【附20套中考模拟试题】浙江省嵊州市谷来镇中学2019-2020学年中考数学模拟试卷含解析
浙江省绍兴市2019-2020学年中考数学考前模拟卷(3)含解析

浙江省绍兴市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤2.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书3.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A.6 B.8C.10 D.124.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是()A.3 B.6 C.9 D.365.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A.1.8×105B.1.8×104C.0.18×106D.18×1046.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+7.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线6yx=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5 B.6 C.7 D.8 8.cos45°的值是()A.12B.32C.22D.19.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5 320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元10.2016的相反数是()A .12016-B .12016C .2016-D .201611.如图,在平面直角坐标系中,ABC ∆位于第二象限,点A 的坐标是(2,3)-,先把ABC ∆向右平移3个单位长度得到111A B C ∆,再把111A B C ∆绕点1C 顺时针旋转90︒得到221A B C ∆,则点A 的对应点2A 的坐标是( )A .(2,2)-B .(6,0)-C .(0,0)D .(4,2)12.两个同心圆中大圆的弦AB 与小圆相切于点C ,AB=8,则形成的圆环的面积是( )A .无法求出B .8C .8πD .16π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知一次函数y=ax+b 和反比例函数k y x=的图象相交于A (﹣2,y 1)、B (1,y 2)两点,则不等式ax+b <k x的解集为 __________14.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.15.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 16.如图,已知点A 是反比例函数2y x =-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为______.17.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.18.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知二次函数()2220y ax ax a =--≠. (1)该二次函数图象的对称轴是;(2)若该二次函数的图象开口向上,当15x -≤≤时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为112,求点M 和点N 的坐标; (3)对于该二次函数图象上的两点()11,A x y ,()22,B x y ,设11t x t ≤≤+,当23x ≥时,均有12y y ≥,请结合图象,直接写出t 的取值范围.20.(6分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.21.(6分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.22.(8分)如图,△ABC是⊙O的内接三角形,点D在»BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(1)已知⊙O的半径为1.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?23.(8分)如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:34334 37,3737, 53453?35) 55453 sin cos tan sin cos tan ≈≈≈≈≈≈o o o o o o,,,24.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y与x的函数关系式,并写出自变量x的取值范围.求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.26.(12分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.(1)求证:BD平分∠ABC;(2)连接EC,若∠A=30°,DC3,求EC的长.27.(12分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】①首先利用已知条件根据边角边可以证明△APD≌△AEB;②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为3③利用全等三角形的性质和对顶角相等即可判定③说法正确;④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;⑤连接BD,根据三角形的面积公式得到S△BPD=12PD×BE=32,所以S△ABD=S△APD+S△APB+S△BPD6由此即可判定.【详解】由边角边定理易知△APD≌△AEB,故①正确;由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,所以∠BEP=90°,过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在△AEP中,由勾股定理得2,在△BEP中,5,2,由勾股定理得:3∵∠PAE=∠PEB=∠EFB=90°,AE=AP,∴∠AEP=45°,∴∠BEF=180°-45°-90°=45°,∴∠EBF=45°,∴EF=BF,在△EFB中,由勾股定理得:EF=BF=6,故②是错误的;因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;由△APD≌△AEB,∴PD=BE=3,可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=12+62,因此④是错误的;连接BD,则S△BPD=12PD×BE=32,所以S△ABD=S△APD+S△APB+S△BPD=2+62,所以S正方形ABCD=2S△ABD=4+6.综上可知,正确的有①③⑤.故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.2.D【解析】试题分析:找到一定发生或一定不发生的事件即可.A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选D.考点:随机事件.3.D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.4.C【解析】【分析】设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.【详解】设抛物线解析式为y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴抛物线的顶点坐标为(m-3,1),∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1.故选C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】180000=1.8×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.7.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.8.C【解析】【分析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= 2 .故选:C.【点睛】本题考查特殊角的三角函数值.9.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据.【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.11.D【解析】【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.12.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.考点:1.垂径定理的应用;2.切线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣2<x<0或x>1【解析】【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【点睛】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.14.1 2【解析】试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=41 = 82.15.m>1.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣1>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣1>0,解得:m>1.故答案为m>1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣1>0是解题的关键.16.2 yx =【解析】∵点A是反比例函数2yx=-的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为2yx =,故答案为:2yx =.17.直角三角形.【解析】【分析】根据题意,画出图形,用垂直平分线的性质解答.【详解】点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴∠C是直角.∴这个三角形是直角三角形.【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.18.113y x=-+【解析】【分析】过C作CD⊥x轴于点D,则可证得△AOB≌△CDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.【详解】如图,过C作CD⊥x轴于点D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵ABO CADAOB CDAAB AC∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),设直线BC解析式为y=kx+b,∴321k bb-+=⎧⎨=⎩,解得:131kb⎧=-⎪⎨⎪=⎩,∴直线BC解析式为y13=-x+1.故答案为y13=-x+1.【点睛】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x=1;(2)115,2M⎛⎫⎪⎝⎭,51,2N⎛⎫-⎪⎝⎭;(3)12t-≤≤【解析】【分析】(1)二次函数的对称轴为直线x=-2ba,带入即可求出对称轴,(2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.(3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且1x应该介于-1和3之间,才会使12y y≥,解不等式组即可.【详解】(1)该二次函数图象的对称轴是直线212axa==;(2)∵该二次函数的图象开口向上,对称轴为直线1x =,15x -≤≤,∴当5x =时,y 的值最大,即115,2M ⎛⎫ ⎪⎝⎭. 把115,2M ⎛⎫ ⎪⎝⎭代入222y ax ax =--,解得12a =. ∴该二次函数的表达式为2122y x x =--. 当1x =时,52y =-, ∴51,2N ⎛⎫- ⎪⎝⎭. (3)易知a <0,∵当23x ≥时,均有12y y ≥,∴113t t ≥-⎧⎨+≤⎩,解得12t -≤≤ ∴t 的取值范围12t -≤≤.【点睛】本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.20.(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解析】【分析】(1)根据A 等级人数及其百分比可得总人数,用C 等级人数除以总人数可得a 的值;(2)根据平均数、众数、中位数的定义计算可得.【详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2. 故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11. ∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1. ∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1. 【点睛】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.(1)4yx=;(2)1<x<1.【解析】【分析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.22.(1)证明见解析;(2)证明见解析;(1)①3 2【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=26k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=12BC=6k求得DM=22CD CM-=3k,可知OM=OD-DM=1-3k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(1)设AB=5k、AC=1k,∵BC 2﹣AC 2=AB•AC ,∴k ,连接ED 交BC 于点M ,∵四边形BDCE 是菱形,∴DE 垂直平分BC ,则点E 、O 、M 、D 共线,在Rt △DMC 中,DC=AC=1k ,MC=12k ,∴=,∴OM=OD ﹣DM=1k ,在Rt △COM 中,由OM 2+MC 2=OC 2得(1)2+k )2=12,解得:或k=0(舍),∴;②设OM=d ,则MD=1﹣d ,MC 2=OC 2﹣OM 2=9﹣d 2,∴BC 2=(2MC )2=16﹣4d 2,AC 2=DC 2=DM 2+CM 2=(1﹣d )2+9﹣d 2,由(2)得AB•AC=BC 2﹣AC 2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272,∴,∴,此时32AB AC =. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.23.建筑物AB 的高度为80m .建筑物CD 的高度为35m .【解析】分析:过点D 作DE ⊥AB 于于E ,则DE=BC=60m .在Rt △ABC 中,求出AB .在Rt △ADE 中求出AE 即可解决问题.详解:过点D 作DE ⊥AB 于于E ,则DE=BC=60m ,在Rt △ABC 中,tan53°=60AB AB BC ∴,=43,∴AB=80(m ). 在Rt △ADE 中,tan37°=34AE DE ∴,=60AE ,∴AE=45(m ), ∴BE=CD=AB ﹣AE=35(m ).答:两座建筑物的高度分别为80m 和35m .点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x -65)2 +2000∵30≤x≤60∴x=60时,w 有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.25.(1)详见解析;(2)2 tan.2C=【解析】【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=22AE,CE=4AE,然后在Rt△BEC 中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴2222AB AE AE-=,在RT△BEC中,tanC=222 BE AECE==.26.(1)见解析;(2)7EC=. 【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB==,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,3DC=,得出DB的长,进而得出EC的长. 【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴12DE BE AB==.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.在Rt△BCD中,∠3=60°,3DC=,∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴22437EC DE DC=+=+=.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.27.(1)抛物线的解析式是y=12x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是(345,416--)或(453,164).【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:64883660a ba b+=⎧⎨+=⎩,解得:123ab⎧=⎪⎨⎪=-⎩,∴抛物线的解析式是y=12x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=12x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=14,∴直线A′B的解析式是y=164y x=+,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,164x+),又点N在抛物线y=12x2﹣3x上,∴164x+=12n2﹣3n,解得:n1=﹣32,n2=8(不合题意,舍去)∴N点的坐标为(﹣32,458).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣32,-458),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴11112OP ODON OB==,∴点P1的坐标为(345,416--).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(453,164),综上所述,点P的坐标是(345,416--)或(453,164).【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.。
【附5套中考模拟试卷】浙江省绍兴市2019-2020学年中考数学模拟试题(5)含解析

(1)小张如何进货,使进货款恰好为1300元?
(2)如果购进A型文具的数量不少于B型文具数量的 倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?
23.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?
26.(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
17.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.
18.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
浙江省绍兴市2019-2020学年中考数学模拟试题(2)含解析

浙江省绍兴市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (0,﹣4),B (8,0)和C (a ,﹣a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值是( )A .22B .2C .3D .22.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x=456x + B .30x =456x - C .306x -=45x D .306x +=45x 3.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 44.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③5.下列各数中,比﹣1大1的是( )A .0B .1C .2D .﹣36.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( )A .16B .17C .18D .197.一元二次方程220x x -=的根是( )A .120,2x x ==-B .121,2x x ==C .121,2x x ==-D .120,2x x ==8.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数 2 3 4 1分数 80 85 90 95则得分的众数和中位数分别是( )A .90和87.5B .95和85C .90和85D .85和87.59.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .3210.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×10811.如图,⊙O 的直径AB=2,C 是弧AB 的中点,AE ,BE 分别平分∠BAC 和∠ABC ,以E 为圆心,AE 为半径作扇形EAB ,π取3,则阴影部分的面积为( )A .1324﹣4B .72﹣4C .6﹣524 D .325- 12.下列运算正确的是( )A .()a b c a b c -+=-+B .()2211x x =++ C .()33a a -= D .235236a a a =⋅ 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x 、y 是实数且满足x 2+xy+y 2﹣2=0,设M=x 2﹣xy+y 2,则M 的取值范围是_____.14.请写出一个比2大且比4小的无理数:________.15.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.16.如图,直线y 1=kx+n (k≠0)与抛物线y 2=ax 2+bx+c (a≠0)分别交于A (﹣1,0),B (2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.17.如图,sin∠C35,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.18.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△A B C;请画出△ABC关于原点对称的△A B C;在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.20.(6分)解不等式组:,并把解集在数轴上表示出来.21.(6分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.22.(8分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.23.(8分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是»AC的中点,⊙O的半径为1,求图中阴影部分的面积.24.(10分)如图,AB为⊙O的直径,点E在⊙O上,C为»BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若AD=2,AC=6,求AB 的长.25.(10分)如图,平面直角坐标系xOy 中,已知点A (0,3),点B (3,0),连接AB ,若对于平面内一点C ,当△ABC 是以AB 为腰的等腰三角形时,称点C 是线段AB 的“等长点”.(1)在点C 1(﹣2,3+22),点C 2(0,﹣2),点C 3(3+3,﹣3)中,线段AB 的“等长点”是点________;(2)若点D (m ,n )是线段AB 的“等长点”,且∠DAB=60°,求点D 的坐标;(3)若直线y=kx+33k 上至少存在一个线段AB 的“等长点”,求k 的取值范围.26.(12分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM .∵ABM ACM ABC S S S ∆∆∆+= ∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由. (应用)如图3,在平面直角坐标系中有两条直线l 1:334y x =+,l 1:y=-3x+3,若l 1上的一点M 到l 1的距离是1,请运用上述结论求出点M 的坐标.27.(12分)关于x 的一元二次方程x 2﹣x ﹣(m+2)=0有两个不相等的实数根.求m 的取值范围;若m 为符合条件的最小整数,求此方程的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D之间的距离即可.【详解】AB的中点D的坐标是(4,-2),∵C(a,-a)在一次函数y=-x上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6 {y xy x--==,解得:3{3 xy==-,则交点的坐标是(3,-3)..故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x 上,是关键.2.A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等即可列方程.【详解】设甲每小时做x 个,乙每小时做(x+6)个,根据甲做30 个所用时间与乙做45 个所用时间相等可得30 x =456 x.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.3.D【解析】A. x4+x4=2x4,故错误;B. (x2)3=x6,故错误;C. (x﹣y)2=x2﹣2xy+y2,故错误;D. x3•x=x4,正确,故选D.4.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.5.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A.【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握:“先符号,后绝对值”.6.A【解析】【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.7.D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.8.A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A.“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.10.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.【详解】5570000=5.57×101所以B正确11.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»AC BC=,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=12(AB+AC+BC)⋅EO=12AC⋅BC,∴2−1,∴AE2=AO2+EO2=122−1)22,∴扇形EAB的面积=135(422)360π-=9(22)4-,△ABE的面积=12AB⋅2−1,∴弓形AB的面积=扇形EAB的面积−△ABE的面积=221324-,∴阴影部分的面积=12O的面积−弓形AB的面积=32−22132-1324,故选:A.12.D【解析】【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;C、(-a)3=3a-≠3a,故原题计算错误;D、2a2•3a3=6a5,故原题计算正确;故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23≤M≤6 【解析】【分析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围.【详解】由2220x xy y ++-=得:22220x xy y xy ++--=,即2()20x y xy +=+≥,所以2xy ≥-; 由2220x xy y ++-=得:222230x xy y xy -+-+=,即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤, ∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤, ∵2220,x xy y ++-=∴222x y xy +=-,∴2222M x xy y xy =-+=-,则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.14.π【解析】【分析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可【详解】<<x的取值在4~16【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键15.30°【解析】【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为30°.16.﹣1<x<2【解析】【分析】根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.17.2+【解析】【分析】作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F ,可知四边形''BKD E 为平行四边形及四边形BKMH 为矩形,在Rt BCH V 中,解直角三角形可知BH 长,易得GK 长,在Rt △BGK 中,可得BG 长,表示出△BD'E'的周长等量代换可得其值.【详解】解:如图,作BK ∥CF ,使得BK=DE=2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F.由作图知''''//D ,D BK E BK E =,∴四边形''BKD E 为平行四边形,''BE KD ∴=由对称可知'',2,KG CF GK KM KD GD ⊥==BH CF ⊥Q//BH KG ∴//CF BK Q ,即//BK HM∴四边形BKMH 为矩形,90KM BH BKM ︒∴=∠=在Rt BCH V 中, 3sin 55BH BH C BC ∠=== 3BH ∴=3KM ∴=26GK KM ∴==在Rt △BGK 中, BK=2,GK=6,∴BG 2226=+=10,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+210.故答案为:2+210.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.18.小李.【解析】【分析】【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用20.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.21.(1)13;(2)13.【解析】【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=13;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93 .22.(1)①30°②见解析(2)BD2+CE2=DE2(321【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==,∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=,∴DE=DF=21,故答案为21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.23.解:(1)CD与⊙O相切.理由如下:∵AC为∠DAB的平分线,∴∠DAC=∠BAC.∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.∴OC∥AD.∵AD⊥CD,∴OC⊥CD.∵OC是⊙O的半径,∴CD与⊙O相切.(2)如图,连接EB,由AB为直径,得到∠AEB=90°,∴EB∥CD,F为EB的中点.∴OF为△ABE的中位线.∴OF=12AE=12,即CF=DE=12.在Rt △OBF 中,根据勾股定理得: ∵E 是»AC的中点,∴»AE =»EC ,∴AE=EC .∴S 弓形AE =S 弓形EC .∴S 阴影=S △DEC =12×128. 【解析】(1)CD 与圆O 相切,理由为:由AC 为角平分线得到一对角相等,再由OA=OC ,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC 与AD 平行,根据AD 垂直于CD ,得到OC 垂直于CD ,即可得证.(2)根据E 为弧AC 的中点,得到弧AE=弧EC ,利用等弧对等弦得到AE=EC ,可得出弓形AE 与弓形EC 面积相等,阴影部分面积拼接为直角三角形DEC 的面积,求出即可.考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用.24.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到CD =2CD AD DE =⋅,根据勾股定理得到CE =90ACB ∠=︒,即可得到结论.【详解】 ()1相切,连接OC ,∵C 为¶BE的中点, ∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O e 相切;()2方法1:连接CE ,∵2AD =,6AC =∵90ADC ∠=o , ∴222CD AC AD -∵CD 是O e 的切线,∴2CD AD DE =⋅,∴1DE =, ∴223CE CD DE =+∵C 为¶BE的中点, ∴3BC CE ==∵AB 为O e 的直径,∴90ACB ∠=o , ∴223AB AC BC =+=.方法2:∵DCA B ∠=∠,易得ADC ACB V V ∽, ∴AD AC AC AB=, ∴3AB =.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.25.(1)C 1,C 3;(2)D 30)或D (33);(3)﹣33≤k≤33425 【解析】【分析】(1)直接利用线段AB 的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+33与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.【详解】(1)∵A(0,3),B(3,0),∴AB=23,∵点C1(﹣2,3+22),∴AC1=48+=23,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(0,﹣2),∴AC2=5,BC2=34+=7,∴AC2≠AB,BC2≠AB,∴C2不是线段AB的“等长点”,∵点C3(3+3,﹣3),∴BC3=93+=23,∴BC3=AB,∴C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在Rt△AOB中,OA=3,3∴3tan∠OAB=OBOA3,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣3,0),∴m=3,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=23,∴m=23;∴D(23,3)(3)如图2,∵直线3(3,∴直线3恒过一点P(﹣30),∴在Rt△AOP中,OA=3,3∴∠APO=30°,∴∠PAO=60°,∴∠BAP=90°,当PF与⊙B相切时交y轴于F,∴PA切⊙B于A,∴点F 就是直线y=kx+33k 与⊙B 的切点,∴F (0,﹣3),∴3﹣3,∴k=﹣33, 当直线3与⊙A 相切时交y 轴于G 切点为E ,∴∠AEG=∠OPG=90°,∴△AEG ∽△POG ,∴AE AG OP PG=, 2333233333k k +3342+或k=3325(舍去) ∵直线3上至少存在一个线段AB 的“等长点”,∴﹣333342+, 【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A ,B 相切时是分界点.26.【思考】h 1+h 1=h ;【探究】h 1-h 1=h .理由见解析;【应用】所求点M 的坐标为(13,1)或(-13,4).【解析】【分析】 思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=. 探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】思考Q ABM ACM ABC S S S ∆∆∆+=即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究h 1-h 1=h .理由.连接AM ,∵ABM ACM ABC S S S ∆∆∆-= ∴12111222h AB h AC hAC -= ∴h 1-h 1=h .应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则:A (-4,0),B (0,3)同理求得C (1,0),5AB =,又因为AC=5,所以AB=AC ,即△ABC 为等腰三角形.①当点M 在BC 边上时,由h 1+h 1=h 得:1+My=OB ,My=3-1=1,把它代入y=-3x+3中求得:13x M =, ∴1,23M ⎛⎫ ⎪⎝⎭;②当点M 在CB 延长线上时,由h 1-h 1=h 得:M y -1=OB ,M y =3+1=4,把它代入y=-3x+3中求得: 13x M =-, ∴1,43M ⎛⎫- ⎪⎝⎭,综上,所求点M 的坐标为1,23⎛⎫ ⎪⎝⎭或1,43⎛⎫- ⎪⎝⎭.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.27.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0 ∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.。
2020年浙江省绍兴市嵊州市中考数学模拟试卷(5月份)--解析版

2020年浙江省绍兴市嵊州市中考数学模拟试卷(5月份)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.﹣2020的相反数是()A.2020B.﹣2020C.±D.﹣2.众志成城,抗击疫情.今年春节新冠肺炎在武汉大肆流行,社会各界纷纷支援武汉,截止1月31日,武汉共收到捐款2586000000元.数据2586000000科学记数法可以表示为()A.25.86×108B.2.586×109C.2.586×108D.0.2586×10103.如图所示的几何体的左视图是()A.B.C.D.4.在一个不透明的袋中装有6个只有颜色不同的小球,其中3个红球、2个白球和1个黄球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.5.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b26.某小组7位同学的中考体育测试成绩(满分50分)依次为47,50,49,47,50,48,50,则这组数据的众数与中位数分别是()A.50,47B.50,49C.49,50D.50,487.将抛物线y=x2﹣4x+3平移,使它平移后的顶点为(﹣2,4),则需将该抛物线()A.先向右平移4个单位,再向上平移5个单位B.先向右平移4个单位,再向下平移5个单位C.先向左平移4个单位,再向上平移5个单位D.先向左平移4个单位,再向下平移5个单位8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,∠B=20°,则∠C的度数为()A.70°B.60°C.40°D.50°9.如图,正方形ABCD的边长为6,点E,F分别为AB,BC的中点,把△DCF沿DF折叠得到△DC′F,延长DC′交AB于点G,连接FG,H是AD边上的一点,连接EH,把△AEH沿EH折叠,点A的对应点A'恰好落在DC'上,则下列结论错误的是()A.△FBG≌△FC′G B.∠DFG=90°C.sin∠AGD=D.A'G=3.610.如图1,现有8枚棋子呈一直线摆放,依次编号为①~⑧.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到④上面B.②叠到⑤上面C.④叠到⑦上面D.⑤叠到⑧上面二、填空题(本大题有6小题,每小题5分,共30分.)11.因式分解:x2﹣9=.12.化简:﹣=.13.我国古代数学著作《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意思是:“一批客人来到李三店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出1间房.问有多少房间,多少客人?”那么房间有间,客人有人.14.如图,在矩形ABCD中,E是直线BC上一点,且CE=CA,连接AE.若∠BAC=60°,则∠CAE的度数为.15.如图,过点C(4,5)的直线y=x+b交x轴于点A,∠ABC=90°,AB=CB,反比例函数y=(x>0)的图象过点B,将点C沿x轴的负方向平移a个单位长度后恰好落在该反比例函数的图象上,则a的值为.16.如图,在菱形ABCD中,∠B=60°,点E,F将对角线AC三等分,且AC=12,点P 在菱形的边上,若满足PE+PF=a的点P只有4个,则a的取值范围是.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:;(2)解不等式组:.18.近几年购物的支付方式日益增多,某数学兴趣小组就此到某超市进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D会员充值卡(每人只用一种支付方式).该小组对超市一天内购买者的支付方式进行调查统计,得到如图两幅不完整的统计图.请你根据统计图解答下列问题:(1)本次一共调查了多少名购买者?并补全条形统计图.(2)在扇形统计图中A种支付方式所对应的圆心角度数是多少?(3)商场引进了自助收款机(这款机器只支持微信和支付宝两种付款方式).该小组调查发现使用微信和支付宝的购买者中,有40%是通过自助收款机付款.若该超市一天内有4000名购买者,请你估计这些购买者中有多少名是通过自助收款机付款.19.图是5×5的网格图,每个小正方形的边长为1,请按要求作格点图形(图形的每个顶点都在格点上)(1)在图①中以线段PQ为一边作一个等腰直角三角形;(2)在图②中,作△DEF相似于△ABC,且△ABC与△DEF的相似比是1:.20.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)若小李4月份上网20小时,他应付的上网费用是多少元?(2)当x≥30时,求y与x之间的函数关系式;(3)若小李5月份上网费用为75元,则他该月份的上网时间是多少小时?21.如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D 处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.22.如图,抛物线y=(x﹣3)(x﹣m)交x轴于A,B两点(点A在原点的左侧),交y轴于点C,连接BC,且.(1)求抛物线的函数表达式.(2)P为线段OC上的一点,Q为抛物线上的一点.①若∠BPO=2∠BCO,求点P的坐标.②若∠QBA=2∠BCO,求点Q的坐标.23.课外兴趣小组活动时,老师提出了如下问题.如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小颖的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是;A.SSSB.SASC.AASD.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.(3)在△ABC中,D是BC上一点,连接AD,E是AD上一点,连接BE并延长交边AC 于点F.①如图3,若AD是△ABC的中线,且AF=EF,求证:AC=BE.②如图4,若E是BF的中点,求证:AF•CD=AC•BD24.已知:如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4.点P为边BC上一动点(不与点B,点C重合),以BP为直径作圆,圆心记为点O,连接AP交⊙O于点E.过点B作BD∥AC,与⊙O交于点D,连接BE,DE.(1)当∠BDE=45°时,求BP的长;(2)当△BDE为等腰三角形时,求所有满足条件的BP的长.(3)延长BE交边AC于点F,若=k,求的值.(用含k的代数式表示,直接写出答案)2020年浙江省绍兴市嵊州市中考数学模拟试卷(5月份)参考答案与试题解析一.选择题(共10小题)1.﹣2020的相反数是()A.2020B.﹣2020C.±D.﹣【分析】根据相反数的定义即可求解.【解答】解:﹣2020的相反数是2020;故选:A.2.众志成城,抗击疫情.今年春节新冠肺炎在武汉大肆流行,社会各界纷纷支援武汉,截止1月31日,武汉共收到捐款2586000000元.数据2586000000科学记数法可以表示为()A.25.86×108B.2.586×109C.2.586×108D.0.2586×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2586000000═2.586×109.故选:B.3.如图所示的几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,是两个同心圆.故选:D.4.在一个不透明的袋中装有6个只有颜色不同的小球,其中3个红球、2个白球和1个黄球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【分析】用白球的数量除以所有球的数量即可求得白球的概率.【解答】解:∵袋子中共有6个小球,其中不是白球的有2个,∴摸出一个球不是白球的概率是=,故选:B.5.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a6C.a6÷a3=a2D.(a+b)2=a2+b2【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可.【解答】解:A、3a与2b不是同类项,故不能合并,故选项A不合题意;B、(a3)2=a6,故选项B符合题意;C、a6÷a3=a3,故选项C不符合题意;D、(a+b)2=a2+2ab+b2,故选项D不合题意.故选:B.6.某小组7位同学的中考体育测试成绩(满分50分)依次为47,50,49,47,50,48,50,则这组数据的众数与中位数分别是()A.50,47B.50,49C.49,50D.50,48【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中50出现了3次,次数最多,故众数是50;将这组数据从小到大的顺序排列为:47,47,48,49,50,50,50,处于中间位置的那个数是49,那么由中位数的定义可知,这组数据的中位数是49.故选:B.7.将抛物线y=x2﹣4x+3平移,使它平移后的顶点为(﹣2,4),则需将该抛物线()A.先向右平移4个单位,再向上平移5个单位B.先向右平移4个单位,再向下平移5个单位C.先向左平移4个单位,再向上平移5个单位D.先向左平移4个单位,再向下平移5个单位【分析】先把抛物线y=x2﹣4x+3化为顶点式,再根据函数图象平移的法则进行解答即可.【解答】解:∵抛物线y=x2﹣4x+3可化为y=(x﹣2)2﹣1,∴其顶点坐标为:(2,﹣1),∴若使其平移后的顶点为(﹣2,4)则先向左平移4个单位,再向上平移5个单位.故选:C.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,∠B=20°,则∠C的度数为()A.70°B.60°C.40°D.50°【分析】连接OA,根据等边对等角求得∠BAO的度数,然后利用三角形的外角的性质求得∠AOC的度数,然后根据切线的性质得到∠OAC=90°,根据直角三角形的性质求解.【解答】解:连接OA.∵OA=OB,∴∠BAO=∠B=20°,∴∠AOC=∠BAO+∠B=40°,∵AC是⊙O的切线,∴OA⊥AC,即∠OAC=90°,∴∠C=90°﹣∠AOC=90°﹣40°=50°.故选:D.9.如图,正方形ABCD的边长为6,点E,F分别为AB,BC的中点,把△DCF沿DF折叠得到△DC′F,延长DC′交AB于点G,连接FG,H是AD边上的一点,连接EH,把△AEH沿EH折叠,点A的对应点A'恰好落在DC'上,则下列结论错误的是()A.△FBG≌△FC′G B.∠DFG=90°C.sin∠AGD=D.A'G=3.6【分析】由“HL”可证Rt△BFG≌Rt△C'FG;由全等三角形的性质可得∠BFG=∠C'FG,由折叠的性质可得∠DFC=∠DFC',由平角的性质可得∠DFG=90°;连接CC'交DF 于点Q,连接C'B,过点C'作C'P⊥BC于P,分别求出CC',C'B的长,由面积法可求C'P的长,即可求解.【解答】解:∵正方形ABCD的边长为6,点E,F分别为AB,BC的中点,∴BF=CF=BE=AE=3,∵把△DCF沿DF折叠得到△DC′F,∴CD=C'D,CF=C'F,∠C=∠DC'F=90°,∠DFC=∠DFC',∴BF=C'F,在Rt△BFG和Rt△C'FG中,,∴Rt△BFG≌Rt△C'FG(HL),故A选项正确,∴∠BFG=∠C'FG,∵∠DFC+∠DFC'+∠BFG+∠C'FG=180°,∴2∠DFC'+2∠C'FG=180°,∴∠DFG=90°,故B选项正确,连接CC'交DF于点Q,连接C'B,过点C'作C'P⊥BC于P,∵CF=3,CD=6,∴DF===3,∵把△DCF沿DF折叠得到△DC′F,∴CQ=C'Q,DF⊥CC',∴sin∠DFC=,∴,∴QC=,∵cos∠DFC=,∴,∴FQ=,∵CQ=C'Q,FC=BF,∴DF∥BC',BC'=2QF=,CC'=2CQ=,∴∠BC'C=∠FQC=90°,∴sin∠C'CB=,∴=,∴C'P=,∴sin∠C'FB===,∵∠GBF=∠GC'F=90°,∴∠C'GB+∠C'FB=180°,∵∠C'GB+∠AGD=180°,∴∠AGD=∠BFC',∴sin∠AGD=,故C选项正确,故选:D.10.如图1,现有8枚棋子呈一直线摆放,依次编号为①~⑧.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到④上面B.②叠到⑤上面C.④叠到⑦上面D.⑤叠到⑧上面【分析】根据题目中所给的隔子跳规则,进行推理分析即可求解.【解答】解:A、①叠到④上面,③只能叠到⑤上面,②不能按规则跳,故选项错误;B、②叠到⑤上面,④只能叠到⑥上面,③不能按规则跳,故选项错误;C、④叠到⑦上面,⑥能叠到②上面,①能叠到③上面,⑤能叠到⑧上面,故选项正确;D、⑤叠到⑧上面,⑦只能叠到③上面,⑥不能按规则跳,故选项错误.故选:C.二.填空题(共6小题)11.因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.化简:﹣=.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:13.我国古代数学著作《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意思是:“一批客人来到李三店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出1间房.问有多少房间,多少客人?”那么房间有8间,客人有63人.【分析】根据题意设出房间数,进而表示出总人数,得出等式方程求出即可.【解答】解:设有x间房间,根据题意可得:7x+7=9x﹣9,解得x=8;客人有7×8+7=63(人).答:房间有8间,客人有63人.故答案为:8,63.14.如图,在矩形ABCD中,E是直线BC上一点,且CE=CA,连接AE.若∠BAC=60°,则∠CAE的度数为75°或15°.【分析】由直角三角形的性质可求∠ACB=30°,分两种情况讨论,由等腰三角形的性质可求解.【解答】解:∵∠BAC=60°,∠ABC=90°,∴∠ACB=30°,如图,当点E在点B左侧时,∵CE=CA,∴∠CAE=∠AEC=75°,若点E'在点C右侧时,∵AC=CE',∴∠CAE'=∠CE'A,∵∠ACB=∠CAE'+∠CE'A=30°,∴∠CAE'=15°,综上所述:∠CAE的度数为75°或15°,故答案为75°或15°.15.如图,过点C(4,5)的直线y=x+b交x轴于点A,∠ABC=90°,AB=CB,反比例函数y=(x>0)的图象过点B,将点C沿x轴的负方向平移a个单位长度后恰好落在该反比例函数的图象上,则a的值为3.【分析】证明△EBC≌△FBA(AAS),则CE=AF,BE=BF,即:5﹣=a﹣1,a﹣4=,即可求解.【解答】解:作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,∵过点C(4,5)的直线y=x+b交x轴于点A,∴5=4×+b,解得b=﹣,∴直线为y=x﹣,令y=0,则求得x=1,∴A(1,0),∵BF⊥x轴于F,过B作BE⊥CD于E,∴BE∥x轴,∴∠ABE=∠BAF,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠BAF+∠ABF=90°,∴∠EBC=∠ABF,在△EBC和△FBA中,∠EBC=∠ABF,∠BEC=∠BF A=90°,BC=AB,∴△EBC≌△FBA(AAS),∴CE=AF,BE=BF,∵OA=1,OD=4,∴AD=3.设DF=n,则DE=BE=n,则CD=CE+DE=AF+DE=AD+DF+DE=3+2n=5.解得n=1.∴B(5,1).设点C向x轴负半轴移动a个单位之后的点的坐标是(4﹣a,5),若该点在反比例函数的图象上,则5×(4﹣a)=5×1,解得a=3.故a的值为3.故答案为3.16.如图,在菱形ABCD中,∠B=60°,点E,F将对角线AC三等分,且AC=12,点P 在菱形的边上,若满足PE+PF=a的点P只有4个,则a的取值范围是a=4或12<a<8.【分析】不妨假设点P在线段BC上,作点E关于BC的对称点G,EG现BC交于点K,连接FG交BC于点P,此时PE+PF的值最小,求出PE+PF的最值,判断出在线段BC 上存在﹣点P满足PE+PF=a的取值范围,再根据对称性质便可得出结论.【解答】解:不妨假设点P在线段BC上,作点E关于BC的对称点G,EG现BC交于点K,连接FG交BC于点P,此时PE+PF的值最小,如图1,过F作FH⊥EK于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,△ABC是等边三角形,∴AB=BC=AC=12,∠ACB=60°,∵点E,F将对角线AC三等分,∴AE=EF=FC=4,∴GK=EK=EC•sin∠ACB=4,CK=CE=4,∵FH⊥EG,BC⊥EG,∴HF∥BC,∵EF=FC,∴,∴HF==2,∴,根据菱形的对称性知,当PE+PF=a=4时,在菱形ABCD的四边各存在一点满足条件PE+PF=a;当点P在C点时,PE+PF=8+4=12,当P点在B点时,连接BD,与AC交于点O,如图2,∵四边形ABCD是菱形,∴AC⊥BD,OC=,∴,∵OE=OF=EF=2,∴PE=PF=,∴,当点P由C运动到B时,PE+PF的值由最大值12减小到4再增加到8,由菱形的对称性质知,当12<PE+PF<8时,即12<a<8时,在菱形ABCD的四边各存在一点满足条件PE+PF=a;综上,点P在菱形的边上,若满足PE+PF=a的点P只有4个,则a的取值范围是a=4或12<a<8.故答案为:a=4或12<a<8.三.解答题17.(1)计算:;(2)解不等式组:.【分析】(1)首先代入特殊角的三角函数值、利用零次幂的性质、负整数指数幂的性质进行计算,再算加减即可;(2)首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:(1)原式=×+1﹣=+1﹣=2;(2),由①得:x>2,由②得:x≤4,不等式组的解集为:2<x≤4.18.近几年购物的支付方式日益增多,某数学兴趣小组就此到某超市进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D会员充值卡(每人只用一种支付方式).该小组对超市一天内购买者的支付方式进行调查统计,得到如图两幅不完整的统计图.请你根据统计图解答下列问题:(1)本次一共调查了多少名购买者?并补全条形统计图.(2)在扇形统计图中A种支付方式所对应的圆心角度数是多少?(3)商场引进了自助收款机(这款机器只支持微信和支付宝两种付款方式).该小组调查发现使用微信和支付宝的购买者中,有40%是通过自助收款机付款.若该超市一天内有4000名购买者,请你估计这些购买者中有多少名是通过自助收款机付款.【分析】(1)从两个统计图可知,通过“B支付宝”支付的有56人,占调查人数的28%,可求出调查人数,进而求出“A微信”“D会员卡”的人数,补全统计图;(2)“A微信”支付占调查人数的,因此相应的圆心角的度数为360°的30%即可;(3)样本估计总体,求出“A微信”“B支付宝”所占的百分比,即可求出相应的人数.【解答】解:(1)调查人数:56÷28%=200(人),D组人数:200×20%=40(人),A组人数:200﹣56﹣44﹣40=60(人),答:本次一共调查了200名购买者,补全条形统计图如图所示:(2)360°×=108°,答:扇形统计图中A种支付方式所对应的圆心角度数是108°;(3)4000××40%=928(人),答:超市一天内有4000名购买者中有928名是通过自助收款机付款.19.图是5×5的网格图,每个小正方形的边长为1,请按要求作格点图形(图形的每个顶点都在格点上)(1)在图①中以线段PQ为一边作一个等腰直角三角形;(2)在图②中,作△DEF相似于△ABC,且△ABC与△DEF的相似比是1:.【分析】(1)根据等腰直角三角形的性质即可得到结论;(2)根据相似三角形的判定定理即可得到结论.【解答】解:(1)如图所示,△PQM即为所求;(2)∵AB=2,BC=,AC==,△ABC与△DEF的相似比是1:.∴===,∴DE=2,EF=2,DF=2,∴△DEF即为所求.20.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)若小李4月份上网20小时,他应付的上网费用是多少元?(2)当x≥30时,求y与x之间的函数关系式;(3)若小李5月份上网费用为75元,则他该月份的上网时间是多少小时?【分析】(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b,使用待定系数法求解即可;(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x的值即可.【解答】解:(1)4月份上网20小时,应付上网费60元;(2)当x≥30时,设函数关系式为y=kx+b,则,解得.所以y=3x﹣30;(3)当y=75时,75=3x﹣30,解得x=35.故他该月份的上网时间是35个小时.21.如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D 处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.【分析】过B作BE⊥AD,交AD的延长线于点E.解Rt△BDE与Rt△ABE可得BE的两个值,再结合图形可得关系式,解之即可得出答案.【解答】解:过B作BE⊥AD,交AD的延长线于点E.在Rt△BDE中,tan∠BDE=.∴BE=DE•tan∠BDE.在Rt△ABE中,tan∠BAE=.∴BE=AE•tan∠BAE.∴DE•tan∠BDE=AE•tan∠BAE.∴DE•tan60°=(DE+82)•tan30°.∴DE=(DE+82),即3DE=DE+82.∴DE=41.∴AC=BE=41(米).∴BC=AE=41+82=123(米).22.如图,抛物线y=(x﹣3)(x﹣m)交x轴于A,B两点(点A在原点的左侧),交y轴于点C,连接BC,且.(1)求抛物线的函数表达式.(2)P为线段OC上的一点,Q为抛物线上的一点.①若∠BPO=2∠BCO,求点P的坐标.②若∠QBA=2∠BCO,求点Q的坐标.【分析】(1)令y=0,则(x﹣3)(x﹣m)=0,解方程,结合点A在原点的左侧,且,可得m的值,则可得抛物线的函数表达式.(2)①由函数的解析式可得C(0,﹣6),设P(0,n),则OP=﹣n,PC=n+6,由∠BPO=2∠BCO及外角性质,可得∠BCO=∠PBC,从而可得BP=PC=n+6,由勾股定理可得关于n的方程,解方程,可得n的值,则可得点P的坐标.②设Q(x,x2﹣x﹣6),过点Q作QM⊥x轴于点M,判定△BQM∽△PBO,从而得比例式,解得x的值,则可得点Q的坐标.【解答】解:(1)令y=0,则(x﹣3)(x﹣m)=0,∴x1=3,x2=m,∵点A在原点的左侧,且,∴OA=2,∴m=﹣2,∴y=(x﹣3)(x+2)=x2﹣x﹣6,∴抛物线的函数表达式为y=x2﹣x﹣6.(2)①∵y=x2﹣x﹣6,∴当x=0时,y=﹣6,∴C(0,﹣6).设P(0,n),则OP=﹣n,PC=n+6,∵∠BPO=2∠BCO=∠BCO+∠PBC,∴∠BCO=∠PBC,∴BP=PC=n+6,又∵OP2+OB2=BP2,∴(﹣n)2+32=(n+6)2,解得n=﹣,∴点P的坐标为(0,﹣).②设Q(x,x2﹣x﹣6),过点Q作QM⊥x轴于点M,∵∠QBA=2∠BCO,∠BPO=2∠BCO,∴∠QBA=∠BPO,又∵∠BMQ=∠BOP=90°,∴△BQM∽△PBO,∴,∴=或=,∴x1=3(舍),x2=﹣或x3=3(舍),x4=﹣,∴Q(﹣,)或(﹣,﹣).23.课外兴趣小组活动时,老师提出了如下问题.如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小颖的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是B;A.SSSB.SASC.AASD.HL(2)由“三角形的三边关系”可求得AD的取值范围是2<AD<10.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.(3)在△ABC中,D是BC上一点,连接AD,E是AD上一点,连接BE并延长交边AC 于点F.①如图3,若AD是△ABC的中线,且AF=EF,求证:AC=BE.②如图4,若E是BF的中点,求证:AF•CD=AC•BD【分析】(1)根据SAS证明三角形全等.(2)利用全等三角形的性质以及三角形的三边关系解决问题即可.(3)①在△ABC中,D是BC上一点,连接AD,E是AD上一点,连接BE并延长交边AC于点F.想办法证明BG=AC,BE=BG即可解决问题.②延长AD到H,使得EH=AE,连接BH.证明△AEF≌△HEB(SAS),推出BH=AF,∠H=∠EAF,推出BH∥AC,推出△BDH∽△CDA,利用相似三角形的性质即可解决问题.【解答】(1)解:在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)解:∵△ADC≌△EDB,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∴4<2AD<20,∴2<AD<10,故答案为:2<AD<10;(3)①证明:如图③,延长AD到点G,使DG=AD,连接BG.∵AD=DG,∠ADC=∠GDB,CD=DB,∴△ADC≌△GDB(SAS),∴AC=BG,∠DAC=∠G,∴BG∥AC,∴∠F AE=∠G,∵AF=EF,∴∠F AE=∠AEF,∴∠BEG=∠G,∴BE=BG,∴AC=BE.②证明:延长AD到H,使得EH=AE,连接BH.∵AE=EH,∠AEF=∠BEH,EF=EB,∴△AEF≌△HEB(SAS),∴BH=AF,∠H=∠EAF,∴BH∥AC,∴△BDH∽△CDA,∴=,∴=,∴AF•CD=AC•BD.24.已知:如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4.点P为边BC上一动点(不与点B,点C重合),以BP为直径作圆,圆心记为点O,连接AP交⊙O于点E.过点B作BD∥AC,与⊙O交于点D,连接BE,DE.(1)当∠BDE=45°时,求BP的长;(2)当△BDE为等腰三角形时,求所有满足条件的BP的长.(3)延长BE交边AC于点F,若=k,求的值.(用含k的代数式表示,直接写出答案)【分析】(1)易证△ABP是等腰直角三角形,由等腰直角三角形的性质即可得出结果;(2)分三种情况:①当BD=BE时,∠EBP=∠DBP,证明△ABP∽△CBA,得出==,则BP=AB=;②当EB=ED时,连接DP并延长交AC于H,由AAS证得△ABP≌△AHP,得出AH=AB=2,BP=PH,则CH=10﹣2,易证△PHC∽△ABC,得出==,则BP=PH=CH=5﹣;③当DB=DE时,∠APH=∠EBD=∠DEB=∠DPB=∠CPH,同②得==,∠AHP=∠CHP=90°,由AAS 证得△APH≌△CPH,得出AH=CH=AC=5,求出PH=,PC=,则BP=BC ﹣PC=;(3)延长BE交AC于F,过P作PM∥EF交AC于M,由=k,BC=4,得出=,PC=,BP=,由勾股定理得AP==,证明△ABE∽△APB,得=,则AE=,求出=,=,=1+k,得出==,即可得出结果.【解答】解:(1)∵∠APB=∠BDE=45°,∠ABC=90°,∴△ABP是等腰直角三角形,∴BP=AB=2;(2)分三种情况:①当BD=BE时,∠EBP=∠DBP,∵BP是⊙O的直径,∴∠BEP=90°,∴∠EBP+∠APB=90°,∵∠ABC=90°,∴∠BAP+∠APB=90°,∴∠BAP=∠EBP,∵BD∥AC,∴∠DBP=∠C,∴∠BAP=∠C,又∵∠ABP=∠CBA=90°,∴△ABP∽△CBA,∴===,∴BP=AB=;②当EB=ED时,连接DP并延长交AC于H,如图1所示:∵∠ABC=90°,AB=2,BC=4,∴AC===10,∵ED=EB,∴∠EBD=∠EDB=∠BP A,∵∠APH=∠EBD,∴∠BP A=∠APH,∵BP是⊙O的直径,∴∠BDP=90°,∵BD∥AC,∴∠PHC=∠BDP=90°,∠AHP=180°﹣90°=90°=∠ABP,又∵AP=AP,∴△ABP≌△AHP(AAS),∴AH=AB=2,BP=PH,∴CH=AC﹣AH=10﹣2,∵∠PHC=∠ABC,∠C=∠C,∴△PHC∽△ABC,∴==,∴BP=PH=CH=5﹣;③当DB=DE时,∠APH=∠EBD=∠DEB=∠DPB=∠CPH,同②得:==,∠AHP=∠CHP=90°,又∵PH=PH,∴△APH≌△CPH(AAS),∴AH=CH=AC=5,∴PH=,∴PC===,∴BP=BC﹣PC=4﹣=;综上所述,BP的长为或5﹣或;(3)延长BE交AC于F,过P作PM∥EF交AC于M,如图2所示:∵=k,BC=4,∴=,∴PC=,BP=,∵∠ABC=90°,∴AP===,∵BP是⊙O的直径,∴∠BEP=90°,∴∠AEB=90°=∠ABP,又∵∠BAE=∠P AB,∴△ABE∽△APB,∴=,∴AE===,∴=•=,∴==,又∵=k,∴==1+k,∴==•=,∴=.。
2019-2020学年浙江省绍兴市嵊州市谷来镇七年级(上)期中数学试卷(解析版)

2019-2020学年浙江省绍兴市嵊州市谷来镇七年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.﹣2016的倒数是()A.2016B.﹣2016C.D.﹣2.大众创业,万众创新,据不完全统计,2015年毕业的大学生中创业人数已经达到7490000人,将7490000这个数据用科学记数法表示为()A.7.49×107B.7.49×106C.74.9×106D.0.749×1073.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d4.﹣32可表示为()A.(﹣3)×2B.﹣(3×3)C.(﹣3)+(﹣3)D.(﹣3)×(﹣3)5.给出下列关于的判断:①是无理数;②是实数;③是2的算术平方根;④1<<2.其中正确的是()A.①④B.①②④C.①③④D.①②③④6.下列等式正确的是()A.B.C.D.7.下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205 8.下列说法正确的个数为()(1)0是绝对值最小的有理数;(2)﹣1乘以任何数仍得这个数;(3)0除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A.0个B.1个C.2个D.3个9.估计4﹣2的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.如图是一个运算程序的示意图,若开始输入x的值为27,则第2019次输出的结果为()A.3B.27C.9D.1二、填空题(每小题3分,共30分)11.规定气温零上为正,例如气温零上15℃可以记为+15℃,嵊州市某天最低气温为零下3℃,可记为℃.12.在实数:1,﹣,,,π,3.1313313331…(两个1之间一次多一个3)中,无理数有个.13.当x=3时代数式ax﹣2的值等于4,则当x=﹣3时代数式ax﹣2的值等于.14.(﹣4)2的算术平方根是.15.已知一个正数x的两个平方根分别是2a﹣2和a﹣4,则a=,x=.16.若+|n+3|=0,则m+n的值为.17.已知a,b互为相反数,m、n互为倒数,|s|=3,求a+b+mn+s的值是.18.若a2﹣3b=6,则4(a2﹣3b)2﹣2a2+6b+4=.19.如图,半径为1个单位长度的圆从原点沿数轴向左滚动一周,圆上的一点由原点达到O′,点O′表示的数是.20.若a2=4,b2=9,则a﹣b=.三.解答题(共60分)21.(18分)计算下列各题(1)(﹣1)+(﹣8)﹣(﹣7)(2)(3)(4)(﹣2)2×(﹣1)3﹣3×[﹣1﹣(﹣2)](5)23﹣32﹣(﹣4)×(﹣9)×0(6)﹣12019×(﹣7)+|4﹣9|﹣27÷(﹣3)222.计算:+﹣|﹣2|﹣23.市城管的汽车在一条东西方向的公路上巡逻,规定向东为正,向西为负.某天,汽车从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米),队长要求汇报位置.(1)此时,驾驶员如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每干米耗油0.15升)2019-2020学年浙江省绍兴市嵊州市谷来镇七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.﹣2016的倒数是()A.2016B.﹣2016C.D.﹣【解答】解:﹣2016的倒数是﹣.故选:D.2.大众创业,万众创新,据不完全统计,2015年毕业的大学生中创业人数已经达到7490000人,将7490000这个数据用科学记数法表示为()A.7.49×107B.7.49×106C.74.9×106D.0.749×107【解答】解:7490000=7.49×106,故选:B.3.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.4.﹣32可表示为()A.(﹣3)×2B.﹣(3×3)C.(﹣3)+(﹣3)D.(﹣3)×(﹣3)【解答】解:﹣32=﹣(3×3)故选:B.5.给出下列关于的判断:①是无理数;②是实数;③是2的算术平方根;④1<<2.其中正确的是()A.①④B.①②④C.①③④D.①②③④【解答】解:①是无理数,故说法正确;②是实数,故说法正确;③是2的算术平方根,故说法正确;④1<<2,故说法正确.所以正确的是①②③④.故选:D.6.下列等式正确的是()A.B.C.D.【解答】解:A.=2,此选项错误;B.()2=2,此选项正确;C.﹣=﹣2,此选项错误;D.(﹣)2=2,此选项错误;故选:B.7.下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205【解答】解:A、0.350是精确到0.001的近似数,所以A选项的说法正确;B、3.80万是精确到百位的近似数,所以B选项的说法正确;C、近似数26.9精确到十分位,26.90精确到百分位,所以C选项的说法错误;D、近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195≤a<2.205,所以D选项的说法正确.故选:C.8.下列说法正确的个数为()(1)0是绝对值最小的有理数;(2)﹣1乘以任何数仍得这个数;(3)0除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A.0个B.1个C.2个D.3个【解答】解:(1)0是绝对值最小的有理数,这个说法正确;(2)﹣1乘以任何数仍得这个数,这个说法错误,例如﹣1乘以3得到﹣3;(3)0除以任何数都等于0,这个说法错误,例如0除以0没有意义;(4)数轴上原点两侧的数互为相反数,这个说法错误,例如﹣1和6是数轴上原点两侧的数,但不是互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数,这个说法错误,例如﹣1的平方是正数,但是﹣1的立方也是﹣1,是负数;(6)一对相反数的平方也互为相反数,这个说法错误,例如﹣2和2互为相反数,它们的平方就不互为相反数.则说法正确的个数为1个.故选:B.9.估计4﹣2的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵6<4<7,∴4<4﹣2<5,故4﹣2的值应在4和5之间.故选:C.10.如图是一个运算程序的示意图,若开始输入x的值为27,则第2019次输出的结果为()A.3B.27C.9D.1【解答】解:∵第1次,×27=9,第2次,×9=3,第3次,×3=1,第4次,1+2=3,第5次,×3=1,依此类推,从第4次开始,偶数次运算输出的结果是3,奇数次运算输出的结果是1,∴第2019次输出的结果为1.故选:D.二、填空题(每小题3分,共30分)11.规定气温零上为正,例如气温零上15℃可以记为+15℃,嵊州市某天最低气温为零下3℃,可记为﹣3℃℃.【解答】解:∵规定气温零上为正,气温零上15℃可以记为+15℃,∴温为零下3℃可以记为﹣3℃,故答案为:﹣3℃.12.在实数:1,﹣,,,π,3.1313313331…(两个1之间一次多一个3)中,无理数有3个.【解答】解:﹣=﹣2,无理数有:,π,3.1313313331…,共3个.故答案为:3.13.当x=3时代数式ax﹣2的值等于4,则当x=﹣3时代数式ax﹣2的值等于﹣8.【解答】解:把x=3代入得:3a﹣2=4,解得:a=2,把x=﹣3,a=2代入得:原式=﹣6﹣2=﹣8,故答案为:﹣814.(﹣4)2的算术平方根是4.【解答】解:(﹣4)2=16.16的算术平方根是4.故答案为:4.15.已知一个正数x的两个平方根分别是2a﹣2和a﹣4,则a=2,x=4.【解答】解:根据题意得:2a﹣2+a﹣4=0,解得:a=2,则x=(2﹣4)2=4.故答案为:2;4.16.若+|n+3|=0,则m+n的值为﹣1.【解答】解:由题意得,m﹣2=0,n+3=0,解得m=2,n=﹣3,所以m+n=2+(﹣3)=﹣1.故答案为:﹣1.17.已知a,b互为相反数,m、n互为倒数,|s|=3,求a+b+mn+s的值是4或﹣2.【解答】解:根据题意得:a+b=0,mn=1,s=3或﹣3,当s=3时,原式=0+1+3=4;当s=﹣3时,原式=0+1﹣3=﹣2,故答案为:4或﹣2.18.若a2﹣3b=6,则4(a2﹣3b)2﹣2a2+6b+4=136.【解答】解:原式=4(a2﹣3b)2﹣2(a2﹣3b)+4,当a2﹣3b=6时,原式=4×62﹣2×6+4=144﹣12+4=136,故答案为:136.19.如图,半径为1个单位长度的圆从原点沿数轴向左滚动一周,圆上的一点由原点达到O′,点O′表示的数是﹣2π.【解答】解:因为圆从原点沿数轴向左滚动一周,可知OO′=2π,所以点O′表示的数是﹣2π.故答案为:﹣2π.20.若a2=4,b2=9,则a﹣b=1或﹣1或5或﹣5.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∴a=2时,b=3,a﹣b=2﹣3=﹣1,a=2时,b=﹣3,a﹣b=2﹣(﹣3)=2+3=5,a=﹣2时,b=3,a﹣b=﹣2﹣3=﹣5,a=﹣2时,b=﹣3,a﹣b=﹣2﹣(﹣3)=2+3=1,所以,a﹣b的值为1或﹣1或5或﹣5.故答案为:1或﹣1或5或﹣5.三.解答题(共60分)21.(18分)计算下列各题(1)(﹣1)+(﹣8)﹣(﹣7)(2)(3)(4)(﹣2)2×(﹣1)3﹣3×[﹣1﹣(﹣2)](5)23﹣32﹣(﹣4)×(﹣9)×0(6)﹣12019×(﹣7)+|4﹣9|﹣27÷(﹣3)2【解答】解:(1)(﹣1)+(﹣8)﹣(﹣7)=﹣1﹣8+7=﹣2;(2)=5+2=7;(3)=4××()2+1═4××+1=+1=;(4)(﹣2)2×(﹣1)3﹣3×[﹣1﹣(﹣2)]=4×(﹣1)﹣3×1=﹣4﹣3=﹣7;(5)23﹣32﹣(﹣4)×(﹣9)×0=8﹣9﹣0=﹣1;(6)﹣12019×(﹣7)+|4﹣9|﹣27÷(﹣3)2=﹣1×(﹣7)+5﹣27÷9=7+5﹣3=9.22.计算:+﹣|﹣2|﹣【解答】解:原式=2+3﹣(2﹣)﹣=3.23.市城管的汽车在一条东西方向的公路上巡逻,规定向东为正,向西为负.某天,汽车从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米),队长要求汇报位置.(1)此时,驾驶员如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每干米耗油0.15升)【解答】解:(1)+2﹣3+2+1﹣2﹣1﹣2=﹣3(千米)∴驾驶员向队长描述他的位置:在出发点西边3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|=16(千米)∴0.15×16=2.4(升)∴这次巡逻(含返回)共耗油2.4升.。
2019届浙江绍兴嵊州市中考一模试卷数学试卷【含答案及解析】

2019届浙江绍兴嵊州市中考一模试卷数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1.A. 2016B. ﹣2016C.D. ﹣二、选择题2. 鹿山广场,位于嵊州老城区真正核心地段,东临嵊州大道,南接江滨东路,西邻官河路,北镶城中路,总建筑面积达260000平方米,由情景步行街、国际名品天街、国商购物城、影视娱乐城、美食文化广场、健身休闲中心组成的一站式购物中心,及高尚湖景大宅,鼎成城市中心地标级综合体.用科学记数法将数260000表示为()A.2.6×106B.26×104C.2.6×105D.26×1053. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A. B. C. D.4. 如图所示的几何体的主视图是()5. 下列计算正确的是()A.x3x3=2x3B.C.D.(x3)2=x56. 如图,在△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A. B. C. D.7. 如图,在平面直角坐标系中,点B在y轴上,第一象限内点A满足AB=AO,反比例函数y=的图象经过点A,若△ABO的面积为2,则k的值为()A.1 B.2 C.4D.8. 如图,在平面直角坐标系中,若有一点P(2,1)向上平移3个单位或者向左平移4个单位,恰好在直线y=kx+b上,则k的值是()A. B.2 C. D.9. 如图,AB为圆O的直径,在圆O上取异于A、B的一点C,并连结BC、AC.过点A作圆O的切线,交直线BC于点D,作∠ADC的角平分线,交AB于点P.若AB=10,BC=6,则AP 的长度为()A.4 B.5 C. D.10. 如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,折痕与AC边交于点E,分别过点D、E作BC的垂线,垂足为Q、P,称为第1次操作,记四边形DEPQ的面积为S1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,折痕与AC边交于点E1,分别过点D1、E1作BC的垂线,垂足为Q1、P1,称为第2次操作,记四边形D1E1P1Q1的面积为S2;按上述方法不断操作下去…,若△ABC 的面积为1,则Sn的值为()A. B.C.D.三、填空题11. 因式分【解析】 m3﹣9m= .12. 不等式3x﹣4<x的正整数解是.13. 三翼式旋转门在圆柱形的空间内旋转,旋转内的三片旋转翼把空间等分成三个部分,如图1,旋转门的俯视图是直径的2米的圆,图2显示了某一时刻旋转翼的位置,则弧AB的长是米.(结果保留π)14. 在某市中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:15. 成绩(米)1.451.471.501.531.551.56人数124332td16. 在△ABC中,AB=AC=10,将△ABC沿直线BD翻折,使点C落在直线AC上的点C′处,若AC=2,则BC= .17. 如图,矩形ABCD中,AB=6,BC=4,点E在AB上,EF⊥DC于点F,在边AD,DF,EF,AE上分别存在点M,N,P,Q,这四点构成的四边形与矩形BCFE全等,则DM的长度为.四、解答题18. (1)计算: +(2016﹣)0﹣2﹣1﹣4cos45°.(2)化简求值:,其中x=2015.19. 如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.20. 因市场竞争激烈,国商进行促销活动,决定对学习用品进行打八折出售,打折前,买2本笔记本和1支圆珠笔需要18元,买1本笔记本和2支圆珠笔需要12元.(1)求打折前1本笔记本,1支圆珠笔各需要多少元.(2)在促销活动时间内,购买50本笔记本和40支圆珠笔共需要多少元?21. 某市对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A.使用清洁能源 B.汽车限行C.绿化造林 D.对相关企业进行整改调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的市民共有多少人.(2)请你将统计图1补充完整.(3)已知该区人口为400000人,请根据调查结果估计该市认为限行的措施最有效的市民人数.22.(1)如图1,一条细绳系着一个小球在平面内摆动,已知细绳从悬挂点O到球心的长度为50厘米,小球在带你B位置时达到最低点,当小球在左侧点A时与最低点B时细绳相应所成的角度∠AOB=37°.求点A与点B的高度差BC的值.(2)如图2,若在点O的正下方有一个阻碍物P,当小球从左往右落到最低处后,运动轨迹改变,变为以P为圆心,PB为半径继续向右摆动,当摆动至与点A在同一水平高度的点D时,满足PD部分细绳与水平线的夹角∠DPQ=30°,求OP的长度.23. 在平面直角坐标系中,给出如下定义:形如y=(x﹣m)(x﹣m+1)与y=(x﹣m)(x﹣m﹣1)的两个二次函数的图象叫做兄弟抛物线.(1)试写出一对兄弟抛物线的解析式.(2)若二次函数y=x2﹣x(图象如图)与y=x2﹣bx+2的图象是兄弟抛物线.①求b的值.②若直线y=k与这对兄弟抛物线有四个交点,从左往右依次为A,B,C,D四个点,若点B,点C为线段AD三等分点,求线段BC的长.24. 在直角△ABC中,∠ACB=90°,点E在AC边上,连结BE,作∠ACF=∠CBE交AB于点F,同时点D在BE上,且CD⊥AB.(1)已知:如图,=1,.①求证:△ACF≌△BCD.②求的值.(2)若=2,,则的值是多少(直接写出结果)25. 如图,在平面直角坐标系中,点B(12,10),过点B作x轴的垂线,垂足为A.作y 轴的垂线,垂足为C.点D从O出发,沿y轴正方向以每秒1个单位长度运动;点E从O出发,沿x轴正方向以每秒3个单位长度运动;点F从B出发,沿BA方向以每秒2个单位长度运动.当点E运动到点A时,三点随之停止运动.运动过程中△ODE关于直线DE的对称图形是△O′DE,设运动时间为t.(1)用含t的代数式分别表示点E,点F的坐标.(2)若△ODE与以点A,E,F为顶点的三角形相似,求t的值.(3)是否存在这样的t,使得以D,E,F,O′所围成的四边形中有一组对边平行?若存在,求出t的值;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
浙江省绍兴市2019-2020学年第三次中考模拟考试数学试卷含解析

浙江省绍兴市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k ³ C .1k > D .1k <2.如果向北走6km 记作+6km ,那么向南走8km 记作( )A .+8kmB .﹣8kmC .+14kmD .﹣2km3.30cos ︒的值是()n n n nA .22B .33C .12D .324.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A .50B .0.02C .0.1D .15.已知反比例函数1y x =下列结论正确的是( ) A .图像经过点(-1,1) B .图像在第一、三象限C .y 随着 x 的增大而减小D .当 x > 1时, y < 1 6.如图,Rt △ABC 中,∠C=90°,∠A=35°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=( )A .35°B .60°C .70°D .70°或120°7.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a )和点(8a ,-3),则a 的值为( )A .B .C .D .±8.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a|>|b|D .b+c >09.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x +21x 的值是( ) A .1 B .2 C .﹣34 D .﹣4310.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( )A .2B .1C .-2D .-111.如图,点E 是四边形ABCD 的边BC 延长线上的一点,则下列条件中不能判定AD ∥BE 的是( )A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=o12.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③2AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD 边长为3,连接AC ,AE 平分∠CAD ,交BC 的延长线于点E ,FA ⊥AE ,交CB 延长线于点F ,则EF 的长为__________.14.如图,点C 在以AB 为直径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE =CF ;②线段EF 的最小值为3AD =2时,EF 与半圆相切;④若点F 恰好落在BC 上,则AD =5D 从点A 运动到点B 时,线段EF 扫过的面积是3.其中正确结论的序号是 .15.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.16.图中是两个全等的正五边形,则∠α=______.17.分式方程26x9--1=x3x-的解是x=________.18.方程1121x x=+的解是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,抛物线y1=ax1﹣12x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,34),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.20.(6分)如图,在平面直角坐标系中,点A 和点C 分别在x 轴和y 轴的正半轴上,OA=6,OC=4,以OA,OC 为邻边作矩形OABC,动点M,N 以每秒 1 个单位长度的速度分别从点A、C 同时出发,其中点M 沿AO 向终点O 运动,点N沿CB 向终点 B 运动,当两个动点运动了t 秒时,过点N 作NP⊥BC,交OB 于点P,连接MP.(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.21.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?22.(8分)如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (3,1)在反比例函数k y x=的图象上. 求反比例函数k y x=的表达式;在x 轴的负半轴上存在一点P ,使得S △AOP =12S △AOB ,求点P 的坐标;若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.23.(8分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD 中,点E 是BC 边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG 的度数,并直接写出结果(用含α的式子表示).24.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)25.(10分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
浙江省绍兴市2019-2020学年第五次中考模拟考试数学试卷含解析

浙江省绍兴市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△OAB 绕O 点逆时针旋转60°得到△OCD ,若OA =4,∠AOB =35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =42.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7 B .2.5×10﹣6 C .25×10﹣7 D .0.25×10﹣53.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子.A .37B .42C .73D .1214.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯- 5.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A .米 B .米 C .米 D .米 612233499100+++++L 的整数部分是( ) A .3B .5C .9D .6 7.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米8.下列计算中,正确的是()A.a•3a=4a2B.2a+3a=5a2C.(ab)3=a3b3D.7a3÷14a2=2a9.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x 可以取的值为()A.2m B.52m C.3m D.6m10.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)11.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B.113C.103D.412.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A .25πcmB .210πcmC .215πcmD .220πcm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一个圆锥的底面圆的周长是5 cm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是_____. 14.方程3x(x-1)=2(x-1)的根是15.分解因式:2x 2﹣8xy+8y 2= .16.如图, AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,若OC=6,则AB 的长等于__.17.将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,若∠ABE =20°,则∠DBC 为_____度.18.有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果方程M 和方程N 有一个相同的根,那么这个根必是x=1;④如果5是方程M 的一个根,那么15是方程N 的一个根. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标.20.(6分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF .求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形.21.(6分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .22.(8分)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.23.(8分)某运动品牌对第一季度A 、B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B 款运动鞋的销售量是A 款的,则1月份B 款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.24.(10分)先化简,再求值:(1﹣1 1xx-+)÷22691x xx++-,其中x=1.25.(10分)解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.26.(12分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.27.(12分)阅读下面材料,并解答问题.材料:将分式42231x xx--+-+拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴113aa b-=⎧⎨+=⎩,∴a=2,b=1∴42231x xx--+-+=222(1)(2)11x xx-+++-+=222(1)(2)1x xx-++-++211x-+=x2+2+211x-+这样,分式42231x x x --+-+被拆分成了一个整式x 2+2与一个分式211x -+的和. 解答:将分式422681x x x --+-+ 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明422681x x x --+-+的最小值为1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,据此可判断C ;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【详解】解:∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确;则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确.故选D .【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.2.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6;故选B .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C . 点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.4.C【解析】【分析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.5.D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米. 故选D6.C【解析】﹣1=,∴原式﹣=﹣1+10=1.故选C .7.D【解析】解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选D . 点睛:在负指数科学计数法10n a -⨯ 中,其中110a ≤< ,n 等于第一个非0数字前所有0的个数(包括下数点前面的0).8.C【解析】【分析】根据同底数幂的运算法则进行判断即可.【详解】解:A 、a•3a=3a 2,故原选项计算错误;B 、2a+3a=5a ,故原选项计算错误;C 、(ab )3=a 3b 3,故原选项计算正确;D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C .【点睛】本题考点:同底数幂的混合运算.9.C【解析】【分析】依据题意,三根木条的长度分别为x m ,x m ,(10-2x) m ,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m ,x m ,(10-2x) m ,∵三根木条要组成三角形,∴x-x<10-2x<x+x, 解得:552x <<. 故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.10.A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.11.B【解析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.12.B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD 的面积+扇形BOC 的面积=2扇形BOC 的面积=27252360π⨯⨯=10π .故选B . 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.150o【解析】【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=, 解得:150n =故答案为150o .【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积14.x 1=1,x 2=-. 【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程---因式分解法.15.1(x﹣1y)1【解析】试题分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案为:1(x﹣1y)1.考点:提公因式法与公式法的综合运用16.18【解析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.17.1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.18.①②④【解析】试题解析:①在方程ax 2+bx+c=0中△=b 2-4ac ,在方程cx 2+bx+a=0中△=b 2-4ac ,∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; ②∵c a 和a c 符号相同,b a 和a b符号也相同, ∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确;③、M-N 得:(a-c )x 2+c-a=0,即(a-c )x 2=a-c ,∵a≠c ,∴x 2=1,解得:x=±1,错误;④∵5是方程M 的一个根,∴25a+5b+c=0,∴a+15b+1+25c=0, ∴15是方程N 的一个根,正确. 故正确的是①②④.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1,0)、(﹣2,0)【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可.试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).20.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD ∥BC ,AD=BC ,又由AE=CF ,即可证得DE=BF .根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE 是平行四边形.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD ,在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF ,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.21.(1)见解析;(2) 201,207,1【解析】试题分析:(1)先设出两位自然数的十位数字,表示出这个两位自然数,和轮换两位自然数即可;(2)先表示出三位自然数和轮换三位自然数,再根据能被5整除,得出b的可能值,进而用4整除,得出c的可能值,最后用能被3整除即可.试题解析:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”.(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c 只能是1,5,7,9;∴这个三位自然数可能是为251,1,257,259,而251,257,259不能被3整除,∴这个三位自然数为1,即这个三位自然数为201,207,1.【点睛】此题是数的整除性,主要考查了3的倍数,4的倍数,5的倍数的特点,解本题的关键是用5的倍数求出b 的值.22.(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF Y 的对角线, ∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF Y 为正方形.23.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A 款的数量乘以,即可得出一月份B 款运动鞋销售量;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A 款的数量乘以:50×=40(双).即一月份B 款运动鞋销售了40双;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.考点:1.折线统计图;2.条形统计图.24.15. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】原式=2221(1)(1)1(3)x x x x x x +-++-⋅++=2(1)(1)(3)3113x x x x x x x +-=-++⋅++ 当x=1时,原式2123-=+=15. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.25.x≥35【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x x x x x ⎧--<⎪⎨--≤⎪⎩①②,由①得,x >﹣2;由②得,x≥35, 故此不等式组的解集为:x≥35. 在数轴上表示为:. 点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26. (1) 3.4棵、3棵;(2)1.【解析】【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有73007030⨯=户, 故答案为:1.【点睛】 此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.27. (1) =x 2+7+211x -+ (2) 见解析【解析】【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可; (2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x 4﹣6x+1=(﹣x 2+1)(x 2+a )+b=﹣x 4+(1﹣a )x 2+a+b , 可得168a a b -=-⎧⎨+=⎩, 解得:a=7,b=1,则原式=x 2+7+211x -+;(2)由(1)可知,422681x x x --+-+=x 2+7+211x -+ . ∵x 2≥0,∴x 2+7≥7;当x=0时,取得最小值0,∴当x=0时,x 2+7+211x -+最小值为1,即原式的最小值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 y1
1
,则
2
这个反比例函数的解析式为______.
18.如图,在△ ABC 中,点 D、E 分别在 AB、AC 上,且 DE∥BC,已知 AD=2,DB=4,DE=1,则
BC=_____.
三、解答题:(本大题共 9 个小题,共 78 分,解答应写出文字说明、证明过程或演算步骤. 19.(6 分)如图,AB 是⊙O 的直径,点 C 是 AB 延长线上的点,CD 与⊙O 相切于点 D,连结 BD、AD.求 证;∠BDC=∠A.若∠C=45°,⊙O 的半径为 1,直接写出 AC 的长.
D. y - 2 x 3
2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差
B.中位数
C.众数
D.平均数
3.如图,平面直角坐标系 xOy 中,四边形 OABC 的边 OA 在 x 轴正半轴上,BC∥x 轴,∠OAB=90°,
点 C(3,2),连接 OC.以 OC 为对称轴将 OA 翻折到 OA′,反比例函数 y= k 的图象恰好经过点 A′、B, x
为其中错误的是( )
A.①②
B.②③
C.①③
D.②④
12.关于 x 的不等式 x-b>0 恰有两个负整数解,则 b 的取值范围是
A. 3 b 2
B. 3 b 2
C. 3 b 2
D. -3<b<-2
二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分.)
13.已知,大正方形的边长为 4 厘米,小正方形的边长为 2 厘米,起始状态如图所示,大正方形固定不动,
12 月,共有 190 家共享经济平台获得1159.56 亿元投资,数据1159.56 亿元用科学记数法可表示为 (
)
A.1159.56108 元 B.11.59561010 元 C.1.159561011 元 D.1.15956108 元
7.如图,在正五边形 ABCDE 中,连接 BE,则∠ABE 的度数为(
16.如图,在矩形 ABCD 中,AB=3,AD=5,点 E 在 DC 上,将矩形 ABCD 沿 AE 折叠,点 D 恰好落在 BC 边上的点 F 处,那么 cos∠EFC 的值是 .
17.已知同一个反比例函数图象上的两点 P1
x1, y1
、 P2
x2, y2
,若 x2
x1
2 ,且
1 y2
)
A.30°
B.36°
C.54°
D.72°
8.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是( )
A. 1 2
B.2
9.下列各数中最小的是( )
C. 5 5
D. 2 5 5
A.0
B.1
C.﹣ 3
D.﹣π
10.如图,O 是坐标原点,菱形 OABC 的顶点 A 的坐标为(3,﹣4),顶点 C 在 x 轴的正半轴上,函数
y= k (k<0)的图象经过点 B,则 k 的值为( ) x
A.﹣12
B.﹣32
C.32
D.﹣36
11.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,
③AC=BD,④AC⊥BD 中选两个作为补充条件,使▱ ABCD 为正方形(如图),现有下列四种选法,你认
把小正方形向右平移,当两个正方形重叠部分的面积为 2 平方厘米时,小正方形平移的距离为_____厘米.
14.因式分解: x﹣ 3 2x2 y xy2 __________.
15.现有八个大小相同的矩形,可拼成如图 1、2 所示的图形,在拼图 2 时,中间留下了一个边长为 2 的 小正方形,则每个小矩形的面积是_____.
请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比 是多少?若该校七年级学生共有 500 人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这 些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多 少?
22.(8 分)小明对 A , B , C , D 四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知
浙江省嵊州市谷来镇中学 2019-2020 学年中考数学模拟试卷
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.)
1.一个正比例函数的图象பைடு நூலகம்点(2,﹣3),它的表达式为( )
A. y - 3 x 2
B. y 2 x 3
C. y 3 x 2
A 超市有女工 20 人.所有超市女工占比统计表
超市
A
B
C
D
女工人数占比
62.5%
62.5%
50%
则 k 的值是( )
A.9
B. 13 3
C. 169 15
D.3 3
x=2
mx+ny=8
4.已知{ y=1
是二元一次方程组{ nx
my=1
的解,则
2m
n
的算术平方根为(
)
A.±2 5.如图,在
B.
C.2
D.4
中,
,
,
,将
折叠,使 点与 的中点 重合,
折痕为 ,则线段 的长为( )
A.
B.
C.
D.
6.据中国电子商务研究中心 发布《2017 年度中国共享经济发展报告》显示,截止 2017 年
20.(6 分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共 23 层,销售价格如下:第八层楼房 售价为 4 000 元/米 2,从第八层起每上升一层,每平方米的售价提高 50 元;反之,楼层每下降一层,每平
方米的售价降低 30 元,已知该楼盘每套房面积均为 120 米 2. 若购买者一次性付清所有房款,开发商有两种优惠方案:降价 8%,另外每套房赠送 a 元装修基金;降价 10%,没有其他赠送.请写出售价 y(元/米 2)与楼层 x(1≤x≤23,x 取整数)之间的函数表达式;老王要购买 第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算. 21.(6 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展 活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教 务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计 图和扇形统计图(均不完整).