹣1x n,∴第8个单项式是27x8;根据第②行式子的特点可得,第n个数是(﹣2)n x n,∴第2020个单项式是22020x 2020;故答案为:27x 8;22020x 2020;(2)根据第③行式子的特点可得,第n 个数是(﹣1)n ﹣1(2n ﹣1+1)x n ,故答案为:(﹣1)n ﹣1(2n ﹣1+1)x n ;(3)第①行的第9个单项式是28x 9,第②行的第9个单项式是(﹣2)9x 9,第③行的第9个单项式是(28+1)x 9,∴A =28x 9+(﹣2)9x 9+(28+1)x 9,当x =12时,A =28×(12)9+(﹣2)9×(12)9+(28+1)×(12)9=12﹣1+12+(12)9=(12)9, ∴256(A +14)=256×[(12)9+14]=6412. 【点睛】本题考查数字的变化规律,能够通过所给例子,找到式子的规律,列出每行第n 个式子的代数式是解题的关键.27.(1) 线段AB 的长为8;(2)14CB AB =时,点对应的数值为5或9;(3)运动时间为8秒时,,M N 重合;(4)运动时间为4或12小时,12MN AB =. 【解析】【分析】(1) 由题意,直接观察数轴和定义代入即可求出线段AB 的长;(2)根据题意设点C 对应的数值为x ,分当点C 在点B 左侧时以及当点C 在点B 右侧时列方程求解即可;(3)根据题意设运动时间为t 秒时,M N 重合用含t 的代数式表示出M 、N 进行分析;(4)由题意设运动时间为t 秒时,12MN AB =,分当点M 在点N 左侧时以及当点M 在点N右侧时进行分析求解.【详解】解:(1)由题意得,线段AB 的长为:7(1)8--=,答:线段AB 的长为8.(2)设点C 对应的数值为x(ⅰ)当点C 在点B 左侧时, 7CB x =- 因为14CB AB = 所以1784x -=⨯ 解得5x =(ⅱ)当点C 在点B 右侧时7CB x =- 因为14CB AB = 所以17=84x -⨯ 解得=9x 答:14CB AB =时,点对应的数值为5或9. (3)设运动时间为t 秒时,,M N 重合M 点对应数值表示为13t -+,N 点对应数值表示为72t +由题意得1372t t -+=+解得8t =答:运动时间为8秒时,,M N 重合.(4)设运动时间为t 秒时,12MN AB =, (ⅰ)当点M 在点N 左侧时,由(3)有172(13)82t t +--+=⨯ 解得:4t =(ⅱ)当点M 在点N 右侧时 113(72)82t t -+-+=⨯ 12t =答:运动时间为4或12小时,12MN AB =. 【点睛】本题考查一元一次方程的实际运用,利用数形结合的思想和数轴上求两点之间距离的方法解决问题.28.(1)2;(2)存在,t=125;(3)54或127 【解析】【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可.【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒,∴当P 为AB 中点时,42=2÷(秒);(2)由题意可得:当2BP BQ =时,P ,Q 分别在AB ,BC 上,∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动,∴BP=8-2t ,BQ=23t , 则8-2t=2×23t , 解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ =;(3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32,此时t=32÷2=16, ∵BC+CQ=16+4=20,∴a=20÷16=54, 当点P 为靠近点C 的三等分点时,如图,AB+BC+CP=8+16+4=28,此时t=28÷2=14,∵BC+CQ=16+8=24,∴a=24÷14=127.综上:a的值为54或127.【点睛】本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.。

数学版人教版七年级上册数学期末模拟试卷及答案

数学版人教版七年级上册数学期末模拟试卷及答案

数学版人教版七年级上册数学期末模拟试卷及答案.doc一、选择题1.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b - B .9b 9a -C .9aD .9a -5.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个6.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .7.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )11.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.=38A ∠︒,则A ∠的补角的度数为______. 15.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 16.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.17.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 18.若3750'A ∠=︒,则A ∠的补角的度数为__________.19.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.21.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 22.化简:2x+1﹣(x+1)=_____.23.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____.24.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、解答题25.解下列一元一次方程()1()23x x +=- ()2()113124x x --+= 26.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。

数学七年级上册数学期末模拟试卷(带答案)-百度文库

数学七年级上册数学期末模拟试卷(带答案)-百度文库

数学七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .33.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .34.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯5.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=6.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或737.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4abc﹣23 …A .4B .3C .0D .﹣2 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣19.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A.1010 B.4 C.2 D.110.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+ 11.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.312.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)13.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x元,根据题意可列方程为()A.300-0.2x=60 B.300-0.8x=60 C.300×0.2-x=60 D.300×0.8-x=60 14.把1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.212515.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题16.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 17.已知方程22x a ax +=+的解为3x =,则a 的值为__________.18.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.19.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

七年级上学期数学期末模拟试卷及答案-百度文库

七年级上学期数学期末模拟试卷及答案-百度文库

七年级上学期数学期末模拟试卷及答案-百度文库一、选择题1.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.在﹣(﹣8),﹣π,|﹣3.14|,227,0,(﹣13)2各数中,正有理数的个数有( ) A .3 B .4C .5D .63.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-14.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = ) A .3B .23C .12-D .无法确定5.已知线段AB ,C 是直线AB 上的一点,AB=8,BC=4,点M 是线段AC 的中点,则线段AM 的长为( ) A .2cm B .4cm C .2cm 或6cm D .4cm 或6cm 6.已知232-m a b 和45n a b 是同类项,则m n -的值是( )A .-2B .1C .0D .-1 7.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><8.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 9.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是( )A .第80个图形B .第82个图形C .第84个图形D .第86个图形10.下列图形是由同样大小的小圆圈组成的“小雨伞”,其中第1个图形中一共有6个小圆圈,第2个图形中一共有11个小圆圈,第3个图形中一共有16个小圆圈,按照此规律下去,则第100个图形中小圆圈的个数是( )A .500个B .501个C .602个D .603个11.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .7612.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.若()221x y -++=0,则x+y=_____.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为___________.16.观察下列等式: ① 32 - 12 = 2 × 4 ② 52 - 32 = 2 × 8 ③ 72 - 52 = 2 × 12 ......那么第n (n 为正整数)个等式为___________ 17.一个角的余角为50°,则这个角的补角等于_____.18.观察表一寻找规律,表二、表三分别是从表一中截取的一部分,则a =_____,b =____.19.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____. 20.如图,已知圆柱体底面圆的半径为2π,高为2,AB ,CD 分别是两底面的直径.若一只小虫从A 点出发,沿圆柱侧面爬行到C 点,则小虫爬行的最短路线的长度是________(结果保留根号).21.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.三、解答题23.为了庆祝元旦,某商场在门前的空地上用花盆排列出了如图所示的图案,第1个图案中10个花盆,第2个图案中有19个花,……,按此规律排列下去.(1)第3个图案中有________一个花盆,第4个图案中右________个花盆; (2)根据上述规律,求出第n 个图案中花盆的个数(用含n 的代数式表示). 24.(1)化简:35(24)n m m n +--(2)先化简,再求值:23(2)2(51)2m m m ---++,其中1m =-25.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.26.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 27.(1)请你在下列数轴中标出点:3A ,点: 2.5B -,点:|2|C --;(2)观察数轴,与点A 的距离为6的点表示的数是____________;(3)若将数轴折叠,使得点A 与4-表示的点重合,则点B 与数_________表示的点重合;(4)若数轴上M 、N 两点之间的距离为2015(M 在N 的左侧),且M 、N 两点经过③中折叠后互相重合,则M 、N 两点表示的数分别是什么?(5)问:| 2.5||1|x x ++-的最小值为________;符合条件的整数x 有哪些? 28.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?/x cm 1 2 3 4 5 3/cm V 160________216________80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数. 详解:∵ab >0, ∴a 与b 同号, 又a+b <0, 则a <0,b <0. 故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.2.B解析:B 【解析】 【分析】先去括号、化简绝对值、计算有理数的乘方,再根据正有理数的定义即可得. 【详解】()88--=, 3.14 3.14-=,21319-=⎛⎫ ⎪⎝⎭, 则正有理数为()8--, 3.14-,227,213⎛⎫- ⎪⎝⎭,共4个,故选:B . 【点睛】本题考查了去括号、化简绝对值、有理数的乘方、正有理数,熟记运算法则和概念是解题关键.3.C解析:C 【解析】1144(1)4414xx x x x x --=---=--+=-方程左右两边各项都要乘以4,故选C4.B解析:B 【解析】 【分析】根据规则计算出a 2、a 3、a 4,即可发现每3个数为一个循环,然后用2019除以3,即可得出答案. 【详解】 解:由题意可得,13a =,211132a ==--, 312131()2a ==--,413213a ==-,⋯,由上可得,每三个数一个循环, 2019÷3=673, 201923a ∴=, 故选:B . 【点睛】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出a2、a3、a4找出数字变化的规律.5.C解析:C 【解析】 【分析】分类讨论:点C 在线段AB 上,点C 在线段BC 的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM 的长. 【详解】解:①当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-4=4(cm ), 由线段中点的定义,得AM=12AC=12×4=2(cm ); ②点C 在线段BC 的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm ), 由线段中点的定义,得AM=12AC=12×12=6(cm ); 故选C . 【点睛】本题考查两点间的距离,利用了线段的和差,线段中点的定义;解题关键是进行分类讨论.6.D解析:D 【解析】 【分析】根据同类项的字母相同且相同字母的指数也相同,可得关于m 、n 的方程,根据方程的解可得答案. 【详解】∵232-m a b 和45n a b 是同类项 ∴2m=4,n=3 ∴m=2,n=3 ∴=231m n --=-故选D.【点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.7.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.8.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.9.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题. 【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.10.B解析:B 【解析】 【分析】观察图形可知,第1个图形有3316+⨯=个小圆圈,第2个图形有53211+⨯=个小圆圈,第3个图形有73316+⨯=个小圆圈,……,可以推测,第n 个图形有21351n n n ++=+个小圆圈. 【详解】解:∵第1个图形有3316+⨯=个小圆圈, 第2个图形有53211+⨯=个小圆圈, 第3个图形有73316+⨯=个小圆圈, …∴第n 个图形有21351n n n ++=+个小圆圈.∴第100个图形中小圆圈的个数是:51001501⨯+=. 故选:B . 【点睛】本题考查的知识点是规律型-图形的变化类,解题的关键是找出图形各部分的变化规律后直接利用规律求解,要善于用联想来解决此类问题.11.A解析:A 【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可. 【详解】第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5..., 所以第n 个图形中小圆的个数为4+n (n+1) 所以第9个图形有: 4 +9×10=94个小圆, 故选: A 【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n 个图形的代数表达式将所求的代入.12.C解析:C 【解析】 【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值. 【详解】11a =-,212a a =-+=-1,323a a =-+=-2, 434a a =-+=-2, 5453a a =-+=-, 6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n(n 为偶数), ∴202010102=, ∴2020a 的值为-1010, 故选:C. 【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.二、填空题13.1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=解析:1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,x-2=0,y+1=0,解得x=2,y=-1,所以,x+y=2+(-1)=2-1=1.故答案为1.【点睛】本题考查算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x,根据圆心角度数的计算公式求解.【详解】设该组频数为x,,x=32,故答案为:32.解析:32【解析】【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为1解析:6【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:由题意可得,第1次输出的结果为24,第2次输出的结果为12,第3次输出的结果为6,第4次输出的结果为3,第5次输出的结果为6,第6次输出的结果为3,∵(2019-2)÷2=1008…1,∴第2019次输出的结果为6,故答案为:6.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.16.【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,解析:()()22212124n n n +--=⨯【解析】【分析】通过观察可发现等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍,进而求出第n 个等式.【详解】通过观察发现:等式左边是两个连续奇数的平方差,右边是这两个奇数和的2倍, ()()()2221212212124n n n n n +--=++-=⨯. 故答案为:()()22212124n n n +--=⨯. 【点睛】 本题考查了数字类的变化规律,通过观察,分析、归纳并发现其中的规律,本题的关键规律是左边是两个连续奇数的平方差,右边是这两个奇数和的2倍.17.140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=解析:140°【解析】【分析】首先根据余角的定义求出这个角的度数,再根据补角的定义得出结果.【详解】解:根据余角的定义,这个角的度数=90°﹣50°=40°,根据补角的定义,这个角的补角度数=180°﹣40°=140°.故答案为:140°.【点睛】考核知识点:余角和补角.理解定义是关键.18.88【解析】【分析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a、b所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵7解析:88【解析】【分析】观察不难发现,图表中的数据等于行数乘列数,然后确定出a、b所在的行数与列数,计算即可得解.【详解】解:∵12=3×4,18=3×6,∴a=3×5=15;∵70=10×7,99=11×9,∴b=11×8=88,∴a、b的值分别为:15,88.故答案为15,88.【点睛】本题是对数字变化规律的考查,观察出图表中的数据等于行数乘列数是解题的关键.19.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =20;(2)∵当n =1时,多项式(1+x )1展开式的各项系数之和为:1+1=2=21, 当n =2时,多项式(1+x )2展开式的各项系数之和为:1+2+1=4=22,当n =3时,多项式(1+x )3展开式的各项系数之和为:1+3+3+1=8=23,当n =4时,多项式(1+x )4展开式的各项系数之和为:1+4+6+4+1=16=24, …∴多项式(1+x )7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.20.【解析】【分析】将圆柱体的侧面沿AD 展开是长方形,并找到长方形长的中点C ,连接AC ,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿剪开并铺平,得长方形,取的中点C ,连接,根据两 解析:22【解析】 【分析】将圆柱体的侧面沿AD 展开是长方形''AA D D ,并找到长方形长'D D 的中点C ,连接AC ,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿AD 剪开并铺平,得长方形''AA D D ,取'D D 的中点C ,连接AC ,根据两点之间线段最短可得线段AC 就是小虫爬行的最短路线,如图:根据题意得212π2π2AB =⨯⨯=. 在Rt ABC ∆中,由勾股定理得22222228AC AB BC =+=+=,∴822AC故答案为:2【点睛】考查最短路径的问题,学生要掌握圆柱体的侧面张开图是长方形,并且理解两点之间线段最短这一基本事实是本道题解题的关键.21.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键. 22.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.三、解答题23.(1)28 ,37;(2)第n 个图案中有(91+n )个花盆【解析】【分析】(1)由图可知:第1个图案中有10个花盆,第2个图案中有2×10-1=19个花盆,第3个图案中有3×10-2=28个花盆;(2)由(1)中的规律得出第n 个图案中有10n-(n-1)=9n+1个花盆.【详解】(1)第1个图案中有10个花盆,第2个图案中有2×10-1=19个花盆,第3个图案中有3×10-2=28个花盆,第4个图案中有4×10-3=37个花盆;故答案为:)28 ,37;(2)由(1)中的规律得出:第n 个图案中有()10191n n n --=+个花盆.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律:第n 个图案中有()10191n n n --=+个花盆是解决问题的关键.24.(1)37m n +;(2)原式267m m =+;-1.【解析】【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把m 的值代入计算即可求出值.【详解】(1)35(24)n m m n +--3524n m m n =+-+37m n =+;(2)23(2)2(51)2m m m ---++2631022m m m =-+-+267m m =+,当1m =-时,原式671=-=-.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.(1)6;6;(2)不发生改变,MN 为定值6,过程见解析【解析】【分析】(1)由点P 表示的有理数可得出AP 、BP 的长度,根据三等分点的定义可得出MP 、NP 的长度,再由MN=MP+NP (或MN=MP-NP ),即可求出MN 的长度;(2)分-6<a <3及a >3两种情况考虑,由点P 表示的有理数可得出AP 、BP 的长度(用含字母a 的代数式表示),根据三等分点的定义可得出MP 、NP 的长度(用含字母a 的代数式表示),再由MN=MP+NP (或MN=MP-NP ),即可求出MN=6为固定值.【详解】解:(1)若点P 表示的有理数是0(如图1),则AP=6,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=4,NP=23BP=2, ∴MN=MP+NP=6; 若点P 表示的有理数是6(如图2),则AP=12,BP=3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=8,NP=23BP=2, ∴MN=MP-NP=6.故答案为:6;6. (2)MN 的长不会发生改变,理由如下:设点P 表示的有理数是a (a >-6且a≠3).当-6<a <3时(如图1),AP=a+6,BP=3-a .∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a ), ∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3),∴MN=MP-NP=6.综上所述:点P在射线AB上运动(不与点A,B重合)的过程中,MN的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP、NP的长度;(2)分-6<a<3及a>3两种情况找出MP、NP的长度(用含字母a的代数式表示).26.(1)①10;3;②点P表示的数为-2+3t,点Q表示的数为8-2t;(2)1或3;(3)5【解析】【分析】(1)①根据点A表示的数为-2,点B表示的数为8,即可得到A、B两点间的距离以及线段AB的中点表示的数;②依据点P,Q的运动速度以及方向,即可得到结论;(2)由t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,于是得到|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,列方程即可得到结论;(3)依据PA的中点为M,N为PB的三等分点且靠近于P点,运用线段的和差关系进行计算,即可得到3||||4PM BN-的值.【详解】解:(1)①AB=8-(-2)=10,-2+12×10=3,故答案为:10,3;②由题可得,点P表示的数为-2+3t,点Q表示的数为8-2t;故答案为:-2+3t,8-2t;(2)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴|PQ|=|(-2+3t)-(8-2t)|=|5t-10|,又1||||2PQ AB==12×10=5,∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,1||||2PQ AB=;(3)∵PA的中点为M,N为PB的三等分点且靠近于P点,∴|MP|=12|AP|=12×3t=32t,|BN|=23|BP|=23(|AP|-|AB|)=23×(3t-10)=2t-203, ∴3||||4PM BN -=32t-34(2t-203)=5. 【点睛】本题考查了实数和数轴以及一元一次方程的应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.27.(1)见详解;(2)9和3-;(3)1.5;(4)M 、N 两点表示的数分别是1008-和1007;(5)3.5;符合条件的整数x 为:2-,1-,0,1.【解析】【分析】(1)在数轴上找出相应的数即可.(2)根据A 点的位置将A 点向左或向右平移6个单位即得;(3)根据点A 与4-表示的点重合确定点A 与4-表示的点的中间点表示的数,再确定中间点到B 点的距离,最后在中间点的另一侧取与到B 点距离相等的点表示的数即得. (4)由(3)中的中间点,根据M 、N 两点之间的距离为2015(M 在N 的左侧)可知点M 和点N 距离中间点的距离为20152且分别位于中间点的左右两侧即得. (5)先化简绝对值确定最小值时x 的取值范围,再根据范围确定符合条件的整数即可. 【详解】(1)∵:3A , 2.5B =-,:22C --=-∴如图所示:(2)∵点A 表示的数为3且3+6=9,363-=-∴与点A 的距离为6的点表示的数是9和3-故答案为:9和3-.(3)∵点A 与4-所在的点的中间点表示的数为:()340.52+-=-,点B 与中间点的距离为()0.5 2.52---=∴折叠后与点B 重合的点表示的数为:0.52 1.5-+=故答案为:1.5.(4)由(3)得:M 点与N 点的中间点所表示的数为-0.5∵数轴上M 、N 两点之间的距离为2015(M 在N 的左侧)∴点M 和点N 距离中间点的距离为20152 ∴点M 表示的数为:20150.510082--=-;点N 表示的数为:20150.5+10072-=∴M 、N 两点表示的数分别是1008-和1007.(5)当 2.5x <-时| 2.5||1| 2.512 1.5 3.5x x x x x ++-=---+=-->当 2.51x -≤≤时| 2.5||1| 2.51 3.5x x x x ++-=+-+=当1x >时| 2.5||1|+2.5+12 1.5 3.5x x x x x ++-=-=+>∴当 2.51x -≤≤时,| 2.5||1|x x ++-有最小值为3.5;故答案为:3.5.∴符合条件的整数x 为:2-,1-,0,1【点睛】本题考查绝对值的几何意义及绝对值化简,解题关键是熟知:绝对值表示一个数到原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.28.(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.。

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库

七年级上册数学期末模拟试卷(带答案)-百度文库一、选择题1.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .272.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-13.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( ) A .16070x x -= B .106070x x+-= C .70x =60x+60 D .60x =70x-704.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 5.有两个正数a ,b ,且a b <,把大于等于a 且小于等于b 所有数记作[a ,b ],例如大于等于1且小于等于4的所有数记作[1,4] .如果m 在[5,15]内,n 在[20,30]内,那么n m的一切值中属于整数的有( ) A .1,2,3,4,5B .2,3,4,5,6C .2,3,4D .4,5,66.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .6 7.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD8.若m 5=,n 3=,且m n 0+<,则m n -的值是( ) A .8-或2-B .8±或2±C .8- 或2D .8或29.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >010.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6C .7D .811.已知一组数:1,-2,3,-4,5,-6,7,…,将这组数排成下列形式:第1行 1 第2行 -2,3 第3行 -4,5,-6 第4行 7,-8,9,-10 第5行 11,-12,13,-14,15 ……按照上述规律排列下去,那么第10行从左边数第5个数是( ) A .-50B .50C .-55D .5512.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-2020二、填空题13.按下面程序计算,若开始输入x 的值为正整数,最后输出的结果为506,则满足条件的所有x 的值是___________.14.运动场的跑道一圈长400m .甲练习骑自行车,平均每分骑350m ;乙练习跑步,平均每分跑250m .两人从同一处同时同向出发,经过_________分钟首次相遇.15.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.16.计算(0.04)2018×[(﹣5)]2018的结果是_____.17.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a ,b 的代数式表示) .18.某品牌服装店以200元的进价购进一批体恤衫,销售时标价为300元,为了减少商品库存,让利于顾客,准备打折销售,但要保证利润率不低于20%,则至多可大打_______________折.19.已知254a b -=-,则13410a b -+的值为__________.20.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.21.如图所示,甲、乙两人沿着边长为10m 的正方形,按A→B→C→D→A…的方向行走,甲从A 点以5m/分钟的速度,乙从B 点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在_______边上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末模拟试卷,,xx数学期末考试出来就不是享乐的,安乐给人予舒适,却又给人予落后,以下是我为你整理的,希望对大家有帮助!七年级上册数学期末模拟试题第Ⅰ 卷一、选择题本大题共12小题, 每小题3分, 共36分, 在每小题给出的四个选项中, 只有一项是符合题目要求的1、-3的绝对值等于A.-3 B. 3 C. ±3 D. 小于32、与是同类项的为A. B. C. D.3、下面运算正确的是A.3ab+3ac=6abc B.4a b-4b a=0 C. D.4、下列四个式子中,是方程的是A.1+2+3+4=10 B. C. D.5、下列结论中正确的是A.在等式3a-2=3b+5的两边都除以3,可得等式a-2=b+5B.如果2=- ,那么 =-2C.在等式5=0.1 的两边都除以0.1,可得等式 =0.5D.在等式7 =5 +3的两边都减去 -3 ,可得等式6 -3=4 +66、已知方程是关于的一元一次方程,则方程的解等于A.-1 B.1 C. D.-7、解为x=-3的方程是A.2 x +3y=5 B. C. D.3x-2-2x-3=5x8、下面是解方程的部分步骤:①由7 x=4x-3,变形得7x-4x=3;②由=1+ ,变形得22-x=1+3x-3;③由22x-1-3x-3=1,变形得4x-2-3x-9=1;④由2x+1=7+x,变形得x=5.其中变形正确的个数是A.0个 B.1个 C.2个 D.3个9、如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要根火柴棍A.30根 B.31根 C.32根 D.33根10、整式的值随x的取值不同而不同,下表是当x取不同值时对应的整式的x -2 -1 0 1 24 0 -4 -8 -12值,则关于x的方程的解为A.-1 B.-2C.0 D.为其它的值11、某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折即售价的80%的价格开展促销活动,这时一件商品的售价为A.a 元; B.0.8a元 C.1.04a元; D.0.92a元12、下列结论:①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;②若ax-1=bx-1有唯一的解,则a≠b;③若b=2a, 则关于x的方程ax+b=0a≠0的解为x=- ;④若a+b+c=1 ,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确个数有A.4个 B. 3个 C. 2个; D. 1个二、填空题:本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“____”处13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是3,这样的方程可以是:____________ .14、设某数为x,它的2倍是它的3倍与5的差,则列出的方程为______________ .15、若多项式的值为9,则多项式的值为______________ .16、某商场推出了一促销活动:一次购物少于100元的不优惠;超过100元含100元的按9折付款。

小明买了一件衣服,付款99元,则这件衣服的原价是___________元。

答案一、选择题每小题3分,共36分题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题每小题3分,共12分13、 .14、 . 15、 . 16、 .三、解答题本大题共9小题,共72分17、本题6分计算题每小题3分1 218、本题6分解方程: 并对结果进行检验.19、本题8分解方程每小题4分1x-x-12=2-x+2524x-1.50.5-5x-0.80.2=1.2-x0.120、本题6分关于x的方程与的解互为相反数.1求m的值;4分2求这两个方程的解.2分21、本题7分把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.⑴这个班有多少学生? 5分⑵这批图书共有多少本? 2分22、本题7分统计数据显示,在我国的座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的倍.求严重缺水城市有多少座?23、本题10分某班一次数学竞赛共出了20道题,现抽出了4份试卷进行分析如下表:1问答对一题得多少分,不答或答错一题扣多少分?2一位同学说他得了65分,请问可能吗?请说明理由。

试卷答对题数不答或答错题数得分A 19 1 94B 18 2 88C 17 3 82D 10 10 4024、本题满分10分把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表。

1如上图,用一正方形框在表中任意框住4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是___________,____________,____________。

2当1中被框住的4个数之和等于416时,x的值为多少?3在1中能否框住这样的4个数,它们的和等于324?若能,则求出x的值;若不能,则说明理由。

4从左到右,第1至第7列各列数之和分别记为,,,,,,,则这7个数中,最大数与最小数之差等于__________直接填出结果,不写计算过程。

25、本题12分如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍速度单位:单位长度/秒.1求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;4分解:2若A、B两点从1中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?4分解:3若A、B两点从1中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?4分答案一、选择题每小题3分,共36分题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B C D CB AC BD C C B二、填空题每小题3分,共12分13、答案不唯一.14、2x=3x-5 . 15、 7 . 16、 99元或110元.三、解答题本大题共9小题,共72分17、答案正确就给3分,错误扣光1-27 218、解:…………2分…………3分…………5分检验…………6分19、1去分母、去括号,得10x-5x+5=20-2x-4, .........2分移项及合并同类项,得7x=11,解得x=117 ………4分2方程可以化为:4x-1.5×20.5×2-5x-0.8×50.2×5=1.2-x×100.1×10 (2)分整理,得24x-1.5-55x-0.8=101.2-x去括号、移项、合并同类项,得-7x=11, 所以x=-117 .........4分20、解:1 由得:x= (1)分依题意有: +2-m=0解得:m=6 ………3分2由m=6,解得方程的解为x=4 ………5分解得方程的解为x=-4 ………6分21、课本P88页问题2改编解:1 设这个班有x名学生.依题意有: ………1分3x+20=4x-25解得x=45 .........4分⑵ 3x+20=3×45+20=155 (7)分答: 这个班有45名学生,这批图书共有155本. ………8分22、解:设严重缺水城市有x座,依题意有: ………1分………4分解得x=102 .........6分答:严重缺水城市有102座. .........7分23、课本P112页改编由D卷可知,每答对一题与答错或不答一题共得4分,......1分设答对一题得x分,则答错或不答一题得4-x 分,......3分再由A卷可得方程:19x +4-x= 94,解得:x = 5,4-x=-1 ......5分于是,答对一题得5分,不答或答错一题扣1分。

∴这位同学不可能得65分。

......10分24、课本P73页改编1x + 1,x + 7,x + 8 ......1分必须三个全对,才得1分2 ......4分3不能。

设 , ,但左上角的x不能为7的倍数,...... 8分4填1719 (10)分数2005在第287行第3列,可知最大,最小, = =171925、1设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.依题意有:3t+3×4t=15,解得t=1 ......2分∴点A的速度为每秒1个单位长度, 点B的速度为每秒4个单位长度. ...3分画图.........4分2设x秒时,原点恰好处在点A、点B的正中间. (5)分根据题意,得3+x=12-4x………7分解之得 x=1.8即运动1.8秒时,原点恰好处在A、B两点的正中间………8分3设运动y秒时,点B 追上点A根据题意,得4y-y=15,解之得y=5……10分即点B追上点A 共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100单位长度……12分x,,xx数学期末考试出来就不是享乐的,安乐给人予舒适,却又给人予落后,以下是我为你整理的,希望对大家有帮助!七年级上册数学期末模拟试题第Ⅰ 卷一、选择题本大题共12小题, 每小题3分, 共36分,在每小题给出的四个选项中, 只有一项是符合题目要求的1、-3的绝对值等于A.-3 B. 3 C. ±3 D. 小于32、与是同类项的为A. B. C.D.3、下面运算正确的是A.3ab+3ac=6abc B.4a b-4b a=0 C. D.4、下列四个式子中,是方程的是A.1+2+3+4=10 B. C. D.5、下列结论中正确的是A.在等式3a-2=3b+5的两边都除以3,可得等式a-2=b+5B.如果2=- ,那么 =-2C.在等式5=0.1 的两边都除以0.1,可得等式=0.5D.在等式7 =5 +3的两边都减去 -3 ,可得等式6 -3=4 +66、已知方程是关于的一元一次方程,则方程的解等于A.-1 B.1 C.D.-7、解为x=-3的方程是A.2 x +3y=5 B. C. D.3x-2-2x-3=5x8、下面是解方程的部分步骤:①由7 x=4x-3,变形得7x-4x=3;②由=1+ ,变形得22-x=1+3x-3;③由22x-1-3x-3=1,变形得4x-2-3x-9=1;④由2x+1=7+x,变形得x=5.其中变形正确的个数是A.0个 B.1个 C.2个 D.3个9、如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有16个三角形,则需要根火柴棍A.30根 B.31根 C.32根 D.33根10、整式的值随x的取值不同而不同,下表是当x取不同值时对应的整式的x -2 -1 0 1 24 0 -4 -8 -12值,则关于x的方程的解为A.-1 B.-2C.0 D.为其它的值11、某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折即售价的80%的价格开展促销活动,这时一件商品的售价为A.a 元; B.0.8a元 C.1.04a元; D.0.92a元12、下列结论:①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;②若ax-1=bx-1有唯一的解,则a≠b;③若b=2a, 则关于x的方程ax+b=0a≠0的解为x=- ;④若a+b+c=1 ,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确个数有A.4个 B. 3个 C. 2个; D. 1个二、填空题:本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“____”处13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是3,这样的方程可以是:____________ .14、设某数为x,它的2倍是它的3倍与5的差,则列出的方程为______________ .15、若多项式的值为9,则多项式的值为______________ .16、某商场推出了一促销活动:一次购物少于100元的不优惠;超过100元含100元的按9折付款。

相关文档
最新文档