高三数学文科试题及参考答案
【高三数学试题】高三数学试题2(文科)及参考答案

8题图高三数学试题2(文科)参考公式: 棱锥的体积公式13V Sh=,其中S 是底面面积,h 是高. 一、选择题:1.设全集{|15}U x Z x =∈-≤≤,{1,2,5}A =,}41|{<<-∈=x N x B ,则U BC A =A .{}3B .{}0,3C .{}0,4D .{}0,3,42.已知i 为虚数单位,则复数2(1)(1)i i -+等于 A .22i -+ B .22i -- C .22i + D .22i - 3.若||1,||2,a b c a b ===+且c a ⊥,则向量a 与b 的夹角为A. 030B. 060C. 0120D. 0150 4.到定点(0,)(p 其中0)p >的距离等于到定直线y p =-的距离的轨迹方程为A. px y 22=B. py x 22=C.px y 42= D.py x 42= 5.已知下列四个命题:① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直; 其中真命题的序号是A .①②B .②③C .②④D .③④6.若函数2()f x x bx c =++的图象的对称轴为2x =,则函数()f x 的导函数()f x '的图象不经过 A .第一象限 B .第二象限 C .第三象限 D .第四象限7. 下列说法错误的是A. 命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”B. “1x >”是“0x >”的充分不必要条件C. 若p q ∨为真命题,则p 、q 均为真命题D. 若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”. 8.右图是一个几何体的三视图,根据图中的数据,可得该几何体的表面积是A. 32πB. 16πC. 12πD. 8π第16题图第11题9.在△ABC 中,角C B A ,,的对边分别为c b a ,,,已知0,453A aB π===则b =A. 2B. 3C. D. 410.若干个球中含有至少3个红球和3个黑球,从中摸出3个球,其中含有红球的概率为0.5,含有黑球的概率为0.8,问摸到的3个球中既有红球也有黑球的概率为A. 0.2B. 0.3C. 0.4D. 0.5 二、填空题:11. 一个算法的程序框图如右图所示,则该程序输出的结果为_________.12.设等比数列{}n a 的公比21=q ,前n 项和为n S ,则 44a S = .13.若点Q P ,分别是圆22221,(3)(2)1x y x y +=-++= 上的动点,则PQ的最大值为14.不等式组260300x y x y x +-≤⎧⎪+-≥⎨⎪≥⎩所表示的平面区域的面积为 .三、解答题: 15.已知函数()2()sin cos cos 2f x x x x =++,x R∈.(Ⅰ) 求()f x 的最小正周期以及()f x 的值域; (Ⅱ) 函数()21g x x =+的图象经过怎样的变换得到函数()x f 的图象?16.从某学校高三年级800名学生中 随机抽取50名测量身高,据测量被 抽取的学生的身高全部介于155cm 和 195cm 之间,将测量结果按如下方式 分成八组:第一组[)155,160.第二组[)160,165;…第八组[]190,195,1C1B1A1DCBADFE第17题图右图是按上述分组方法得到的条形图. (Ⅰ) 根据已知条件填写下面表格:组别 1 2 3 4 5 6 7 8 样本数 (Ⅱ) 估计这所学校高三年级800名学生中身高在180cm 以上(含180cm )的人数;(Ⅲ) 在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少? 17.在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 的中点,AC BD F =.(Ⅰ) 求证:CE ⊥BD ;(Ⅱ) 求证:CE ∥平面1A BD;21世纪教育网 (Ⅲ) 求三棱锥1D A BC-的体积.18. 已知{}n a 是等比数列,12a =,318a =;{}n b 是等差数列,12b =,1234b b b b +++=12320a a a ++>.(Ⅰ) 求数列{}n a 的前n 项和nS 的公式;(Ⅱ) 求数列{}n b 的通项公式;(Ⅲ) 设14732n n P b b b b -=++++,10121428n n Q b b b b +=++++,其中1,2,3,n =,试比较nP 与nQ 的大小,并证明你的结论.19.已知点P 是函数y =.(Ⅰ) 是否存在两个定点,使P 到它们的距离之和为常数,若存在,求出这两个定点的坐标; (Ⅱ) 设点Q 的坐标为()0,1-,求PQ 最大值.20.已知定义在()0,+∞的函数()ln ()af x x a R x =-∈,当1=a 时,()f x 在区间()2,1上有一个零点;现给出下面参考数据:x1 1.25 1.375 1.5 1.75 ()f x 1- 0.58-0.44-0.26- 0.012-x1.76573 1.78125 1.81251.875 2 ()f x 0.0020.020.0430.0950.193请你回答下列问题(Ⅰ)求出函数x x x f 1ln )(-=在区间(1,2)上的零点(要求误差不超过0.1);(Ⅱ)若方程0)(=x f 恰有2个不同的实数解,求实数a 的取值范围.高三数学试题2(文科)参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案BDCDDBCCCB二、填空题11.45 12.15 1314.92三、解答题: 15.解: ()sin 2cos 21)14f x x x x π=++=++(Ⅰ)函数()f x 的最小正周期22T ππ==值域为[1;(Ⅱ)函数()21g x x =+图象向左平移8π个单位得到函数()x f 的图象16.(本题满分12分)解: (Ⅰ)由条形图得第七组频率为:1(0.0420.0820.220.3)0.06,0.06503-⨯+⨯+⨯+=⨯=∴第七组的人数为3人组别 1 2 3 4 5 6 7 8 样本中人数 2 4 10 10 15 4 3 2 (Ⅱ)由条形图得前五组频率为 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1-0.82=0.18估计这所学校高三年级身高在180cm 以上(含180cm )的人数800×0.18=144(人)(Ⅲ)第二组四人记为a 、b 、c 、d ,其中a 为男生,b 、c 、d 为女生,第七组三人记为1、2、3, 其中1、2为男生,3为女生,基本事件列表如下:a b c d 1 1a 1b 1c 1d 2 2a 2b 2c 2d 3 3a 3b 3c 3d所以基本事件有12个恰为一男一女的事件有1b ,1c ,1d ,2b ,2c ,2d ,3a ;共7个1C1B1A1DCBADFE因此实验小组中,恰为一男一女的概率是712.17.(本题满分14分)解: (Ⅰ)证明:根据正方体的性质BD AC ⊥, 因为1AA ABCD BD ABCD⊥⊂平面,平面,所以1BD AA ⊥,又1ACAA A=所以11BD ACC A ⊥平面,11CE ACC A ⊂平面,所以CE ⊥BD ;(Ⅱ)证明:连接1A F,因为111111////AA BB CC AA BB CC ==,,所以11ACC A 为平行四边形,因此1111//AC AC AC AC=,由于E 是线段11A C 的中点,所以1//CE FA ,因为1FA ⊂面1A BD,CE ⊄平面1A BD,所以CE ∥平面1A BD(Ⅲ)1131136D A BC A BCDBCD a V V S A A --∆==⋅⋅=18.(本题满分14分)解:(Ⅰ)设{}n a 的公比为q ,由231a a q =得2319a q a ==,3q =± 当3q =-时,12326181420a a a ++=-+=<,这与12320a a a ++>矛盾,故舍去;当3q =时,12326182620a a a ++=++=>,故符合题意.从而数列{}n a 的前n 项和()2133113n n n S -==--(Ⅱ)设数列{}n b 的公差为d ,由123426b b b b +++=,得14626b d +=,又12b =解得3d =,所以31n b n =-;(Ⅲ)14732,,,,n b b b b -组成以3d 为公差的等差数列,所以()211953222n n n P nb d n n -=+⋅=-10121428,,,,n b b b b +组成以2d 为公差的等差数列,1029b =,所以()210123262n n n Q nb d n n -=+⋅=+,22953()(326)(19)222n n P Q n n n n n n -=--+=-所以对于任意正整数n ,当20n ≥时,n nP Q >; 当19n =时,n nP Q =; 当18n ≤时,n nP Q <.19.(本题满分14分)解:(Ⅰ)由y =221(0)4x y y +=≥所以P是半个椭圆上的动点,这个椭圆的焦点坐标为())根据椭圆的定义P 到这两个焦点的距离之和为4,所以存在两个定点使P 到它们的距离之和为常数,这两个定点的坐标分别为());(Ⅱ)设P 点坐标为(),x y ,则2PQ =()221x y ++因为y =2244x y =-,2PQ =()221x y ++=2325y y -++ 当[]10,13y =∈时,2PQ 取最大值163,PQ20.(本题满分14分)解:(Ⅰ)假设x x x f 1ln )(-=在区间()2,1上的零点为0x ,因为(1)10,(2)0.1930,(1.5)0.260f f f =-<=>=-<,所以0x(1.5,2)∈ 因为(1.75)0.0120f =-<,所以0x(1.75,2)∈, 因为(1.875)0.0950f =>,所以0x(1.75,1.875)∈因为1.875 1.750.06250.12-=<,所以可以取0 1.8125x =函数x x x f 1ln )(-=在区间()2,1上的零点近似值是:1.8125(说明:由于(1.8125)0.0430f =>,所以区间(1.75,1.85)内的数均可以是合乎要求的解)(Ⅱ)∵21()a f x x x '=+, ∴当0a ≥时,()0(0,)f x x '>∈+∞,即),0(ln )(+∞+=在x ax x f 为单调增函数,故),0(0)(+∞=在x f 不可能有两实根, ∴0a <,令()0f x '=,解得x a =-当0x a <<-时,()0,()f x f x '<递减,当x a >-时,()0()f x f x '>,递增,∴()f x 在x a =-处取到极小值1)ln(+-a 又当0()x f x →→+∞,,当,()x f x →+∞→+∞要使0x >时,()f x 与x 轴有两个交点当且仅当ln()10a -+<.解得01<<-a e ,故实数a 的取值范围⎪⎭⎫ ⎝⎛-0,1e。
2023年高三5月大联考(全国乙卷)文科数学试题及参考答案

2023届高三5月大联考(全国乙卷)文理科数学试题及参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,设复数21,z z 对应的点分别为()()1,12021-Z Z ,,,则=21z z ()A .2B .3C .2D .12.已知集合()(){}012<+-=x x x M ,{}30≤≤=x x N ,则=N M ()A .[)20,B .[]30,C .(]31,-D .(]32,3.《“健康中国2030”规划纲要》提出,将康时促进人的全面发展的必然要求,是经济社会发展的基础条件.实现国民健康长寿,是国家富强、民族振兴的重要标志.也是全国各族人民的共同愿望.为普及健康知识,某公益组织为某社区居民组织了一场健康知识公益讲座,讲座后居民要填写健康知识问卷(百分制),为了解讲座效果,随机抽取了10为居民的问卷,并统计得分情况如下表所示:则下列说法错误的是()A .该10位居民的问卷得分的极差为30B .该10位居民的问卷得分的中位数为94C .该10位居民的问卷得分的中位数小于平均数D .该社区居民的问卷得分不低于90分的概率估计值大于0.24.已知2.0log 1.0=a ,a b lg =,ac 2=,则c b a ,,的大小关系为()A .c b a <<B .b c a <<C .a c b <<D .ca b <<5.从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球”的概率为152,“两个球都是白球”的概率为31,则“两个球颜色不同”的概率为()A .154B .157C .158D .1511答题居民序号12345678910得分728365768890659095766.若执行如图所示的程序框图,则输出S 的值为()A.94B .98C .115D .11107.若函数()()⎩⎨⎧≥++<++=0,1ln 0,122x a x x ax ax x f 恰有2个零点,则实数a 的取值范围是()A .()()∞+∞-,,10 B .()1,0C .()1,∞-D .()∞+,08.若平面向量b a ,满足b a 2=,且b a22+与b 垂直,则b a ,的夹角为()A .43πB .32πC .3πD .4π9.已知椭圆E :()012222>>=+b a b y a x 的左顶点为A ,上顶点为B ,左、右焦点分别为21,F F ,延长2BF 交椭圆E 于点P .若点A 到直线2BF 的距离为3216,21F PF ∆的周长为16,则椭圆E 的标准方程为()A .1162522=+y xB .1323622=+y xC .1484922=+y x D .16410022=+y x 10.已知数列{}n a 的前n 项和为n S ,且n n n n a S S S -=+++1232,7264=-a a ,344=S ,则2023是数列{}n a 的()A .第566项B .第574项C .第666项D .第674项11.已知函数()()ϕω+=x x f cos 2()00<<->ϕπω,,()30=f ,且()x f 在[]π,0上有且只有三个极值点,则下列说法错误的个数是()①存在ω值,使得函数()x f 在[]π,0上有两个极小值点;②ω的取值范围为⎥⎦⎤⎝⎛619613,;③函数()x f 在⎪⎭⎫ ⎝⎛50π,上单调递增;④若Z ∈ω,则函数()x f 图象的一个对称中心为⎪⎭⎫⎝⎛092π.A .4B .3C .2D .112.在正三棱锥ABC P -中,E D ,分别为侧棱PC PB ,的中点,若BE AD ⊥,且7=AD ,则正三棱锥ABC P -外接球的表面积为()A .π435B .π572C .π7108D .π9152二、填空题:本题共4小题,每小题5分,共20分.13.曲线xxy ln =在1=x 处的切线方程为.14.已知公比小于0的等比数列{}n a 的前n 项和为n S ,12232+==S a a ,,=1a .15.在直四棱柱1111D C B A ABCD -中,底面四边形ABCD 是菱形,︒=∠120ADC ,121AA AD =,E 是棱1AA 的中点,O 为底面菱形ABCD 的中心,则异面直线EO 和AD 所成角的余弦值为.16.已知双曲线C :()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,M 是双曲线C右支上一点,记21F MF ∆的垂心为G ,内心为I .若GI F F 1221=,则双曲线C 的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.(12分)2023年,某地为了帮助中小微企业渡过难关,给予企业一定的专项贷款资金支持.如图是该地120家中小微企业的专项贷款金额(万元)的频率分布直方图:(1)确定a 的值,并估计这120家中小微企业的专项贷款金额的中位数(结果保留整数);(2)按专项贷款金额进行分层抽样,从这120家中小微企业中随机抽取20甲.记专项贷款金额在[200,300]内应抽取的中小微企业数为m .①求m 的值.②从这m 家中小微企业中随机抽取3家,这3家中小微企业的专项贷款金额都在[200,250)内的概率.18.(12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ABC ∆的面积为3,12222=-+c b a .(1)求C ;(2)若33cos cos -=B A ,求c .19.(12分)如图,在直三棱柱111C B A ABC -中,︒=∠90BAC ,2211===AA AC AB ,141AA AE =,D 为棱1CC 的中点,F 为棱BC 的中点.(1)求证:⊥BE 平面C AB 1;(2)求三棱锥DEF B -的体积.20.(12分)已知函数()()01ln >+=a ax xx f .(1)当21e a =时,求()x f 的单调区间;(2)若函数()axx f y 1+=有两个不同的零点,求a 的取值范围.21.(12分)已知抛物线C :()022>=p px y ,M 是其准线与x 轴的交点,过点M 的直线l 与抛物线C 交于B A ,两点,当点A 的坐标为()0,4y 时,有BA MB =.(1)求抛物线C 的方程;(2)设点A 关于x 轴的对称点为点P ,证明:直线BP 过定点,并求出该定点坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为⎪⎩⎪⎨⎧+==ααsin 21cos t y t x (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为⎪⎭⎫ ⎝⎛+=4sin 22πθρ.(1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,若直线l 与曲线C 交于N M ,两点,求PN PM -的最大值.23.(10分)【选修4-5:不等式选讲】已知c b a ,,都是正实数..(1)若1=ac ,求证:()()b c b b a 4≥++;(2)若1112121=++++cb a ,求c b a ++的最小值.参考答案一、选择题1.C解析:由题意,知i z 21=,i z -=12,∴i i i z z +-=-=11221,∴221=z z .2.A 解析:∵集合{}21<<-=x x M ,{}30≤≤=x x N ,∴[)20,=N M .3.B解析:将这10为居民的问卷得分按照从小到大的顺序排列为65,65,72,76,76,83,88,90,90,95,∴极差为95-65=30,故A 正确;中位数为5.7928376=+,故B 错误;平均数为()5.798095909088837676726565101>=+++++++++⨯,故C 正确;由题表及样本估计总体,知该社区居民问卷得分不低于90分的概率估计值为2.03.0103>=,故D 正确.4.D解析:∵x y 1.0log =在()∞+,0上单调递减,∴1.0log 2.0log 1log 1.01.01.0<<,即10<<a .∵x y lg =在()∞+,0上单调递增,∴1lg lg <a ,即0<b .∵xy 2=在R 上单调递增,∴022>a,即1>c .综上,得c a b <<.5.C解析:设“两个球都是红球”为事件A,“两个球都是白球”为事件B,“两个球颜色不同”为事件C,则()()31152==B P A P ,且B A C =.∵C B A ,,两两互斥,∴()()()()()[]158311521111=--=+-=-=-=B P A P B A P C P C P .6.A解析:初始值20==n S ,.第一次执行循环体:43113111212=⨯=⨯=-=n S a ,,,否;第二次执行循环体:6531311531=⨯+⨯=⨯=n S a ,,,否;第三次执行循环体:8751531311751=⨯+⨯+⨯=⨯=n S a ,,,否;第四次执行循环体:10971751531311971=⨯+⨯+⨯+⨯=⨯=n S a ,,,是,输出S .∵9491717151513131121971751531311=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯+⨯+⨯+⨯=S ,∴输出S 的值为94.7.A 解析:①当0=a 时,()()⎩⎨⎧≥+<=0,1ln 0,1x x x x f ,则()x f 只有一个零点0,不符合题意;②当0<a 时,作出函数()x f 的大致图象,如图1,()x f 在()0,∞-和[)∞+,0上各有一个零点,符合题意;③当0>a 时,作出函数()x f 的大致图象,如图2,()x f 在[)∞+,0上没有零点.若()x f 在()0,∞-上有两个零点,则符合题意,此时必须满足()011<-=-a f ,解得1>a .综上,得0<a 或1>a ,故选A.8.B 解析:∵b a 22+与b 垂直,∴()022=⋅+b b a ,化简得222b b a -=⋅.设b a ,的夹角为θ,则21cos -=⋅⋅=ba b a θ.∵[]πθ,0∈,∴32πθ=.9.B解析:由题意,得()()()0,,00,2c F b B a A ,,-,则直线2BF 的方程为0=-+bc cy bx ,∴点A 到直线2BF 的距离()321622=+=+--=c a a bc b bc abd ①.由21F PF ∆的周长为16,得16222121=+=++c a F F PF PF ,即8=+c a ②联立①②解得a b 322=③∵222c a b -=,∴a c 31=④.联立②④,解得26==c a ,,∴24=b ,故椭圆E 额标准方程为1323622=+y x .10.D 解析:由n n n n a S S S -=+++1232,得()n n n n n a S S S S --=-+++1122,即122++=+n n n a a a ,∴数列{}n a 是等差数列,设公差为d ,则由7264=-a a 和344=S 得⎩⎨⎧=+=+1732711d a d a ,解得⎩⎨⎧==341d a ,∴()13314+=⨯-+=n n a n .由202313=+n ,得674=n .11.B 解析:∵()30=f ,∴23cos =ϕ.∵0<<-ϕπ,∴6πϕ-=.当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡--∈-6,66πωπππωx ,∵()x f 在[]π,0上有且只有三个极值点,∴ππωππ362<-≤得619613<≤ω,∴根据图象可以判断,()x f 在[]π,0上有两个极大值点,一个极小值点,∴①错误,②错误;当⎪⎭⎫⎝⎛∈5,0πx 时,6566ππωπωππ-<-≤-,显然065>-ππω,不符合题意∴③错误;由Z ∈ω得3=ω,∴()⎪⎭⎫ ⎝⎛-=63cos 2πx x f ,令Z k k x ∈+=-,263πππ,得Z k k x ∈+=,923ππ,当0=k 时,92π=x ,∴④正确.故选B.12.C 解析:如图,∵ABC P -为正三棱锥,P AC PBC P AB ∆≅∆≅∆,7==BE AD .取线段PE 的中点F ,连接AF DF ,,∵D 为PB 的中点,∴BE DF ∥,BE DF 21=.∵BE AD ⊥,∴DF AD ⊥.在ADF Rt ∆中,72==DF AD ,由勾股定理,得235=AF .设x P A APB ==∠,θ.在P AD ∆中,由余弦定理的推论,得222745212741cos x xx x x -=⋅-+=θ①同理,在P AF ∆中,由余弦定理的推论,得222235817412435161cos x xx x x -=⋅-+=θ②.联立①②,解得32=x ,32cos =θ.在P AB ∆中,由余弦定理,得()()832323223232cos 222222=⨯⨯⨯-+=∠⋅⋅-+=APB PB P A PB P A AB ,∴22=AB .取ABC ∆的中心1O ,连接11AO PO ,,则⊥1PO 平面ABC ,三棱锥ABC P -的外接球球心O 在1PO 上,连接OA ,设外接球半径为R .在1P AO Rt ∆中,R OA =,36232231=⨯=AB AO ,∴()321236232222121=⎪⎪⎭⎫ ⎝⎛-=-=AO P A PO ,∴R R PO OO -=-=321211,∴21212AO OO AO +=,即2223623212⎪⎪⎭⎫ ⎝⎛+-=R R ,解得7213=R ,∴所求外接球的表面积为ππ710842=R .二、填空题13.01=--y x 解析:2ln 1xxy -=',当1=x 时,1='y .又当1=x 时,0=y ,∴曲线xxy ln =在1=x 处的切线方程为1-=x y ,即01=--y x .14.4-解析:设等比数列{}n a 的公比为()0<q q ,将22=a 代入123+=S a ,得1222++=qq ,∴02322=--q q ,解得21-=q 或2=q (舍去),∴41-=a .15.1473解析:如图,连接C D C A AC 11,,,∵O 为AC 的中点,E 是棱1AA 的中点,∴C A OE 1∥.∵11D A AD ∥,∴C A D 11∠或其补角为异面直线EO 与AD 所成的角.不妨设1=AD ,则211111=====DD AA CD AD D A ,.在ADC ∆中,由余弦定理得:32111211120cos 22222=⎪⎭⎫⎝⎛-⨯⨯⨯-+=︒⋅-+=DC AD DC AD AC .∵1111D C B A ABCD -为直四棱柱,∴⊥1AA 平面ABCD .又⊂DC AC ,平面ABCD ,∴DC AA AC AA ⊥⊥11,.∵11AA DD ∥,∴DC DD ⊥1,∴()732222211=+=+=AC AA C A ,512222211=+=+=DC DD C D 在C D A 11∆中,由余弦定理的推论得:14737125712cos 111212121111=⨯⨯-+=⋅-+=∠C A D A C D C A D A C A D .16.2解析:如图,连接MI GM ,并延长,与21F F 分别交于点D O ,.设双曲线C 的焦距为c 2.由题意得c GI 61=.∵21F F GI ∥,且G 为重心,则32=ODGI ,∴4c OD =.∵I 为21F MF ∆的内心,∴MD 为21MF F ∠的平分线,∴35212121===∆∆DF D F S S MF MF MDF D MF ,∴2135MF MF =.又a MF MF 221=-,∴a MF a MF 3521==,.设21F MF ∆的内切圆半径为r ,则M 到x 轴的距离为r 3,∵r F F S F MF 3212121⋅⋅=∆,()r F F MF MF S F MF ⋅++⋅=∆21212121,∴2121213F F MF MF F F ++=,∴a c 2=,∴双曲线C 的离心率2==ace .三、解答题(一)必考题17.解:(1)由频率分布直方图,得()150001.0006.02003.0002.0=⨯++++a ,解得004.0=a .设中位数为t ,专项贷款金额在[0,150)内的频率为0.45,在[150,200)内的频率为0.3,∴中位数t 在[150,200)内,∴()05.0006.0150=⨯-t ,解得158≈t ,∴估计这120家中小微企业的专项贷款金额的中位数为158万元.(2)①由题意,得抽取比例为6112020=,专项贷款金额在[200,300]内的中小微企业有()30001.0004.050120=+⨯⨯家,∴应抽取56130=⨯家,∴5=m .②在抽取5家中小微企业中,专项贷款金额在[200,250)内的有4545=⨯家,记为D C B A ,,,,专项贷款金额在[250,300]内的有1515=⨯家,记为E .从这5家中小微企业中随机抽取3家的可能情况为CDE BDE BCE BCD ADE ACE ACD ABE ABD ABC ,,,,,,,,,,共10种,其中这3家中小微企业的专项贷款金额都在[200,250)内的情况为BCD ACD ABD ABC ,,,,共4种,∴所求概率52104==P .18.解:(1)∵ABC ∆的面积为3,∴3sin 21=C ab ,即32sin =C ab ①由余弦定理的推论,得abc b a C 2cos 222-+=.∵12222=-+c b a ,∴6cos =C ab ②.易知2π≠C ,①÷②,得33tan =C .∵()π,0∈C ,∴6π=C .(2)∵6π=C ,∴23cos =C ,即()23cos =+-B A ,∴23sin sin cos cos -=-B A B A .又33cos cos -=B A ,∴63sin sin =B A .由正弦定理得c CcB b A a 2sin sin sin ===,∴B c b A c a sin 2sin 2==,.由(1),知32sin =C ab ,∴34=ab ,∴34sin sin 42=B A c ,即23sin sin cB A =,∴6332=c ,解得6=c .19.解:(1)∵11112141BB AA AA AC AB AA AE ====,,,∴12121BB AB AB AE ==,,∴1BB ABAB AE =.∵111C B A ABC -为直三棱柱,∴侧面11A ABB 为矩形,∴︒=∠=∠9011ABB AB A ,∴1~BAB AEB ∆∆,∴AEB BAB ∠=∠1.又︒=∠+∠90AEB EBA ,∴︒=+∠901BAB EBA ,∴1AB BE ⊥.∵⊥1AA 平面ABC ,⊂AC 平面ABC ,∴AC AA ⊥1.又⊂=⊥11AA A AB AA AB AC ,, 平面11A ABB ,∴⊥AC 平面11A ABB ,∵⊂BE 平面11A ABB ,∴BE AC ⊥.∵⊂=11AB A AC AB , 平面C AB 1,⊂AC 平面C AB 1,∴⊥BE 平面C AB 1.(2)连接AF ,∵⊄111AA BB AA ,∥平面11B BCC ,⊂1BB 平面11B BCC ,∴∥1AA 平面11B BCC ,∴三棱锥DEF B -的体积CD S V V V V ABF ABF D BDF A BDF E DEF B ⋅====∆----31.∵︒=∠==902BAC AC AB ,,F 为BC 的中点,∴BC AF BC ⊥=,22,∴2==BF AF ,∴1222121=⨯⨯=⋅⋅=∆AF BF S ABF ,∴三棱锥DEF B -的体积32213131=⨯⨯=⋅=∆-CD S V ABF DEF B .20.解:(1)由题意,知()x f 的定义域为()∞+,0,当21e a =时,()()()222222ln 1ln e x x e x e x f e x x e x f +⎪⎪⎭⎫⎝⎛+-='+=,.令()x e x x g 2ln 1+-=,则()0122<--='xe x x g ,∴()x g 在()∞+,0上单调递减.∵()02=eg ,∴当()2,0e x ∈时,()0>x g ,从而()0>'x f ;当()+∞∈,2e x 时,()0<x g ,从而()0<'xf ,∴()x f 的单调递增区间为()2,0e ,单调递减区间为()+∞,2e.(2)函数()ax x f y 1+=有两个不同的零点等价于()01=+axx f 有两个不同的解,等价于()011ln =++x ax 有两个不同的解.令()()11ln ++=x ax x h ,()+∞∈,0x ,则()()2ln +='x a x h .由()0='x h ,得21ex =.又0>a ,∴当⎪⎭⎫ ⎝⎛∈21,0e x 时,()0<'x h ;当⎪⎭⎫⎝⎛+∞∈,12e x 时,()0>'x h ,∴()x h 在⎪⎭⎫ ⎝⎛21,0e 上单调递减,在⎪⎭⎫⎝⎛+∞,12e 上单调递增,∴()22min 11e a e h x h -=⎪⎭⎫⎝⎛=.①当012≥-ea 即20e a ≤<时,()x h 至多有一个零点,不符合题意;②当012<-e a 即2e a >时,012<⎪⎭⎫ ⎝⎛e h ,()011>+=a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛+∞,12e 上有且只有一个零点.∵2e a >,∴22111e a a <<,且a aa a h ln 2112-+=⎪⎭⎫ ⎝⎛.令()x x x ln 21-+=ϕ,则()xx x 2-='ϕ,∴当()+∞∈,2x 时,()0>'x ϕ,∴()x ϕ在()∞+,2上单调递增.∵22>>e a ,∴()()04ln 32>-=>ϕϕa ,∴012>⎪⎭⎫⎝⎛a h .由单调性和函数零点存在定理,知()x h 在⎪⎭⎫⎝⎛21,0e 上有且只有一个零点.∴当2e a >时,()x h 有两个不同的零点,即()axx f y 1+=有两个不同的零点,符合题意.综上,a 的取值范围是()+∞,2e .21.解:(1)设()B B y x B ,,由BA MB =得B 诶线段MA 的中点.∵⎪⎭⎫ ⎝⎛-0,2p M ,∴⎪⎩⎪⎨⎧=-=02242y y p x B B ,∴⎪⎪⎩⎪⎪⎨⎧=-=2420y y p x B B ,即⎪⎭⎫ ⎝⎛-2,420y p B ,把⎪⎭⎫ ⎝⎛-2,420y p B 代入px y 22=中,得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛422220p p y ,把()0,4y A 代入px y 22=中,得p y 820=,∴p p p 2422=⎪⎭⎫⎝⎛-.又0>p ,∴4=p ,∴抛物线C 的方程为x y 82=.(2)由题意,知直线l 的斜率存在且不为0,∵()02,-M ,∴可设直线l 的方程为2-=my x .设()()2211,,y x B y x A ,,则点()11,y x P -.由⎩⎨⎧=-=xy my x 822消去x 得01682=+-my y ,∴0>∆,根据根与系数的关系得1682121==+y y m y y ,.直线BP 的斜率12212212121288y y y y y y x x y y k -=-+=-+=,直线BP 的方程为()21228x x y y y y --=-,∴()()()221222122122128181********y y y y y y y x y y y y y y x ++--=+---=()28112+-=y y y ,即直线BP 的方程可表示为()28112+-=y y y x .∴直线BP 过定点,且定点坐标为()02,.(二)选考题22.解:(1)∵⎪⎭⎫ ⎝⎛+=4sin 22πθρ,∴θθρcos 2sin 2+=,即θρθρρcos 2sin 22+=.又θρcos =x ,θρsin =y ,222ρ=+y x ,∴曲线C 的直角坐标方程为02222=--+y x y x .(2)依题意,将直线l 的参数方程代入曲线C 的直角坐标方程得:()043cos 2sin 2=-+-t t αα.设点N M ,所对应的参数分别为21,t t ,则43cos 2sin 2121-=+=+t t t t ,αα.∵点P 的直角坐标为⎪⎭⎫ ⎝⎛210,,∴1t PM =,2t PN =.∵021<t t ,∴2121t t t t PN PM +=-=-()ϕααα+=+=sin 5cos 2sin ,其中552sin 55cos ==ϕϕ,.由()03cos 2sin 2>++=∆αα,得R ∈α,∴当()1sin ±=+ϕα时,PN PM -最大,且最大值为5.23.解:(1)∵c b a ,,都是正实数,∴02>≥+ab b a ,02>≥+bc c b ,∴()()bc ab c b b a 22⋅≥++,当且仅当1===c b a 时,等号成立,即()()ac b c b b a 4≥++.又∵1=ac ,∴()()b c b b a 4≥++.(2)∵1112121=++++c b a ,∴12212422=++++cb a .由柯西不等式,得()()[]()22122212142221242++≥⎪⎭⎫⎝⎛++++++++c b a c b a ,即()22215222+≥+++c b a ,即222+≥++c b a ,当且仅当()c b a 21222=+=+,即222222+===c b a ,,时等号成立,∴c b a ++的最小值为222+.。
四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题(含解析)

四川省成都市石室中学2023-2024学年高三上学期开学考试文科数学试题学校:___________姓名:___________班级:___________考号:___________. .. ..已知实数,x y 满足x a ,则下列关系式恒成立的是(.221111x y >++ln 2(1)x +>ln 2(yA .14B .128.已知函数()sin(4)(0f x A x ϕ=+<于直线π24x =-对称,将()f x 图象上所有点的纵坐标保持不变,得到函数()g x 的图象,则()g x 在区间A .12B .1二、填空题三、解答题(1)求证:AP CP ⊥;(2)求三棱锥P ADE -的体积.19.已知某绿豆新品种发芽的适宜温度在究温度x (℃)与绿豆新品种发芽数其中24y =,71()()70i i i x x y y =--=∑(1)运用相关系数进行分析说明,是否可以用线性回归模型拟合参考答案:8.C【分析】根据已知条件求得求法求得正确答案.sin πA ϕ⎧=⎪因为M 为双曲线右支上一点,设12,MF m MF n ==,则m -故222224,m n mn a m +-=∴+在12F MF △中,2121|||F F MF =15.0【分析】设()()1122,,,A x y B x y ,联立直线与抛物线方程可得积的坐标运算公式求MA MB ⋅的值【详解】解:如图,设()11,,A x y B y y -317.(1)见解析(2)n T =【详解】试题分析:(1)题中所给的递推关系整理可得:{}n a n -是首项为2,公比为19.(1)可以用线性回归方程模型拟合(2)5722ˆyx =-,种子的发芽颗数为【分析】(1)根据已知数据代入相关系数公式计算即可作出判断;。
高三文科数学试卷(含答案)经典题

高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。
高三文科数学题试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,无理数是()A. √4B. 2πC. 3.14D. -2/32. 已知函数f(x) = x² - 4x + 3,则f(2)的值为()A. -1B. 1C. 3D. 53. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 20,则公差d为()A. 2B. 3C. 4D. 54. 若log2x + log2(x + 2) = 3,则x的值为()A. 2B. 4C. 8D. 165. 下列函数中,奇函数是()A. f(x) = x²B. f(x) = x³C. f(x) = x⁴D. f(x) = |x|6. 已知复数z = 1 + i,则|z|的值为()A. √2B. 2C. √3D. 37. 若sinα = 1/2,则cosα的值为()A. √3/2B. -√3/2C. 1/2D. -1/28. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°9. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a/c > b/cD. 若a > b,则ac > bc(c > 0)10. 已知等比数列{an}的前n项和为Sn,若a1 = 1,S3 = 9,则公比q为()A. 2B. 3C. 4D. 611. 若sinα = 1/3,cosα = 2√2/3,则tanα的值为()A. 2√2B. √2/2C. √2/6D. 2/√212. 下列函数中,有界函数是()A. f(x) = x²B. f(x) = sinxC. f(x) = |x|D. f(x) = x³二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数f(x) = 2x - 3,若f(x) > 1,则x的取值范围是__________。
高三文科数学高考复习试题(附答案)

高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
(完整版)高三文科数学试题
高三文科数学试题(考试时间为120 分钟,共150 分)第Ⅰ卷一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1. 已知会集M x ( x 2)(x 1)0 , N x x 10 ,则 M N =()A .(1,2)B.(11), C .(2,1) D .(2, 1)2..复数5i()2i1A .2 iB .1 2i C.2 i D .1 2i3. 在独立性检验中,统计量K 2有两个临界值: 3.841 和 6.635 ;当K2> 3.841 时,有 95%的掌握说明两个事件有关,当K2> 6.635时,有 99% 的掌握说明两个事件有关,当K 2 3.841时,认为两个事件没关 .在一项打鼾与患心脏病的检查中,共检查了2000 人,经计算的 K 2=20.87,依照这一数据解析,认为打鼾与患心脏病之间()A .有 95%的掌握认为两者有关B .约有 95% 的打鼾者患心脏病C .有 99%的掌握认为两者有关D .约有 99% 的打鼾者患心脏病4.已知椭圆x2y2F 1、 F2, M 是椭圆上一点, N 是 MF 1的中点,161 的左右焦点分别为12若 ON1,则 MF1的长等于()A 、 2B、 4C、 6 D 、 5x+ y≥05. 在平面直角坐标系中,不等式组x- y+ 4≥0表示的平面地域面积是()x≤19A . 3B . 6C .2D. 96. l 是某 参加 2007 年高考的学 生身高条形 , 从左到右的各 条 形 表 示的 学 生 人 数 依 次A 1 ,、 A 2 、 ⋯ 、 A 10 。
(如 A 2表示身高 ( 位: cm) 在 [150 ,155) 内的学生人数 ) . 2 是 l 中身高在必然范 内学生人数的一个算法流程 . 要 身高在160 ~ 180cm( 含 160cm ,不含 180cm) 的 学生人数,那么在流程 中的判断 框内 填写的条件是A.i<9B.i<8C.i<7D.i<6()7.一个几何体的三 如 所示,其中正 是一个正三角形, 个几何体的 ( )A .外接球的半径3B .表面731331 11C .体3D .外接球的表面 4163正视图 侧视图8.一个球的表面 等于,它的一个截面的半径,球心到 截面的距离( )A .3B .C . 1D . 31俯视图225π 5π9.已知角 α的 上一点的坐sin6 ,cos 6, 角 α的最小正()5π2π5π11πA. 6B. 3C. 3D. 610 . 双曲 x2y 21(a 0, b 0) 的左焦点 F ( c,0)( c 0)作 x 2y 2 a 2 的切a 2b 24 ,切点 E ,延 FE 交双曲 右支于点P ,若 OFOP2OE , 双曲 的离心率()A .2B .10C . 10D . 105211.a1 , 关于 x 的不等式 a( x a)( x1) 0 的解集是 ()a(A) { x | xa ,或 x 1}(B) { x | x a}(C) { x | xa ,或 x 1 }(D) { x | x 1}aaa 12. 已知 a n3( n N * ) , 数列 { a n } 的前 n 和 S n ,即 S na 1 a 2a n ,2n5使 S n0 的 n 的最大()第Ⅱ卷本卷包括必考和考两部分。
高三文科数学试卷带答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. 3/5C. √9/16D. √2答案:D解析:无理数是不能表示为两个整数比的实数,只有√2是无理数。
2. 函数y=2x+1在定义域内是()A. 增函数B. 减函数C. 奇函数D. 偶函数答案:A解析:函数的斜率为正,所以是增函数。
3. 已知向量a=(2, -3),向量b=(4, 6),则向量a与向量b的夹角是()A. 0°B. 90°C. 180°D. 120°答案:D解析:向量a与向量b的点积为24 + (-3)6 = -12,向量a的模长为√(2^2 + (-3)^2) = √13,向量b的模长为√(4^2 + 6^2) = √52。
点积公式为a·b =|a||b|cosθ,所以cosθ = -12/(√13√52) ≈ -0.5,夹角θ ≈ 120°。
4. 已知函数f(x) = x^2 - 4x + 3,其对称轴是()A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:二次函数的对称轴为x = -b/2a,所以对称轴为x = -(-4)/21 = 2。
5. 已知等差数列{an}的第一项为2,公差为3,则第10项是()A. 25B. 28C. 31D. 34答案:D解析:等差数列的通项公式为an = a1 + (n-1)d,所以第10项为2 + (10-1)3 = 2 + 27 = 29。
6. 若复数z满足|z-1| = |z+1|,则z在复平面上的位置是()A. 实轴B. 虚轴C. 第一象限D. 第二象限答案:A解析:|z-1| = |z+1|表示z到点1和点-1的距离相等,因此z在实轴上。
7. 已知圆C的方程为x^2 + y^2 = 25,点P(3, 4)到圆C的最短距离是()A. 4B. 5C. 6D. 7答案:B解析:圆心到点P的距离为√(3^2 + 4^2) = 5,圆的半径为5,所以最短距离为5 - 5 = 0。
内蒙古呼和浩特市2024届高三第一次质量监测文科数学试题(含解析)
内蒙古呼和浩特市2024届高三第一次质量监测文科数学试题学校:___________姓名:___________班级:___________考号:___________A .π4B .3π44.在ABC 中,内角A ,B ,C π5C =,则B ∠=( )A .π5B .π155.已知()()()(313f x x x a =+-A .2-B .1-二、填空题三、解答题17.某教育集团为了办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(满意度最高120分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低).去年测评的结果(单位:分)(1)求证:平面BCQ ⊥平面ACQ (2)若Q 为靠近P 的一个三等分点,20.设函数()e xf x ax =-,(1)当1a =时,求函数()f x 在参考答案:故选:D 7.D【分析】根据几何概型的概率公式,由面积之比即可求解【详解】(){}22,4x y x y +≤表示圆心为原点,半径为(){}22,14x y xy ≤+≤表示圆心为原点,半径为所以概率为4ππ34π4-=,故选:D8.A【分析】应用零点存在定理结合函数单调性列不等式求解即可f x=【详解】若函数()2x()2f x a2x=--单调递增目标函数2z x y =-,即2y x z =-表示斜率为画直线0:2l y x =,平移直线0l 到直线1l ,当直线min 2142z =⨯-=-,所以2z x y =-的最小值为2-.故答案为:2-14.2-/0.4-17.(1)甲、乙的平均数都为(2)乙的人民满意度比较好【分析】(1)利用平均数和方差的运算公式进行求解即可;(2)根据方差的性质进行求解即可(1212OA OB x x y y ⋅=+=u u r u u u r由图可知,当1C 与2C 只有一个公共点,直线C 设直线1C 的方程为()2y k x =+,且0k >,即2k k +2由图可得函数()f x 的最小值为(2)令()4f x =,可得x ⎧⎨-⎩。
2023年高三4月学科网大联考(全国乙卷)文科数学参考答案
2023年高三4月大联考(全国乙卷) 文科数学·全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.B 【解析】由题意,得2=1i i i 11z ,则||z ,故选B . 2.C 【解析】由题意,知2{|0e }A x x ,{|31}B x x ,则{|01}A B x x ,故选C . 3.D 【解析】由题意,知1(,0)2F ,所以3||3||2PF OF .设00(,)P x y ,因为点P 在第一象限,所以00,x00y ,则013||22PF x,所以01x ,所以0y ,故点P 的坐标为.故选D . 4.C 【解析】由表中数据,得 4.5x ,而样本点的中心(x y ,在回归直线ˆ20.8yx 上,则9.8y ,所以5 6.6910.4159.8658.8m ,解得12.8m ,故选C .5.C 【解析】设切点为300(,2)x x ,∵32y x ,∴26y'x ,∴切线的斜率320002 =61x k x x ,化简,得200(2x x3)0 ,∴00302xx或,∴可作2条切线,故选C . 6.B 【解析】如图,设H 为底面正方形ABCD 的中心,G 为BC 的中点,连接,,PH HG PG ,则,PH HG ,PG BC 所以PG 13.16 ,则14422PBC ABCDBCPGS PG SAB BC AB△正方形26.321.3719.2,故选B .7.A 【解析】23,32m n m n ,3223=3+2733m mn n,当且仅当323=3m n时取等号,故选A . 8.B 【解析】由11n T ,,得332,12a T ;由112n ,得232212232a T ,; 由213n ,得132********a T ,; 由314n ,得0321021222264a T ,. 若选A ,D ,则输出T =8,所以A ,D 错误;若选C ,则输出32T ,所以C 错误;对于B ,在4n 时,021a ,输出64T ,故选B.9.A 【解析】∵cos 2sin ①,sin 2cos 1 ②,∴22 ①②,得54cos sin 4sin cos 3 ,∴1sin()2,∴os()c tan() A. 10.C 【解析】由题意,得变换后的函数解析式为cos()y x ,该函数图象与y 轴交于点1(0)2,,即1cos =2.因为22,所以π=3.因为0x 在函数cos()y x 的单调递增区间上, 所以0[2ππ2π]k k ,,k Z ,即[2ππ,2π]k k ,k Z ,且ππ22,令=0k ,则π3, 所以πcos()3y x .当5π9x 时,0y ,则5ππcos()093 .因为5π9x 是函数cos()y x 在单调递减区间上的一个零点,所以5πππ2π932k ,k Z ,所以318=25k ,k Z .设函数cos()y x 的最小正周期为T ,则π5π>29T ,所以905 ,所以3=2.故选C . 11.D 【解析】设()M x y ,,由22||+||10MA MB ,得2222(1)(1)10x y x y ,化简得224x y ,即点M 的轨迹是以0(0)O ,为圆心,2为半径的圆.因为||2CN ,所以N 点的轨迹是以8(6)C ,为圆心,2为半径的圆, 所以||MN 的最大值为||414OC .故选D.12.D 【解析】∵3751252=128 ,∴3272(5)(2) ,即6277524 ,∴6ln 57ln 4 ,∴ln 57ln 46 ,∴47log 56,∴z x . 令2(1)()ln 1x f x x x ,则22214(1)()0(1)(1)x f x x x x x ,∴()f x 在(0,+) 上单调递增,∴19()(1)05f f ,即192(1)191975ln ln 01955615,∴y z , ∴y z x ,故选D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳市高2015级第三次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.ABDCC ADABC DB二、填空题:本大题共4小题,每小题5分,共20分.13.1(0)8-, 14.2 15.81256π16.210三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)由已知a 1a n =S 1+S n ,可得 当n =1时,a 12=a 1+a 1,可解得a 1=0,或a 1=2, ……………………………2分由{a n }是正项数列,故a 1=2.…………………………………………………3分当n ≥2时,由已知可得2a n =2+S n ,2a n -1=2+S n -1,两式相减得,2(a n -a n -1)=a n .化简得a n =2a n -1, ……………………………6分∴ 数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .∴ 数列{a n }的通项公式为a n =2n . …………………………………………8分(Ⅱ)∵ b n =32log 2n a ,代入a n =2n 化简得b n =n -5, ………………………9分 显然{b n }是等差数列,…………………………………………………………10分∴ 其前n 项和T n =292)54(2n n n n -=-+-.…………………………………12分 18.解:(Ⅰ)由题得蜜柚质量在[17502000),和[20002250),的比例为2∶3,∴ 应分别在质量为[17502000),,[20002250),的蜜柚中各抽取2个和3个.……………………………………………2分 记抽取质量在[17502000),的蜜柚为A 1,A 2,质量在[20002250),的蜜柚为B 1,B 2,B 3,则从这5个蜜柚中随机抽取2个的情况共有以下10种:A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,B 1B 2,B 1B 3,B 2B 3,其中质量均小于2000克的仅有A 1A 2这1种情况,…………………………5分 故所求概率为101.………………………………………………………………6分 (Ⅱ)方案A 好,理由如下:…………………………………………………7分由频率分布直方图可知,蜜柚质量在)17501500[,的频率为250×0.0004=0.1, 同理,蜜柚质量在)20001750[,,)22502000[,,)25002250[,,)27502500[,,]30002750[,的频率依次为0.1,0.15,0.4,0.2,0.05. …………………8分若按A 方案收购:根据题意各段蜜柚个数依次为500,500,750,2000,1000,250,于是总收益为 (150017502+×500+175020002+×500+200022502+×750+225025002+×2000+250027502+×1000+275030002+×250)×40÷1000 =2502×250×[(6+7)×2+(7+8)×2+(8+9)×3+(9+10)×8+(10+11)×4+(11+12)×1]× 40÷1000=25×50 [26+30+51+152+84+23]=457500(元). ……………………………………………………………10分若按B 方案收购:∵ 蜜柚质量低于2250克的个数为 (0.1+0.1+0.3)×5000=1750,蜜柚质量低于2250克的个数为5000-1750=3250,∴ 收益为1750×60+325080=250×20×[7×3+13×4]=365000元.∴ 方案A 的收益比方案B 的收益高,应该选择方案A .…………………12分19.解:(Ⅰ)证明:连接AC ,与交BD 于点N ,连接MN . 由ABCD 是菱形,知点N 是AC 的中点.…1分又∵ 点M 是PC 的中点, ∴ MN //P A , ………………………………3分而MN ⊂面MDB ,P A ⊄面MDB , ∴ P A //面MDB . ……………………………5分 (Ⅱ) ∵ P A ⊥面ABCD , ∴ P A ⊥AB ,P A ⊥AD .又∵ AB=AD ,∴ Rt △P AD ≌Rt △P AB ,于是PB=PD .……………………………………7分 由已知PB ⊥PD ,得2PB 2=BD 2. ……………………………………………8分令菱形ABCD 的边长为a ,则由∠BAD =32π,可得BD =a 3, ∴ PB =a 26,P A =a 22. ……………………………………………………9分 ∴ V P -ABD=231113322ABD S PA a ∆⋅=⨯= 解得a =2,于是P A =222=a . ……………………………………………12分 20.解:(Ⅰ)设F 2(c ,0),由题意可得22a c M =a b 2. ∵ OH 是△F 1F 2M 的中位线,且OH ∴ |MF 2|=22,即ab 2=22,整理得a 2=2b 4.① …………………………2分 又由题知,Q 为椭圆C 的上顶点,∴ △F 1F 2Q 的面积=1221=⨯⨯b c ,整理得bc =1,即b 2(a 2-b 2)=1,② ……3分 联立①②可得2b 6-b 4=1,变形得(b 2-1)(2b 4+b 2+1)=0,解得b 2=1,进而a 2=2,∴ 椭圆C 的方程为1222=+y x . ……………………………………………5分 (Ⅱ)由|OB OA 2+|=|-|可得|2+|=|2-|, 两边平方整理得=0OA OB ⋅u u u r u u u r .……………………………………………………6分 直线l 斜率不存在时,A (-1,22),B (-1,22-),不满足=0OA OB ⋅u u u r u u u r .…7分 直线l 斜率存在时,设直线l 的方程为1-=my x ,A (x 1,y 1),B (x 2,y 2),联立⎪⎩⎪⎨⎧=+-= 12122y x my x 消去x ,得(m 2+2)y 2-2my -1=0, ∴ y 1+y 2=222+m m ,y 1y 2=212+-m ,(*)………………………………………9分 由=0OA OB ⋅u u u r u u u r 得02121=+y y x x .将x 1=my 1-1,x 2=my 2-1代入整理得(my 1-1)(my 2-1)+y 1y 2=0,P D M C A B N展开得m 2y 1y 2-m (y 1+y 2)+1+y 1y 2=0,将(*)式代入整理得222102m m -+=+, 解得m=, ……………………10分 ∴ y 1+y 2=5±,y 1y 2=25-, △ABO 的面积为S =11212OF y y ⨯⨯-=112⨯⨯, 代入计算得S即△ABO. ……………………………………………………12分 21.解:(Ⅰ)当a =1时,2221441()1x x f x x x x -+'=+-=,………………………1分 由题意知x 1、x 2为方程x 2-4x +1=0的两个根,根据韦达定理得121241x x x x +=⋅=,.于是x 12+x 22=(x 1+x 2)2-2x 1x 2=14. ……………………………………………4分(Ⅱ)∵ 22244()a ax x a f x a x x x -+'=+-=, 同(Ⅰ)由韦达定理得121241x x x x a +=⋅=,,于是121x x =. ……………5分 ∵ 21221121()()4ln 4ln a a f x f x ax x ax x x x -=---++, ∴ 21()()f x f x-22224ln a a ax x x x =---+ 222228ln a ax x x =-- 22212()8ln a x x x =--,…………………………………………7分 由121241x x x x a+=⋅=,整理得221222244411x a x x x x x ===+++,代入得 21()()f x f x -22222281()8ln 1x x x x x =--+ 222228(1)8ln 1x x x -=-+,………………………9分 令222=(1)t x e ∈, ,于是可得88()4ln 1t h t t t -=-+, 故222221644(21)4(1)()0(1)(1)(1)t t t h t t t t t t t --+--'=-==<+++ ∴ h (t )在2(1)e ,上单调递减,…………………………………………………11分∴ 21216()()(0)1f x f x e -∈-+,. ………………………………………………12分 22.解:(Ⅰ)由题可变形为ρ2+3ρ2cos 2θ=16,∵ ρ2=x 2+y 2,ρcos θ=x ,∴ x 2+y 2+3x 2=16,∴ 221416x y +=.…………………………………………………………………5分 (Ⅱ)由已知有M (2,0),N (0,4),设P (2cos α,4sin α),α∈(0,2π).于是由OMPN OMP ONP S S S ∆∆=+Y 1124sin 42cos 22αα=⋅⋅+⋅⋅ 4sin 4cos αα=+)4πα=+, 由α∈(0,2π),得4πα+∈(4π,34π),于是)4πα+≤∴ 四边形OMPN 最大值10分23.解:(Ⅰ)f (x )=|x +a |+|x -3a |≥|(x +a )-(x -3a )|=4|a |,有已知f (x )min =4,知4|a |=4,解得 a =±1.……………………………………………………………………5分 (Ⅱ)由题知|m 2|-4|m |≤4|a |,又a 是存在的,∴ |m |2-4|m |≤4|a |max =12.即 |m |2-4|m |-12≤0,变形得 (|m |-6)(|m |+2)≤0,∴ |m |≤6,∴ -6≤m ≤6.…………………………………………………………………10分。