一种新的最佳聚类数确定方法

一种新的最佳聚类数确定方法

一种新的最佳聚类数确定方法

一种新的最佳聚类数确定方法

摘要:为了更有效地确定数据集的聚类数最佳聚类数,提出一种新的确定数据集最佳聚类数的算法。该算法借签层次聚类的思想,一次性地生成所有可能的划分,然后根据有效性指标选择最佳的聚类划分,进而获得最佳聚类数。理论分析和实验结果证明,该算法具有良好的性能。关键词:层次聚类;最佳聚类数;聚类有效性指标;聚类

最佳聚类数的判定通常采用一种基于迭代的trial-and-error过程[1]进行,该过程是在给定的数据集上,使用不同的参数(通常是聚类数k),运行特定的聚类算法,对数据集进行不同的划分,然后计算每种划分的指标值。通过比较各个指标值,其中符合预定条件的指标值所对应的聚类个数被认为是最佳的聚类数。实际上,trial-and-error过程存在两个不足之处:(1)聚类数k 值的确定对于缺乏丰富聚类分析经验的用户来说是难以准确确定的[2],这需进一步提出寻找更合理的聚类数k的方法;(2)目前提出的许多检验聚类有效性的指标,如Vxie指标[3]、Vwsj指标[1]等,但这些指标都是基于某个特定聚类算法提出的,在实际应用中受到了极大限制。鉴于上述两种情况,本文借鉴层次聚类的思想一次性地生成所有可能的聚类划分,并计算其对应的有效性指标,然后选择指标值最小的聚类划分来估计数据集的最佳聚类数,这样可以避免对大型数据集的反复聚类,而且该过程不依赖于特定的聚类算法。1聚类有效性指标本文采用的是一个不依赖于具体算法的有效性指标Q(C)来评估数据集的聚类效果。该有效性指标主要是通过类内数据对象的紧凑度以及类间数据对象的分离度[4]衡量聚类质量。1.3噪声点与孤立点的消除基于数据集中存在的噪声点与孤立点对聚类结果的影响,本文认为单独利用有效性指标所得出的聚类数为最佳聚类数k*的结论并不成立。根据

基于密度的最佳聚类数确定方法.

基于密度的最佳聚类数确定方法 [关键字]聚类评估,聚类数,聚类有效性指标 0 引言 聚类是数据挖掘研究中重要的分析手段,其目的是将数据集中对象聚集成类,使得同一类中的对象是相似的,而不同类中的对象是不同的。迄今研究者已经提出了为数众多的聚类算法,并已经在商务智能、图形分析、生物信息等领域得到了广泛应用。作为一种非监督学习的方法,对学习得到的聚类结果进行评估是非常有必要的。因为许多聚类算法需要用户给定数据集的聚类数量,而在实际应用中这通常是事先不知道的。确定数据集的聚类数问题目前仍是聚类分析研究中的基础性难题之一 [1][2]。 聚类评估用于评价聚类结果的质量,这被认为是影响聚类分析成功与否的重要因素之一[3]。它在聚类分析过程中的位置如图1所示。聚类评估的一些重要问题包括确定数据集的聚类趋势、确定正确的类个数、将聚类分析结果与已知的客观结果比较等,本文主要研究其中的最佳聚类数的确定。 通常最佳聚类数的确定是通过以下计算过程来确定的。在给定的数据集上,通过使用不同的输入参数(如聚类数)运行特定的聚类算法,对数据集进行不同的划分,计算每种划分的聚类有效性指标,最后比较各个指标值的大小或变化情况,符合预定条件的指标值所对应的算法参数被认为是最佳的聚类数 [4]。 迄今为止,已有各种类型的度量指标从不同角度来评估数据集划分的有效性,这些指标称为聚类有效性指标(Clustering Validation Indices)。一般地,用于评估聚类的各方面的评估度量指标可分成以下两类[5]。 1)外部指标(External index):指聚类分析的评价函数是针对基准问题的,其簇的个数及每个数据对象的正确分类均为已知。代表性外部指标有熵、纯度、F-measure等。 2)内部指标(Internal index):指数据集结构未知的情况下,聚类结果的评价只依靠数据集自身的特征和量值。在这种情况下,聚类分析的度量追求两个目标:类内紧密度和类间分离度。这也是本文的主要研究领域,代表性内部指标有DB,CH,XB,SD等。 从其他不同角度,聚类有效性指标又可分为分割指标与层次指标,模糊指标与非模糊指标,统计指标与几何指标。 用内部指标来评估聚类有效性,获取数据集最佳划分或最佳聚类数的过程一般分为以下4步[6]:

一种新的最佳聚类数确定方法

一种新的最佳聚类数确定方法 一种新的最佳聚类数确定方法 摘要:为了更有效地确定数据集的聚类数最佳聚类数,提出一种新的确定数据集最佳聚类数的算法。该算法借签层次聚类的思想,一次性地生成所有可能的划分,然后根据有效性指标选择最佳的聚类划分,进而获得最佳聚类数。理论分析和实验结果证明,该算法具有良好的性能。关键词:层次聚类;最佳聚类数;聚类有效性指标;聚类 最佳聚类数的判定通常采用一种基于迭代的trial-and-error过程[1]进行,该过程是在给定的数据集上,使用不同的参数(通常是聚类数k),运行特定的聚类算法,对数据集进行不同的划分,然后计算每种划分的指标值。通过比较各个指标值,其中符合预定条件的指标值所对应的聚类个数被认为是最佳的聚类数。实际上,trial-and-error过程存在两个不足之处:(1)聚类数k 值的确定对于缺乏丰富聚类分析经验的用户来说是难以准确确定的[2],这需进一步提出寻找更合理的聚类数k的方法;(2)目前提出的许多检验聚类有效性的指标,如Vxie指标[3]、Vwsj指标[1]等,但这些指标都是基于某个特定聚类算法提出的,在实际应用中受到了极大限制。鉴于上述两种情况,本文借鉴层次聚类的思想一次性地生成所有可能的聚类划分,并计算其对应的有效性指标,然后选择指标值最小的聚类划分来估计数据集的最佳聚类数,这样可以避免对大型数据集的反复聚类,而且该过程不依赖于特定的聚类算法。1聚类有效性指标本文采用的是一个不依赖于具体算法的有效性指标Q(C)来评估数据集的聚类效果。该有效性指标主要是通过类内数据对象的紧凑度以及类间数据对象的分离度[4]衡量聚类质量。1.3噪声点与孤立点的消除基于数据集中存在的噪声点与孤立点对聚类结果的影响,本文认为单独利用有效性指标所得出的聚类数为最佳聚类数k*的结论并不成立。根据

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

聚类和判别分析

聚类和判别分析 SPSS(中文版)统计分析实用教程(第版)电子工业出版社*第九章聚类和判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*聚类和判别分析简介基本概念()聚类分析聚类分析的基本思想是找出一些能够度量样本或指标之间相似程度的统计量以这些统计量为划分类型的依据把一些相似程度较大的样本(或指标)聚合为一类把另外一些彼此之间相似程度较大的样本又聚合为一类。 根据分类对象的不同聚类分析可分为对样本的聚类和对变量的聚类两种。 ()判别分析判别分析是判别样本所属类型的一种统计方法。 SPSS(中文版)统计分析实用教程(第版)电子工业出版社*聚类和判别分析简介基本概念()二者区别不同之处在于判别分析是在已知研究对象分为若干类型(或组别)并已取得各种类型的一批已知样本的观测量数据的基础上根据某些准则建立判别式然后对未知类型的样本进行差别分析。 SPSS(中文版)统计分析实用教程(第版)电子工业出版社*样本间亲疏关系的度量()连续变量的样本间距离常用度量主要方法有欧氏距离(EuclideanDistance)、欧氏平方距离(SquaredEuclideanDistance)、切比雪夫距离(ChebychevDistance)、明可斯基距离(MinkowskiDistance)、用户自定义距离(CustomizeDistance)、Pearson

相关系数、夹角余弦(Cosine)等。 (公式见教材表)()顺序变量的样本间距离常用度量常用的有统计量(Chisquaremeasure)和统计量(Phisquaremeasure)。 具体计算公式参见节表。 聚类和判别分析简介SPSS(中文版)统计分析实用教程(第版)电子工业出版社*主要内容聚类和判别分析简介二阶聚类K均值聚类系统聚类判别分析SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类基本概念及统计原理()基本概念二阶聚类(TwoStepCluster)(也称为两步聚类)是一个探索性的分析工具()为揭示自然的分类或分组而设计是数据集内部的而不是外观上的分类。 它是一种新型的分层聚类算法(HierarchicalAlgorithms),目前主要应用到数据挖掘(DataMining)和多元数据统计的交叉领域模式分类中。 该过程主要有以下几个特点:分类变量和连续变量均可以参与二阶聚类分析该过程可以自动确定分类数可以高效率地分析大数据集用户可以自己定制用于运算的内存容量。 SPSS(中文版)统计分析实用教程(第版)电子工业出版社*二阶聚类基本概念及统计原理()统计原理两步法的功能非常强大而原理又较为复杂。 他在聚类过程中除了使用传统的欧氏距离外为了处理分类变量和连续变量它用似然距离测度它要求模型中的变量是独立的分类变量

各种聚类算法的比较

各种聚类算法的比较 聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点 优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力 缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类

1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解

一种启发式确定聚类数方法

小型微型计算机系统Journal of Chinese Computer Systems 2018年7月第7期Vol.39No.72018 收稿日期:2017-05-24 收修改稿日期:2017-06-28 基金项目:国家自然科学基金项目(61272194)资助. 作者简介:卢建云,男,1982年生,博士,讲师,CCF 会员,研究方向为数据挖掘二机器学习等;朱庆生,男,1956年生,博士,教授,博士生导师,CCF 会员,研究方向为软件工程二 数据挖掘二机器学习;吴全旺,男,1985年生,博士,讲师,研究方向为云计算二服务计算等. 一种启发式确定聚类数方法 卢建云1,3,朱庆生1,2,吴全旺1 1(重庆大学计算机学院,重庆400044) 2(重庆大学软件理论与技术重庆市重点实验室,重庆400044)3 (重庆电子工程职业学院软件学院,重庆401331) E-mail :qszhu @https://www.360docs.net/doc/6d6005285.html, 摘 要:聚类分析是数据挖掘领域中最重要的任务之一,目前许多聚类算法已经被成功应用到图像聚类二文本聚类二信息检索二社交网络等领域.但面对结构复杂,分布不均衡的数据集时,确定数据集的最佳聚类数目显得尤为困难.因此,本文针对结构复杂二分布不均衡的数据集提出了一种启发式最佳聚类数确定的方法.首先,构建随机游走模型对数据集中的点进行重要性排序,通过k-最近邻距离图谱确定重要数据点的个数,由此排除噪声点和不重要的点对类之间以及类内密度变化的影响.其次,通过设计的启发式规则(k-最近邻链间距和k-最近邻链最近邻间距)构建决策图确定最佳聚类数目并识别出聚类代表点.最后,通过最近距离传播算法进行聚类.实验表明该方法可以快速准确地找到最佳聚类个数,同时,本文提出的聚类算法与流行的聚类算法相比取得了比较好的聚类结果. 关键词:聚类分析;聚类数目;启发式规则;随机游走模型;k-最近邻链 中图分类号:TP 18 文献标识码:A 文章编号:1000-1220(2018)07-1381-05 Heuristic Method of Determining the Number of Clusters LU Jian-yun 1,3,ZHU Qing-sheng 1,2,WU Quan-wang 1 1(School of Computer ,Chongqing University ,Chongqing 400044,China ) 2(Chongqing Key Laboratory of Software Theory &Technology ,Chongqing University ,Chongqing 400044,China )3 (School of Software ,Chongqing College of Electronic Engineering ,Chongqing 401331,China ) Abstract :Cluster analysis is one of the important tasks in data mining.Currently ,many clustering algorithms are successfully applied in image clustering ,text clustering ,information retrieval ,social networks ,etc.When the dataset is complex with different sizes ,shapes and densities ,it is difficult to find the best number of clusters.In this paper ,we propose a heuristic method of determining the best number of clusters.First ,we build a random walk model to sort the data points by their global scores ,and then k dist graph is used to determine the number of important data points in order to reduce the influence of noises and border points.Second ,we develop two heuristic rules (the gap of k-nearest neighbors chain and the nearest neighbor gap of k-nearest neighbors chain )to determine the best number of clusters and the representative points of cluster by decision graph.Finally ,clustering results are obtained by nearest distance propagation algorithm.Experimental results show that the proposed method can find the correct number of clusters quickly and the pro-posed clustering algorithm achieves comparable clustering performance with the popular clustering algorithms.Key words :cluster analysis ;the number of clusters ;heuristic rules ;random walk model ;k-nearest neighbors chain 1 引 言 聚类分析是数据挖掘二模式识别领域的最重要任务之一,具有非常广泛的应用,例如,图像聚类,社交网络,信息检索,文本聚类等.聚类就是将数据集划分成若干个类簇,同一类簇中的数据点具有高度的相似度,不同类簇中的数据点具有极低的相似度.层次聚类可以将数据集表示成树型结构图,根据需求对树型结构图的某一层次进行划分,从而得到相应的聚类.聚类在实际应用中遇到很多的挑战,比如噪声点干扰二类内密度变化二复杂形状二高维数据二不均衡数据等.这些挑战对聚类数目的选择造成了很大的困难,同时聚类结果表现也达 不到要求.聚类数目是聚类研究的基础问题之一,大多数聚类算法需要输入聚类数目,在没有更多的先验知识的情况下,确定最佳聚类数目显得尤为困难. 针对复杂数据集确定最佳聚类数目问题,本文提出了一种启发式的最佳聚类数目确定方法.K-最近邻链间距启发规则能够通过半径扩展的方式识别出球凸形状类间的变化,K-最近邻链最近邻间距启发规则能够识别出不规则形状类间的变化.启发式规则能够清楚地识别出类间的变化情况,通过决策图确定出最佳聚类数目和聚类代表点.在数据集上的实验结果表明,我们提出的聚类方法可以有效地找到正确的聚类个数,与流行的聚类算法相比取得了较好的聚类结果. 万方数据

聚类算法比较

聚类算法: 1. 划分法:K-MEANS算法、K-M EDOIDS算法、CLARANS算法; 1)K-means 算法: 基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的簇心。一直迭代,直到簇心的移动距离小于某个给定的值。 K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心 (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去 (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 反复执行(2)、(3),直到聚类中心不再进行大范围移动或者聚类次数达到要求为止 下图展示了对n个样本点进行K-means聚类的效果,这里k取2: (a)未聚类的初始点集 (b)随机选取两个点作为聚类中心 (c)计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (d)计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 (e)重复(c),计算每个点到聚类中心的距离,并聚类到离该点最近的聚类中去 (f)重复(d),计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心 优点: 1.算法快速、简单; 2.对大数据集有较高的效率并且是可伸缩性的; 3.时间复杂度近于线性,而且适合挖掘大规模数据集。 缺点: 1. 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 2. 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响。

聚类分析方法

第一章Microarray 介绍 1.1 生物信息处理 基于对生物体“硬件”和“软件”的认识 ,提出暂时地撇开生物的物理属性 ,着重研究其信息属性 ,从而进入到生物信息处理 (关于生命硬件的信息和软件的信息 ,即生理信息和生命信息 )的一个分支 ,生物信息学。于是 ,为揭开生命之秘、揭示与生命现象相关的复杂系统的运作机制打开一条新的途径。 什么是生物信息处理 生物信息处理的英文是Bioinformatics。 1994年初 ,诺贝尔医学奖获得者美国教授M·罗德贝尔发表一篇评论 ,题为《生物信息处理 :评估环境卫生的新方法》。他认为生物信息处理是在基因数据库基础上 ,计算机驱动的能快速获得表达基因部分序列的方法。通过MEDLINE数据库 ,可以查阅到很多与生物信息处理 (Bioinformatics)有关的记录,其中JFAiton认为生物信息处理是基于计算机的数据库和信息服务;RPMurray认为生物信息处理包括两方面:第一是大量现存数据的自动化处理 ,第二是新的信息资源的生成;DBenton在题为《生物信息处理———一个新的多学科工具的原理和潜力》的文章中说 ,生物信息处理的材料是生物学数据 ,其方法来自广泛的各种各样的计算机技术。其方法来自广泛的各种各样的计算机技术。近年来 ,生物学数据在爆炸式增长 ,新的计算机方法在不断产生。这些方法在结构生物学、遗传学、结构化药品和分子演变学中是研究工作进展的基础。如果生物医学工程要在各个领域都从研究进展中获取最大好处 ,那么生物学数据健全的基础设施的开发与维护是同等重要的。尽管生物信息处理已经作出重要贡献 ,但是在它成熟时就会面临更大的需求在爆炸式增长 ,新的计算机方法在不断产生。这些方法在结构生物学、遗传学、结构化药品和分子演变学中是研究工作进展的基础。如果生物医学工程要在各个领域都从研究进展中获取最大好处 ,那么生物学数据健全的基础设施的开发与维护是同等重要的。尽管生物信息处理已经作出重要贡献 ,但是在它成熟时就会面临更大的需求。

全国各省经济的聚类分析及判别分析

全国各省经济的聚类分析及判别分析 唐鹏钧(DY1001109) 摘要:利用SPSS软件对全国31个省、直辖市、自治区(浙江、湖南、甘肃除外)的主要经济指标进行聚类分析,将其经济分成4种类型,并对浙江、湖南、甘肃进行类型判别分析。通过这两个方法对全国各省进行经济分类。本文选取了7项经济指标作为决定经济类型的影响因素,各项数据均来自2010年国家统计年鉴。分析结果表明:北京市和上海市为第一类经济类型;江苏省和山东省为第三类型;广东省为第四类经济;其他25个省、直辖市、自治区均属于第二类型。 关键词:聚类分析、判别分析、经济类型 0引言 聚类分析是根据研究对象的特征对研究对象进行分类的多元统计分析技术的总称。它直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。系统聚类分析又称集群分析,是聚类分析中应用最广的一种方法,它根据样本的多指标(变量)、多个观察数据,定量地确定样品、指标之间存在的相似性或亲疏关系,并据此连结这些样品或指标,归成大小类群,构成分类树状图或冰柱图。 判别分析是根据多种因素(指标)对事物的影响来实现对事物的分类,从而对事物进行判别分类的统计方法。判别分析适用于已经掌握了历史上分类的每一个类别的若干样品,希望根据这些历史的经验(样品),总结出分类的规律性(判别函数)来指导未来的分类。 聚类分析与判别分析都是研究分类的,但是它们有所区别: (1)聚类分析一般寻求客观的分类方法,在进行聚类分析以前,对总体到底有几种类型并不知道。判别分析则是在总体类型划分已知,在各总体分布或来自总体训练样本的基础上,对当前的新样本判定它们属于哪个总体。 (2)两类方法的建立的模型不一样,因此在处理某些特定的问题时,就会得

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/6d6005285.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.360docs.net/doc/6d6005285.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.360docs.net/doc/6d6005285.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.360docs.net/doc/6d6005285.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

判别分析与聚类分析

判别分析(Discriminant Analysis) 一、概述: 判别问题又称识别问题,或者归类问题。 判别分析是由Pearson于1921年提出,1936年由Fisher首先提出根据不同类别所提取的特征变量来定量的建立待判样品归属于哪一个已知类别的数学模型。 根据对训练样本的观测值建立判别函数,借助判别函数式判断未知类别的个体。 所谓训练样本由已知明确类别的个体组成,并且都完整准确地测量个体的有关的判别变量。 训练样本的要求:类别明确,测量指标完整准确。一般样本含量不宜过小,但不能为追求样本含量而牺牲类别的准确,如果类别不可靠、测量值不准确,即使样本含量再大,任何统计方法语法弥补这一缺陷。 判别分析的类别很多,常用的有:适用于定性指标或计数资料的有最大似然法、训练迭代法;适用于定量指标或计量资料的有:Fisher二类判别、Bayers多类判别以及逐步判别。半定量指标界于二者之间,可根据不同情况分别采用以上方法。 类别(有的称之为总体,但应与population的区别)的含义——具有相同属性或者特征指标的个体(有的人称之为样品)的集合。如何来表征相同属性、相同的特征指标呢? 同一类别的个体之间距离小,不同总体的样本之间距离大。 距离是一个原则性的定义,只要满足对称性、非负性和三角不等式的函数就可以称为距 绝对距离 马氏距离:(Manhattan distance) 设有两个个体(点)X与Y(假定为一维数据,即在数轴上)是来自均数为μ,协方差阵为∑的总体(类别)A的两个个体(点),则个体X与Y的马氏距离为 (,)X与总体(类别)A的距离D X Y= (,) 为D X A= 明考斯基距离(Minkowski distance):明科夫斯基距离 欧几里德距离(欧氏距离) 二、Fisher两类判别 一、训练样本的测量值 A类训练样本

SPSS聚类分析和判别分析论文

基于聚类分析的我国城镇居民消费结构实证分析 摘要:近年来,我国城镇居民的整体消费水平逐渐提高,但各地区间的消费结构仍 存在较大差别。文章选用8个城镇居民消费结构统计指标,采用欧式距离平方和离差平 方和法,对我国31个省、直辖市及自治区的2013年城镇居民消费结构进行聚类分析和 比较研究。这不仅从总体上掌握了我国消费结构类型的地区分布,而且系统分析了我国 各地区消费结构的特点及产生原因,为国家制定消费政策提供了决策依据。 关键词:消费结构;聚类分析;判别分析;政策建议; 一、引言 近年来,随着我国经济的快速发展,城镇居民的收入不断增加,并且在国家连续出台 住房、教育、医疗等各项改革措施和实施“刺激消费、扩大内需、拉动经济增长”经济 政策的影响下,我国各地区城镇居民的消费支出也强劲增长,消费结构发生了巨大的变 化,结构不合理现象也得到了一定程度的调整。但是,由于各地区的经济发展不平衡及 原有经济基础的差异,使各地区的消费结构仍存在着明显差别。为了进一步改善消费结 构,正确引导消费,提高我国城市居民的消费水平和生活质量,有必要考察我国各地区 城镇居民的消费结构之间的异同并进行比较研究,以期发现特点和规律,从宏观上把握 各地区城镇居民的消费现状和不同地区消费水平的差异,为提高我国各地区消费水平和 谐增长提供决策依据。 二、消费结构的数据分析 消费结构指居民在生活消费过程中,不同类型消费的比例及其相互之间的配合、替 代、制约的关系。就其数量关系来看,消费结构是指在消费过程中不同商品或劳务消费 支出占居民总消费支出的比重,反映了一定社会经济条件下人们对各类商品及劳务的需 求结构,体现一国或各地区的经济发展水平和居民生活状况。 (一)数据来源 为了更加深入地了解我国城镇居民消费结构,先利用2013年全国数据(如表1所示), 对全国31个省、直辖市、自治区进行聚类分析。分析采用选用了城镇居民食品、衣着、 居住、家庭用品及服务设备、医疗保健、交通和通信、教育文化娱乐服务、其它商品和 服务八项指标,分别用来反映较高、中等、较低居民消费结构。 表1 各地区城镇居民家庭平均每人全年消费支出 (2013年)

聚类比较

聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点

优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类 2.1.2典型算法 1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率 2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据 4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解2.4.2具体算法 1)概率聚类算法 期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释 2)最近邻聚类算法——共享最近邻算法SNN 特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数 不足:时间复杂度提高到了O(N^2) 3)K-Medioids算法 特点:用类中的某个点来代表该聚类

聚类分析与判别分析实验报告范例

上海电力学院 《应用多元统计分析》——判别分析与聚类分析 学院: 姓名: 学号: 2016年4月

我国部分城市经济发展水平的聚类分析 和判别分析 摘要:本文基于《中国统计年鉴》(2012年版)统计数据,寻找评价城市经济发展水平的指标,包括第二三产业发展水平、固定投资额、社会消费零售总额和进出口贸易交流五个指标,利用统计软件SPSS综合考虑各指标,对所选城市进行K-Means 聚类分析,利用Fisher 线性判别待判城市类型,进一步验证所建模型的有效性。 关键字:聚类分析,判别分析,SPSS,城市经济发展水平 1,引言 经过改革开放后三十多年的长足进展,中国城市化已步入中期阶段,步伐加快,质量显著提高。同时,中国城市化又处于期转折点上,上一期行将结束,下一期将要开始。2011年中国城市化率首次突破50%,意味着中国城镇人口首次超过农村人口,中国城市化进入关键发展阶段,这必将引起深刻的社会变革。 根据2011年4月公布的第六次人口普查数据,2010年中国居住城镇的人口接近6.6亿人,城镇化率达到49.68%,全国已有近一半的人口居住在城镇,这意味着中国将进入城镇时代。在过去30多年中,中国的城市化发展取得了很大成绩。然而,总体上中国的城市化道路是城市化滞后于工业化的非均衡道路;是土地城市化快于人口城市化的非规整道路;是以抑制农村、农业、农民的经济利益来支持城市发展,导致不能兼顾效率和公平的非协调道路;是片面追求城市发展的数量和规模,而以生态环境损失为代价的非持续道路;是以生产要素的高投入,而不是投入少、产值高、依靠科技拉动经济增长的非集约道路。传统的城市化存在着诸多弊端,中国未来的城市化必须走出一条具有自身特色的新型城市化

主成分分析、聚类分析比较

主成分分析、聚类分析的比较与应用 主成分分析、聚类

分析的比较与应用 摘要:主成分分析、聚类分析是两种比较有价值的多元统计方法,但同时也是在使用过程中容易误用或混淆的几种方法。本文从基本思想、数据的标准化、应用上的优缺点等方面,详细地探讨了两者的异同,并且 举例说明了两者在实际问题中的应用。 关键词:spss、主成分分析、聚类分析 一、基本概念 主成分分析就是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。 聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。 二、基本思想的异同 (一)共同点 主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个

聚类分析与判别分析

利用聚类分析和判别分析对我国各省市经济发展状况的分析 统计081 许建霞 089114284 摘要:转变经济发展方式是我国未来经济发展过程中一项重要而十分艰巨的任务,《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》更是提出“十二五”时期要以加快转变经济发展方式为主线。要实现这一转变,它与调整经济结构是高度相关、相辅相成的,其中,产业结构的转型升级更是经济发展方式转变的体现和依托。当前我国经济发展方式粗放与面临着的诸多结构性矛盾,在很大程度上根源于我国经济发展过程中的“三个过度和一个缺失”,即:经济增长过度依赖投资、全球分工中过度依赖加工制造环节和加工贸易、竞争战略过度依赖成本价格,而产业链和价值链中研发设计、营销、品牌和供应链管理等高端环节缺失。要加快转变经济发展方式,就必须改变上述“三个过度和一个缺失”,促进产业结构转型升级,这也关系到当前战略性新兴产业发展是否能够摆脱过去发展模式,走出一条可持续发展的道路。 关键词: 聚类分析 判别分析 经济发展 一.研究背景 我国产业结构基本上分享了经济的增长效应,但协调效应、分配效应和就业效应不理想,环境效应问题比较突出,并且在总体上具有名义高度化较快而实际高度化不足的特征,我们必须紧紧抓住机遇,承担起历史使命,把加快经济发展方式转变作为深入贯彻落实科学发展观的重要目标和战略举措,毫不动摇地加快经济发展方式转变,不断提高经济发展质量和效益,不断提高我国经济的国际竞争力和抗风险能力,使我国发展质量越来越高、发展空间越来越大、发展道路越走越宽。 二.方法介绍 1.聚类分析方法介绍 聚类分析是从事物数量上的特征出发对事物进行分类,是事物分类学和多元统计技术结合的结果,是一种较为粗糙的,理论并非完善的分析方法,但是其使用简便,分类效果较好,其内容也在不断丰富中,是常用的数据探索性分析工具。 聚类分析(Cluster Analysis )又称为集群分析,其分析的基本思想是依照事物的数值特征,来观察各样品之间的亲疏关系。而样品之间的亲疏关系则是由样品之间的距离来衡量的,一旦样品之间的距离定义之后,则把距离近的样品归为一类 。聚类分析既可以对样品聚类,又可以对变量聚类,样品聚类也称为Q 型聚类,变量聚类也称为R 型聚类。本文先采用样品聚类,然后再采用变量聚类。 2.判别分析方法介绍 费希尔判别的基本思想是投影。将k 组m 元数据投影到某一个方向,使得投影后组与组之间尽可能地分开。而衡量组与组之间是否分开的方法借助于一元方差分析的思想。利用方差分析的思想来导出判别函数,这个函数可以是线性的,也可以是很一般的函数。因线性判别函数在实际应用中最方便,本节仅讨论线性判别函数的导出。 设从总体),,1(k t G t 分别抽取m 元样本如下:

相关文档
最新文档