年广州市高三一模文科数学试卷及答案
广州市2020届高三年级数学(文科)一模试题(含答案)

二、填空题
13. 2
14. 1
2
15.
9
16.
1 8
,
1 2
1
1 2n
三、解答题 17. (12 分)
(1)解:由于 62.0,63.0内的频率为 0.075 0.225 0.5 0.15,…………………1 分
63.0,63.5 内的频率为 0.75 0.5 0.375, …………………………………2 分
的取值范围是
A. ,1
B. 0,1
C.
0,
1 ln 2
D.
1 ln 2
,
文科数学试题 第 2 页(共 5 页)
11.
已知
F1
,
F2
是双曲线
C
:
x2 a2
y2
1 a
0 的两个焦点,过点 F1 且垂直于 x 轴的直线
与 C 相交于 A , B 两点,若 AB 2 ,则△ ABF2 的内切圆的半径为
2
A.
3
3
B.
3
22
C.
3
23
D.
3
12. 已知正方体 ABCD A1B1C1D1 的棱长为 2 ,E ,F ,G 分别是棱 AD ,CC1 ,C1D1 的
中点,给出下列四个命题:
① EF B1C ;
② 直线 FG 与直线 A1D 所成角为 60 ;
③ 过 E , F , G 三点的平面截该正方体所得的截面为六边形;
P
(2)解法 1:因为 AC 3PB 2 ,
则 AC 2 , PB 2
3
.
3
A
O
C
广东省广州市番禺区高考数学一模试卷(文科) Word版含解析

广东省广州市番禺区高考数学一模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},则S∩T=()A.{x|﹣7<x<﹣5}B.{x|3<x<5}C.{x|﹣5<x<3}D.{{x|﹣7<x <5}2.在区间[﹣1,m]上随机选取一个数x,若x≤1的概率为,则实数m的值为()A.2 B.3 C.4 D.53.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.34.已知双曲线﹣=1的左、右焦点分别为F1、F2,且F2为抛物线y2=2px的焦点,设P为两曲线的一个公共点,则△PF1F2的面积为()A.18 B.18C.36 D.365.若实数x、y满足,则z=2x﹣y的最大值为()A.B.C.1 D.26.已知命题p:∀x∈R,x2﹣2xsinθ+1≥0;命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为()A.(¬p)∧q B.¬(p∧q) C.(¬p)∨q D.p∧(¬q)7.若函数f(x)为区间D上的凸函数,则对于D上的任意n个值x1、x2、…、x n,总有f(x1)+f(x2)+…+f(x n)≤nf(),现已知函数f(x)=sinx在[0,]上是凸函数,则在锐角△ABC中,sinA+sinB+sinC的最大值为()A.B.C.D.8.三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A.48π B.32π C.12π D.8π9.执行如图所示的程序框图,若x∈[a,b],y∈[0,4],则b﹣a的最小值为()A.2 B.3 C.4 D.510.已知向量、、满足=+,||=2,||=1,E、F分别是线段BC、CD的中点,若•=﹣,则向量与的夹角为()A.B.C.D.11.一块边长为6cm的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为()A.B.C.D.12.已知椭圆E: +=1的一个顶点为C(0,﹣2),直线l与椭圆E交于A、B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x﹣5y﹣14=0 B.6x﹣5y+14=0 C.6x+5y+14=0 D.6x+5y﹣14=0二、填空题(共4小题,每小题5分,满分20分)13.若复数a+i是纯虚数,则实数a=.14.曲线y=sinx+1在点(0,1)处的切线方程为.15.已知f(x)是定义在R上的奇函数,f(x)满足f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(37.5)等于.16.函数f(x)=sinωx+cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n﹣m的最小值为.三、解答题(共6小题,满分70分)17.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.(1)求a;(2)求sinBsinC的值.18.设等差数列{a n}的公差为d,且2a1=d,2a n=a2n﹣1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.19.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:(Ⅰ)试确定图中实数a与b的值;(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.20.如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.(Ⅰ)证明:AC⊥PB;(Ⅱ)若平面PAC⊥平面ABC,AB=2,PA⊥PC,求三棱锥P﹣ABC的体积.21.已知圆C:(x﹣6)2+y2=20,直线l:y=kx与圆C交于不同的两点A、B.(Ⅰ)求实数k的取值范围;(Ⅱ)若=2,求直线l的方程.22.已知函数f(x)=alnx+x2﹣x,其中a∈R.(Ⅰ)若a<0,讨论f(x)的单调性;(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.广东省广州市番禺区高考数学一模试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},则S∩T=()A.{x|﹣7<x<﹣5}B.{x|3<x<5}C.{x|﹣5<x<3}D.{{x|﹣7<x <5}【考点】交集及其运算.【分析】利用交集定义和不等式性质求解.【解答】解:∵集合S={x|x<﹣5或x>5},T={x|﹣7<x<3},∴S∩T={x|﹣7<x<﹣5}.故选:A.2.在区间[﹣1,m]上随机选取一个数x,若x≤1的概率为,则实数m的值为()A.2 B.3 C.4 D.5【考点】几何概型.【分析】利用几何概型的公式,利用区间长度的比值得到关于m 的等式解之.【解答】解:由题意x≤1的概率为,则,解得m=4;故选C.3.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3【考点】分段函数的解析式求法及其图象的作法.【分析】考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.【解答】解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.4.已知双曲线﹣=1的左、右焦点分别为F1、F2,且F2为抛物线y2=2px的焦点,设P为两曲线的一个公共点,则△PF1F2的面积为()A.18 B.18C.36 D.36【考点】双曲线的简单性质.【分析】求出P的坐标,即可求出△PF1F2的面积.【解答】解:由题意,=6,p=12,双曲线方程与抛物线方程联立,可得P(9,6),∴△PF1F2的面积为=36,故选D.5.若实数x、y满足,则z=2x﹣y的最大值为()A.B.C.1 D.2【考点】简单线性规划.【分析】作出可行域,变形目标函数,平移直线y=2x可得结论.【解答】解:作出约束条件,所对应的可行域(如图△ABO),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A时,直线的截距最小,z取最大值,由可得,A(,)代值计算可得z=2x﹣y的最大值为1,故选:C.6.已知命题p:∀x∈R,x2﹣2xsinθ+1≥0;命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为()A.(¬p)∧q B.¬(p∧q) C.(¬p)∨q D.p∧(¬q)【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:关于命题p:∀x∈R,x2﹣2xsinθ+1≥0,△=4sin2θ﹣4≤0,故p是真命题,关于命题q:∃α,β∈R,sin(α+β)≤sinα+sinβ,是真命题,∴(¬p)∨q是真命题,故选:C.7.若函数f(x)为区间D上的凸函数,则对于D上的任意n个值x1、x2、…、x n,总有f(x1)+f(x2)+…+f(x n)≤nf(),现已知函数f(x)=sinx在[0,]上是凸函数,则在锐角△ABC中,sinA+sinB+sinC的最大值为()A.B.C.D.【考点】三角函数的化简求值.【分析】利用凸函数对于D上的任意n个值x1、x2、…、x n,总有f(x1)+f(x2)+…+f(x n)≤nf(),将函数f(x)=sinx在[0,],sinA+sinB+sinC,得到所求.【解答】解:由已知凸函数的性质得到sinA+sinB+sinC=3sin=;所以在锐角△ABC中,sinA+sinB+sinC的最大值为;故选D.8.三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为()A.48π B.32π C.12π D.8π【考点】球的体积和表面积.【分析】以AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,由此能求出该球的表面积.【解答】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,且AB⊥BC,AB=BC=AA1=2,∴以AB,BC,AA1为棱构造一个正方体,则该三棱柱的所有顶点都在该正方体的外接球上,该球的半径R==,∴该球的表面积为S=4πR2=4π×3=12π.故选:C.9.执行如图所示的程序框图,若x∈[a,b],y∈[0,4],则b﹣a的最小值为()A.2 B.3 C.4 D.5【考点】程序框图.【分析】写出分段函数,利用x∈[a,b],y∈[0,4],即可b﹣a的最小值.【解答】解:由题意,y=,x∈[a,b],y∈[0,4],则b﹣a的最小值为2,此时区间为[0,2]或[2,4],故选A.10.已知向量、、满足=+,||=2,||=1,E、F分别是线段BC、CD的中点,若•=﹣,则向量与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意画出图形,结合•求得<,>的值,即可求出向量与的夹角.【解答】解:如图所示,•=(﹣)•(﹣)=•﹣﹣=﹣;由||=||=2,||=||=1,可得•=1,∴cos<,>=,∴<,>=,即向量与的夹角为.故选:B.11.一块边长为6cm的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正三棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】推导出PM+PN=6,且PM=PN,MN=3,PM=3,设MN中点为O,则PO⊥平面ABCD,由此能求出该容器的体积.【解答】解:如图(2),△PMN是该四棱锥的正视图,由图(1)知:PM+PN=6,且PM=PN,由△PMN为等腰直角三角形,知MN=3,PM=3,设MN中点为O,则PO⊥平面ABCD,∴PO=,∴该容器的体积为==9.故选:D.12.已知椭圆E: +=1的一个顶点为C(0,﹣2),直线l与椭圆E交于A、B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x﹣5y﹣14=0 B.6x﹣5y+14=0 C.6x+5y+14=0 D.6x+5y﹣14=0【考点】椭圆的简单性质.【分析】先由椭圆左焦点F1恰为△ABC的重心,得相交弦AB的中点坐标,再由点A、B在椭圆上,利用点差法,将中点坐标代入即可的直线l的斜率,最后由直线方程的点斜式写出直线方程即可.【解答】解:设A(x1,y1),B(x2,y2),椭圆+=1的左焦点为(﹣1,0),∵点C(0,﹣2),且椭圆左焦点F1恰为△ABC的重心∴=﹣1,=0∴x1+x2=﹣3,y1+y2=2 ①∵,,∴两式相减得: +=0将①代入得:=,即直线l的斜率为k==,∵直线l 过AB中点(﹣,1)∴直线l的方程为y﹣1=(x+)故答案为6x﹣5y+14=0,故选B.二、填空题(共4小题,每小题5分,满分20分)13.若复数a+i是纯虚数,则实数a=0.【考点】复数代数形式的乘除运算.【分析】利用纯虚数的定义即可得出.【解答】解:∵复数a+i是纯虚数,则实数a=0.故答案为:0.14.曲线y=sinx+1在点(0,1)处的切线方程为x﹣y+1=0.【考点】利用导数研究曲线上某点切线方程.【分析】先对函数y=sinx+1进行求导,再根据导数的几何意义求出曲线y=sinx+1在点x=0处的切线斜率,由点斜式方程进而可得到切线方程.【解答】解:∵y′=cosx,∴切线的斜率k=y′|x=0=1,∴切线方程为y﹣1=x﹣0,即x﹣y+1=0.故答案为:x﹣y+1=0.15.已知f(x)是定义在R上的奇函数,f(x)满足f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(37.5)等于﹣0.5.【考点】抽象函数及其应用.【分析】根据题意,由f(x+2)=﹣f(x)可得f(x+4)=﹣f(x+2)=f(x),即函数f(x)的周期为4,即有f(37.5)=f(1.5),结合题意可得f(1.5)=f[2+(﹣0.5)]=﹣f(﹣0.5),结合函数的奇偶性可得f(0.5)=﹣f(﹣0.5),进而结合函数在0≤x≤1上的解析式可得f(0.5)的值,综合即可得答案.【解答】解:根据题意,由于f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f (x),即函数f(x)的周期为4,则有f(37.5)=f(1.5+4×9)=f(1.5),又由f(x+2)=﹣f(x),则有f(1.5)=f[2+(﹣0.5)]=﹣f(﹣0.5),又由函数为奇函数,则f(0.5)=﹣f(﹣0.5),又由当0≤x≤1时,f(x)=x,则f(0.5)=0.5;则有f(37.5)=f(1.5)=﹣f(﹣0.5)=f(0.5)=0.5,故f(37.5)=0.5;故答案为:0.5.16.函数f(x)=sinωx+cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n﹣m的最小值为2π.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】将函数化简为f(x)=2sin(2ωx+)+1.的最小正周期为π,可得f(x)=2sin(2x+)+1.可知在y轴左侧的第一个零点为,右侧的第一个零点为,x∈[m,n]时,f(x)至少有5个零点,可得n﹣m的最小值.【解答】解:函数f(x)=sinωx+cosωx+1(ω>0)化简可得:f(x)=2sin(2ωx+)+1.∵最小正周期为π,即T=π,∴,可得ω=1.∴f(x)=2sin(2x+)+1.根据正弦函数的图象及性质可知:函数f(x)的y轴左侧的第一个零点为,右侧的第一个零点为,x∈[m,n]时,f(x)至少有5个零点,不妨设m=,则n=.此时n﹣m可得最小值为2π.故答案为2π.三、解答题(共6小题,满分70分)17.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.(1)求a;(2)求sinBsinC的值.【考点】余弦定理;正弦定理.【分析】(1)由题意和余弦定理列出式子,即可求出a的值;(2)由条件和正弦定理求出sinB和sinC的值,代入式子求出答案.【解答】解:(1)因为A=60°,b=5,c=4,所以由余弦定理得,a2=b2+c2﹣2bccosA=25+16﹣=21,则a=;(2)由正弦定理得,==,所以sinB==,sinC==所以sinBsinC=×=.18.设等差数列{a n}的公差为d,且2a1=d,2a n=a2n﹣1.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【分析】(1)利用递推关系、等差数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)∵等差数列{a n}的公差为d,2a n=a2n﹣1.取n=1,则2a1=a2﹣1=a1+d﹣1,与2a1=d联立,解得d=2,a1=1.∴a n=1+2(n﹣1)=2n﹣1.(2)b n===,∴数列{b n}的前n项和S n=+…+,=+…++,∴=+…+﹣=﹣,∴S n=2﹣.19.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:(Ⅰ)试确定图中实数a与b的值;(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)由甲校样本频数分布条形图能求出a,由乙校样本频率分布条形图能求出b.(Ⅱ)由样本数据能求出甲校的平均值和乙校的平均值.(Ⅲ)由样本数据可知集训的5人中甲校抽2人,分别记作E,F,乙校抽3人,分别记作M,N,Q,从5人中任选2人,利用列举法能求出两人来自同一学校的概率.【解答】解:(Ⅰ)∵测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,∴由甲校样本频数分布条形图知:6+a+33+6=60,解得a=15,由乙校样本频率分布条形图得:0.15+b+0.2+0.15=1,解得b=0.5.(Ⅱ)由数据可得甲校的平均值为==67,乙校的平均值为=90×0.15+80×0.5+60×0.2+50×0.15=73.(Ⅲ)由样本数据可知集训的5人中甲校抽2人,分别记作E,F,乙校抽3人,分别记作M,N,Q,从5人中任选2人,一共有10个基本事件,分别为:EF,EM,EN,EQ,FM<FN,FQ,MN,MQ,NQ,其中2 人来自同一学校包含中EF,MN<MQ<NQ,∴两人来自同一学校的概率p=.20.如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.(Ⅰ)证明:AC⊥PB;(Ⅱ)若平面PAC⊥平面ABC,AB=2,PA⊥PC,求三棱锥P﹣ABC的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(Ⅰ)取AC中点O,连接PO,BO,由等腰三角形的性质可得PO⊥AC,BO⊥AC,再由线面垂直的判定可得AC⊥平面POB,则AC⊥PB;(Ⅱ)由面面垂直的性质可得PO⊥平面ABC,再由已知求出三角形ABC的面积,即PO的长度,代入棱锥体积公式求得三棱锥P﹣ABC的体积.【解答】(Ⅰ)证明:如图,取AC中点O,连接PO,BO,∵PA=PC,∴PO⊥AC,又∵底面ABC为正三角形,∴BO⊥AC,∵PO∩OB=O,∴AC⊥平面POB,则AC⊥PB;(Ⅱ)解:∵平面PAC⊥平面ABC,且平面PAC∩平面ABC=AC,PO⊥AC,∴PO⊥平面ABC,又AB=2,PA⊥PC,可得PO=1,且.∴.21.已知圆C:(x﹣6)2+y2=20,直线l:y=kx与圆C交于不同的两点A、B.(Ⅰ)求实数k的取值范围;(Ⅱ)若=2,求直线l的方程.【考点】直线与圆的位置关系.【分析】(Ⅰ)根据题意可得圆心C(6,0)到直线l:y=kx的距离小于半径,由此求得k的范围.(Ⅱ)把直线l:y=kx代入圆C,化简后利用韦达定理,再根据=2,可得x2=2x1,从而求得k的值,可得直线l的方程.【解答】解:(Ⅰ)由题意可得,圆心C(6,0)到直线l:y=kx的距离小于半径,即<,求得﹣<k<.(Ⅱ)把直线l:y=kx代入圆C:(x﹣6)2+y2=20,化简可得(1+k2)x2﹣12x+16=0,∴x1+x2=,x1•x2=.若=2,则x2=2x1,则x1=,x2=,∴则x1•x2=•=,∴k=±1,故直线l:y=±x.22.已知函数f (x )=alnx +x 2﹣x ,其中a ∈R . (Ⅰ)若a <0,讨论f (x )的单调性;(Ⅱ)当x ≥1时,f (x )≥0恒成立,求a 的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性. 【分析】(I )令f′(x )=0求出f (x )的极值点,结合f (x )的定义域得出f′(x )的符号变换情况,从而得出f (x )的单调性;(II )对a 进行讨论,判断f (x )在[1,+∞)上的单调性,得出f (x )在[1,+∞)上的最小值f min (x ),即可得出结论. 【解答】解:(I )f (x )的定义域为(0,+∞),f′(x )==,令f′(x )=0得2x 2﹣x +a=0,解得x 1=,x 2=,∵a <0,∴x 1<0,x 2>0,∴当0<x <时,f′(x )<0,当x >时,f′(x )>0,∴f (x )在(0,)上单调递减,在(,+∞)上单调递增.(II )若a=0时,f (x )=x 2﹣x ,∴f (x )在[1,+∞)上单调递增,∴f min (x )=f (1)=0,符合题意.若a <0,由(I )可知f (x )在(0,)上单调递减,在(,+∞)上单调递增,当≤1即﹣1≤a <0时,f (x )在[1,+∞)上单调递增,∴f min (x )=f (1)=0,符合题意,当>1即a <﹣1时,f (x )在[1,)上单调递减,在[,+∞)上单调递增,∴f min (x )=f ()<f (1)=0,不符合题意.若a >0,令f′(x )=0得2x 2﹣x +a=0,∴当△=1﹣8a ≤0即a时,f′(x )≥0恒成立,∴f (x )在[1,+∞)上单调递增,∴f min(x)=f(1)=0,符合题意.若0,则2x2﹣x+a=0有两正实数解,x1=,x2=,∴f(x)在(0,)上单调递增,在(,)上单调递减,在(,+∞)上单调递增,∵<1,∴f(x)在[1,+∞)上单调递增,∴f min(x)=f(1)=0,符合题意,综上,a的取值范围是[﹣1,+∞).4月3日。
广州市2020届高三年级数学(文科)一模试题(含答案)

4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
x
2x y 2 e 0 . (1)求 a , b 的值;
(2)证明函数 f x 存在唯一的极大值点 x0 ,且 f x0 2 ln 2 2 .
(二)选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答. 如果多做,则按所做的 第一题计分. 22. [选修 4-4:坐标系与参数方程](10 分)
………………………………6 分
(2)解:从频率分布直方图中可得 80 个零件中尺寸在 63.0,64.5之外的零件共有
0.075 0.225 0.100 0.580 16 个,
…………………………………8 分
故从 80 个零件中随机抽取1个零件, 则所抽取的零件为二等品的概率为 P 16 0.2 . 80
的主要考查内容比照评分参考制订相应的评分细则. 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的
内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的 一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12
2
23
得 ac 3 . 由于 b 2 , 则 a2 c2 2 ac 4 ,即 a2 c2 6 .
2020年广东省广州市高考数学一模试卷和答案(文科)

2020年广东省广州市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={1,2,3,4,5,6,7},M={3,4,5},N ={1,3,6},则集合{2,7}等于()A.M∩N B.∁U(M∪N)C.∁U(M∩N)D.M∪N 2.(5分)某地区小学,初中,高中三个学段的学生人数分别为4800人,4000人,2400人.现采用分层抽样的方法调查该地区中小学生的“智慧阅读”情况,在抽取的样本中,初中学生人数为70人,则该样本中高中学生人数为()A.42人B.84人C.126 人D.196人3.(5分)直线kx﹣y+1=0与圆x2+y2+2x﹣4y+1=0的位置关系是()A.相交B.相切C.相离D.不确定4.(5分)已知函数f(x)=,则f[f()]的值为()A.4B.2C.D.5.(5分)已知向量=(2,1),=(x,﹣2),若|+|=|2﹣|,则实数x的值为()A.B.C.D.26.(5分)如图所示,给出的是计算+++…+值的程序框图,其中判断框内应填入的条件是()A.i>9B.i>10C.i>11D.i>12 7.(5分)设函数f(x)=2cos(x﹣),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值为()A.4πB.2πC.πD.8.(5分)刘徽是我国古代伟大的数学家,他的杰作《九章算术注》和《海岛算经》是我国最宝贵的数学遗产刘徽是世界上最早提出十进小数概念的人,他正确地提出了正负数的概念及其加减运算的规则.提出了“割圆术”,并用“割圆术”求出圆周率π为3.14.刘徽在割圆术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”被视为中国古代极限观念的佳作.其中“割圆术”的第一步是求圆的内接正六边形的面积,第二步是求圆的内接正十二边形的面积,依此类推.若在圆内随机取一点,则该点取自该圆内接正十二边形的概率为()A.B.C.D.9.(5分)已知sinα﹣cosα=,0<α<π,则cos2α=()A.﹣B.C.D.﹣10.(5分)已知点P(x0,y0)在曲线C:y=x3﹣x2+1上移动,曲线C在点P处的切线的斜率为k,若k∈[﹣,21],则x0的取值范围是()A.[﹣,]B.[﹣,3]C.[﹣,+∞)D.[﹣7,9] 11.(5分)已知O为坐标原点,设双曲线C:﹣=1(a>0,b >0)的左,右焦点分别为F1,F2,点P是双曲线C上位于第一象限内的点.过点F2作∠F1PF2的平分线的垂线,垂足为A,若b =|F1F2|﹣2|OA|,则双曲线C的离心率为()A.B.C.D.212.(5分)在三棱锥A﹣BCD中,△ABD与△CBD均为边长为2的等边三角形,且二面角A﹣BD﹣C的平面角为120°,则该三棱锥的外接球的表面积为()A.7πB.8πC.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知复数z=﹣i.则z2+z4=.14.(5分)已知函数f(x)=在区间(0,+∞)上有最小值4,则实数k=.15.(5分)已知直线a⊥平面α,直线b⊂平面β,给出下列5个命题①若α∥β,则a⊥b;②若α⊥β,则a⊥b:③若α⊥β,则a ∥b:④若a∥b,则α⊥β;⑤若a⊥b则α∥β,其中正确命题的序号是.16.(5分)如图,在平面四边形ABCD中,∠BAC=∠ADC=,∠ABC=,∠ADB=,则tan∠ACD=.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和为S n,且满足a n=n﹣S n,设b n=a n﹣1.(1)求a1,a2,a3;(2)判断数列{b n}是否是等比数列,并说明理由;(3)求数列{a n}的前n项和S n.18.(12分)如图1,在边长为2的等边△ABC中,D,E分别为边AC,AB的中点.将△ADE沿DE折起,使得AB⊥AD,得到如图2的四棱锥A﹣BCDE,连结BD,CE,且BD与CE交于点H.(1)证明:AH上BD;(2)设点B到平面AED的距离为h1,点E到平面ABD的距离为h2,求的值.19.(12分)某种昆虫的日产卵数和时间变化有关,现收集了该昆虫第1夭到第5天的日产卵数据:第x天12345日产卵数y612254995(个)对数据初步处理后得到了如图所示的散点图和表中的统计量的值.x i x i2(lny i)(x i•lny i)155515.9454.75(1)根据散点图,利用计算机模拟出该种昆虫日产卵数y关于x 的回归方程为y=e a+bx(其中e为自然对数的底数),求实数a,b 的值(精确到0.1);(2)根据某项指标测定,若日产卵数在区间(e6,e8)上的时段为优质产卵期,利用(1)的结论,估计在第6天到第10天中任取两天,其中恰有1天为优质产卵期的概率.附:对于一组数据(v1,μ1),(v2,μ2),…,(v n,μn),其回归直线μ=α+βv的斜率和截距的最小二乘估计分别为=,=﹣•.20.(12分)已知⊙M过点A(,0),且与⊙N:(x+)2+y2=16内切,设⊙M的圆心M的轨迹为曲线C.(1)求曲线C的方程:(2)设直线l不经过点B(0,1)且与曲线C相交于P,Q两点.若直线PB与直线QB的斜率之积为﹣,判断直线l是否过定点,若过定点,求出此定点坐标;若不过定点,请说明理由.21.(12分)已知函数f(x)=(x+a)e bx(b≠0)的最大值为,且曲线y=f(x)在x=0处的切线与直线y=x﹣2平行(其中e 为自然对数的底数).(1)求实数a,b的值;(2)如果0<x1<x2,且f(x1)=f(x2),求证:3x1+x2>3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数,且θ∈(,)).(1)求C1与C2的普通方程,(2)若A,B分别为C1与C2上的动点,求|AB|的最小值.[选修4-5:不等式选讲](10分)23.已知函数f(x)=|3x﹣6|+|x+a|.(1)当a=1时,解不等式f(x)<3;(2)若不等式f(x)<11﹣4x对任意x∈[﹣4,﹣]成立,求实数a的取值范围.2020年广东省广州市高考数学一模试卷(文科)答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】由已知求出M∩N={3},M∪N={1,3,4,5,6},再求其补集,可判断结果.【解答】解:由已知:M∩N={3},M∪N={1,3,4,5,6},∴∁U(M∩N)={1,2,4,5,6,7),∁U(M∪N)={2,7}.故选:B.2.【分析】设高中抽取人数为x,根据条件,建立比例关系进行求解即可.【解答】解:设高中抽取人数为x,则,得x=42,故选:A.3.【分析】判断直线恒过的定点与圆的位置关系,即可得到结论.【解答】解:圆方程可整理为(x+1)2+(y﹣2)2=4,则圆心(﹣1,2),半径r=2,直线恒过点(0,1),因为(0,1)在圆内,故直线与圆相交,故选:A.4.【分析】根据分段函数的解析式,先求出f()的值,再求f[f()]的值.【解答】解:因为f(x)=,∴f()=ln;∴f[f()]=e=.故选:D.5.【分析】由向量和向量的坐标求出向量和向量的坐标,再利用|+|=|2﹣|,即可求出x的值.【解答】解:∵向量=(2,1),=(x,﹣2),∴=(2+x,﹣1),=(4﹣x,4),∵|+|=|2﹣|,∴,解得x=,故选:C.6.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是累加并输出s的值,模拟循环过程可得条件.【解答】解:程序运行过程中,各变量值如下表所示:s=0,n=2,i=1不满足条件,第一圈:s=0+,n=4,i=2,不满足条件,第二圈:s=+,n=6,i=3,不满足条件,第三圈:s=++,n=8,i=4,…依此类推,不满足条件,第10圈:s=+++…+,n=22,i=11,不满足条件,第11圈:s=+++…++,n=24,i=12,此时,应该满足条件,退出循环,其中判断框内应填入的条件是:i>11?.故选:C.7.【分析】由题意可知f(x1)≤f(x)≤f(x2),f(x1)是函数的最小值,f(x2)是函数的最大值,|x1﹣x2|的最小值就是半个周期.【解答】解:函数f(x)=2cos(x﹣),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),∴f(x1)是函数的最小值,f(x2)是函数的最大值,|x1﹣x2|的最小值就是函数的半周期,=×=2π;故选:B.8.【分析】设圆的半径为1,分别求出圆的面积及圆内接正十二边形的面积,由测度比是面积比得答案.【解答】解:设圆的半径为1,圆内接正十二边形的一边所对的圆心角为=30°,则圆内接正十二边形的面积为:12××1×1×sin30°=3.圆的面积为π×12=π,由测度比为面积比可得:在圆内随机取一点,则此点在圆的某一个内接正十二边形内的概率是.故选:C.9.【分析】把sinα﹣cosα=平方可得2sinαcosα的值,从而求得sinα+cosα的值,再利用二倍角的余弦公式求得cos2α=cos2α﹣sin2α=﹣(sinα﹣cosα)(sinα+cosα)的值.【解答】解:∵sinα﹣cosα=,0<α<π,∴平方可得:1﹣2sinαcosα=,2sinαcosα=>0.∴α为锐角.∴sinα+cosα═===,∴cos2α=cos2α﹣sin2α=﹣(sinα﹣cosα)(sinα+cosα)=﹣×=﹣.故选:A.10.【分析】先求出y=x3﹣x2+1的导数,然后求出曲线C在点P(x0,y0)处的切线斜率k,再根据k∈[﹣,21]求出x0的取值范围.【解答】解:由y=x3﹣x2+1,得y'=3x2﹣2x,则曲线C在点P(x0,y0)处的切线的斜率为,∵k∈[﹣,21],∴∈,∴.故选:B.11.【分析】由角平分线的性质可得延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,可得OA为△BF1F2的中位线,b=|F1F2|﹣2|OA|=2c﹣2a再由a,b,c的关系求出离心率.【解答】解:延长F2A交PF1与B,由PA为∠F1PF2的角平分线,F2A⊥PA,所以A为F2B的中点,|PF2|=|PB|,连接OA,则OA为△BF1F2的中位线,所以|BF1|=2|OA|,而|BF1|=|PF1|﹣|PB|=|PF1|﹣|PF2|=2a因为b=|F1F2|﹣2|OA|=2c﹣2a,而b2=c2﹣a2所以c2﹣a2=4(c﹣a)2整理可得3c2﹣8ac+5c2=0,即3e2﹣8e+5=0,解得e=或1,再由双曲线的离心率大于1,可得e=,故选:C.12.【分析】如图,取BD中点H,连接AH,CH,则∠AHC为二面角A﹣BD﹣C的平面角,即∠AHD=120°,分别过EF作平面ABD,平面BCD的垂线,则三棱锥的外接球一定是两条垂线的交点,记为O,连接AO,HO,则由对称性可得∠OHE=60°,进而可求得R的值.【解答】解:如图,取BD中点H,连接AH,CH,因为△ABD与△CBD均为边长为2的等边三角形,所以AH⊥BD,CH⊥BD,则∠AHC为二面角A﹣BD﹣C的平面角,即∠AHD=120°,设△ABD与△CBD外接圆圆心分别为E,F,则由AH=2×=可得AE=AH=,EH=AH=,分别过EF作平面ABD,平面BCD的垂线,则三棱锥的外接球一定是两条垂线的交点,记为O,连接AO,HO,则由对称性可得∠OHE=60°,所以OE=1,则R=OA==,则三棱锥外接球的表面积4πR2=4π×=,故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.【分析】利用复数的乘方运算和加法法则即可得出.【解答】解:∵z2=(﹣i)2=﹣i﹣=﹣i,∴z4=(z2)2=(﹣i)2=﹣1,∴z2+z4=﹣1﹣i,故答案是:﹣1﹣i.14.【分析】由函数在(0,+∞)上有最小值可知,k>0,再由基本不等式即可求得k的值.【解答】解:依题意,k>0,则,则,解得k=4.故答案为:4.15.【分析】由空间中直线与直线、直线与平面、平面与平面位置关系的判定及其应用逐一核对四个命题得答案.【解答】解:对于①,由a⊥平面α,α∥β,得a⊥β,又直线b⊂平面β,∴a⊥b,故①正确;对于②,由a⊥平面α,α⊥β,得a∥β或a⊂β,而直线b⊂平面β,∴a与b的关系是平行、相交或异面,故②错误;对于③,由a⊥平面α,α⊥β,得a∥β或a⊂β,而直线b⊂平面β,∴a与b的关系是平行、相交或异面,故③错误;对于④,由a⊥平面α,a∥b,得b⊥α,又直线b⊂平面β,∴α⊥β,故④正确;对于⑤,由a⊥平面α,a⊥b,得b∥α或b⊂α,又直线b⊂平面β,∴α与β相交或平行,故⑤错误.∴其中正确命题的序号是①④.故答案为:①④.16.【分析】设∠ACD=θ,AC=1,则AD=sinθ,进一步可得,再利用正弦定理可得,通过三角恒等变换即可求得tanθ的值,进而得出答案.【解答】解:不妨设∠ACD=θ,AC=1,则AD=sinθ,在△ABD中,,∠ADB=,则,在△ABD中,由正弦定理得,即,∴,∴,∴,∴,∴.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.【分析】(1)a n=n﹣S n,可得a1=1﹣a1,解得a1.a2=2﹣(a2+),解得a2.a3=3﹣(a3++),解得a3.(2)a n=n﹣S n,n≥2时,a n﹣1=n﹣1﹣S n﹣1,相减可得:a n﹣1=(a n﹣1),可得:b n=b n﹣1.即可得出结论.﹣1(3)由(2)可得:b n=﹣.可得a n=b n+1,可得S n=n﹣a n.【解答】解:(1)a n=n﹣S n,∴a1=1﹣a1,解得a1=.a2=2﹣(a2+),解得a2=.a3=3﹣(a3++),解得a3=.(2)a n=n﹣S n,n≥2时,a n﹣1=n﹣1﹣S n﹣1,相减可得:2a n=a n+1,﹣1变形为:a n﹣1=(a n﹣1﹣1),由b n=a n﹣1.可得:b n=b n﹣1.b1=a1﹣1=﹣.∴数列{b n}是等比数列,首项为﹣,公比为.(3)由(2)可得:b n=﹣×=﹣.则a n=b n+1=1﹣.∴S n=n﹣a n=n﹣1+.18.【分析】(1)在图1中,证明BD⊥AC,ED∥BC,则在图2中,有,得DH=,然后证明△BAD∽△AHD,可得∠AHD=∠BAD=90°,即AH⊥BD;(2)由V B=V E﹣ABD,得,分别求出三角形ABD与﹣AED三角形AED的面积得答案.【解答】(1)证明:在图1中,∵△ABC为等边三角形,且D为边AC的中点,∴BD⊥AC,在△BCD中,BD⊥CD,BC=2,CD=1,∴BD=,∵D、E分别为边AC、AB的中点,∴ED∥BC,在图2中,有,∴DH=.在Rt△BAD中,BD=,AD=1,在△BAD和△AHD中,∵,∠BDA=∠ADH,∴△BAD∽△AHD.∴∠AHD=∠BAD=90°,即AH⊥BD;(2)解:∵V B=V E﹣ABD,﹣AED∴,则.∵△AED是边长为1的等边三角形,∴.在Rt△ABD中,BD=,AD=1,则AB=.∴,则.19.【分析】(1)根据y=e a+bx,两边取自然对数得lny=a+bx,再利用线性回归方程求出a、b的值;(2)根据y=e1.1+0.7x,由e6<e1.1+0.7x<e8求得x的取值范围,再利用列举法求出基本事件数,计算所求的概率值.【解答】解:(1)因为y=e a+bx,两边取自然对数,得lny=a+bx,令m=x,n=lny,得n=a+bm;因为===0.693;所以b≈0.7;因为=﹣b=﹣0.7×3=1.088;所以a≈1.1;即a≈1.1,b≈0.7;(2)根据(1)得y=e1.1+0.7x,由e6<e1.1+0.7x<e8,得7<x<;所以在第6天到第10天中,第8、9天为优质产卵期;从未来第6天到第10天中任取2天的所有可能事件有:(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)共10种;其中恰有1天为优质产卵期的有:(6,8),(6,9),(7,8),(7,9),(8,10),(9,10)共6种;设从未来第6天到第10天中任取2天,其中恰有1天为优质产卵期的事件为A,则P(A)==;所以从未来第6天到第10天中任取2天,其中恰有1天为优质产卵期的概率为.20.【分析】(1)由两圆相内切的条件和椭圆的定义,可得曲线C的轨迹方程;(2)设直线BP的斜率为k(k≠0),则BP的方程为y=kx+1,联立椭圆方程,解得交点P,同理可得Q的坐标,考虑P,Q的关系,运用对称性可得定点.【解答】解:(1)设⊙M的半径为R,因为圆M过A(,0),且与圆N相切,所以R=|AM|,|MN|=4﹣R,即|MN|+|MA|=4,由|NA|<4,所以M的轨迹为以N,A为焦点的椭圆.设椭圆的方程为+=1(a>b>0),则2a=4,且c==,所以a=2,b=1,所以曲线C的方程为+y2=1;(2)由题意可得直线BP,BQ的斜率均存在且不为0,设直线BP的斜率为k(k≠0),则BP的方程为y=kx+1,联立椭圆方程x2+4y2=4,可得(1+4k2)x2+8kx=0,解得x1=0,x2=﹣,则P(﹣,),因为直线BQ的斜率为﹣,所以同理可得Q(,﹣),因为P,Q关于原点对称,(或求得直线l的方程为y=x)所以直线l过定点(0,0).21.【分析】(1)对原函数求导数,然后利用在x=0处切线的斜率为1,函数的最大值为列出关于a,b的方程组求解;(2)利用f(x1)=f(x2)找到x1,x2的关系式,然后引入t=x2﹣x1,构造关于t的函数,将3x1+x2转换成关于t的函数,求最值即可.【解答】解:(1)由已知f′(x)=(bx+ab+1)e bx.则易知f′(0)=ab+1=1,∴ab=0,又因为b≠0,故a=0.此时可得f(x)=xe bx(b≠0),f′(x)=(bx+1)e bx.①若b>0,则当x时,f′(x)<0,f(x)递减;.此时,函数f(x)有最小值,无最大值.②若b<0,则当;x.此时,解得b=﹣1.所以a=0,b=﹣1即为所求.(2)由0<x1<x2,且f(x1)=f(x2)得:.∴.设t=x2﹣x1(t>0),则e t x1﹣x1=t,可得,所以要证3x1+x2>3,即证.∵t>0,所以e t﹣1>0,所以即证(t﹣3)e t+3t+3>0.设g(t)=(t﹣3)e t+3t+3(t>0),则g′(t)=(t﹣2)e t+3.令h(t)=(t﹣2)e t+3,则h′(t)=(t﹣1)e t,当t∈(0,1)时,h′(t)<0,h(t)递减;t∈(1,+∞)时,h′(t)>0,h(t)递增.所以h(t)>h(1)=3﹣e>0,即g′(t)>0,所以g(t)在(0,+∞)上递增.所以g(t)>g(0)=0.∴3x1+x2>3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 22.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用直线和曲线的位置关系式的应用求出结果.【解答】解:(1)由题可得:C1的普通方程为2x﹣y﹣5=0又因为C2的参数方程为,两边平方可得,所以C 2的普通方程为,且.(2)由题意,设C1的平行直线2x﹣y+c=0联立消元可得:3x2+4cx+c2+3=0所以△=4c2﹣36=0,解得c=±3又因为,经检验可知c=3时与C2相切,所以.[选修4-5:不等式选讲](10分)23.【分析】(1)a=1时,f(x)=|3x﹣6|+|x+1|,讨论x的取值范围,去掉绝对值求不等式f(x)<3的解集即可;(2)f(x)=|3x﹣6|+|x+a|<11﹣4x对任意成立,等价于|x+a|<5﹣x恒成立,去绝对值,从而求出a的取值范围.【解答】解:(1)a=1时,f(x)=|3x﹣6|+|x+1|=;当x<﹣1时,由f(x)<3得﹣4x+5<3,解得x>(不合题意,舍去);当﹣1≤x≤2时,由f(x)<3得﹣2x+7<3,解得x>2(不合题意,舍去);当x>2时,由f(x)<3得4x﹣5<3,解得x<2(不合题意,舍去);所以不等式f(x)<3的解集∅;(2)由f(x)=|3x﹣6|+|x+a|<11﹣4x对任意成立,得﹣(3x﹣6)+|x+a|<11﹣4x,即|x+a|<5﹣x,所以,所以,得a>﹣5且a<5﹣2x对任意成立;即﹣5<a<8,所以a的取值范围是(﹣5,8).。
2019-2020学年广东省广州市高考数学一模考试(文科)试题Word版含解析

2019-2020学年广东省广州市高考一模考试数学(文科)试题一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A.﹣2 B.﹣1 C.1 D.22.已知集合{x|x2+ax=0}={0,1},则实数a的值为()A.﹣1 B.0 C.1 D.23.已知tanθ=2,且θ∈,则cos2θ=()A.B.C. D.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.55.已知函数f(x)=,则f(f(3))=()A.B.C. D.﹣36.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于()A.4 B.6 C.8 D.107.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.9.设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,则点P的坐标为()A.(0,0)B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P﹣ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8π B.12πC.20πD.24π11.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为,则()A.f(x)在上单调递减B.f(x)在上单调递减C.f(x)在上单调递增D.f(x)在上单调递增12.已知函数f(x)=+cos(x﹣),则的值为()A.2016 B.1008 C.504 D.0二、填空题:本小题共4题,每小题5分.13.已知向量=(1,2),=(x,﹣1),若∥(﹣),则•= .14.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是.15.满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为.16.在△ABC中,∠ACB=60°,BC>1,AC=AB+,当△ABC的周长最短时,BC的长是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{an }的前n项和为Sn,且Sn=2an﹣2(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{Sn }的前n项和Tn.18.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:(其中n=a+b+c+d为样本容量)P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82819.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD 沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.20.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥时,f(x)>e﹣x.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.2019-2020学年广东省广州市高考一模考试数学(文科)试题参考答案一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A.﹣2 B.﹣1 C.1 D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣i的虚部是﹣1.故选:B.2.已知集合{x|x2+ax=0}={0,1},则实数a的值为()A.﹣1 B.0 C.1 D.2【考点】集合的表示法.【分析】集合{x|x2+ax=0}={0,1},则x2+ax=0的解为0,1,利用韦达定理,求出a的值.【解答】解:由题意,0+1=﹣a,∴a=﹣1,故选A.3.已知tanθ=2,且θ∈,则cos2θ=()A.B.C. D.【考点】二倍角的余弦.【分析】由已知利用同角三角函数关系式可求cosθ,进而利用二倍角的余弦函数公式即可计算求值得解.【解答】解:∵tanθ=2,且θ∈,∴cosθ===,∴cos2θ=2cos2θ﹣1=2×()2﹣1=﹣.故选:C.4.阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.5【考点】循环结构.【分析】按照程序框图的流程写出前几次循环的结果;直到满足判断框中的条件,执行输出.【解答】解:经过第一次循环得到的结果为k=0,n=16,经过第二次循环得到的结果为k=1,n=49,经过第三次循环得到的结果为k=2,n=148,经过第四次循环得到的结果为k=3,n=445,满足判断框中的条件,执行“是”输出的k为3故选B5.已知函数f(x)=,则f(f(3))=()A.B.C. D.﹣3【考点】函数的值.【分析】由解析式先求出f(3),由指数的运算法则求出(f(3))的值.【解答】解:由题意知,f(x)=,则f(3)=1﹣,所以f(f(3))==4•=,故选A.6.已知双曲线C的一条渐近线方程为2x+3y=0,F1,F2分别是双曲线C的左,右焦点,点P在双曲线C上,且|PF1|=2,则|PF2|等于()A.4 B.6 C.8 D.10【考点】双曲线的简单性质.【分析】由双曲线的方程、渐近线的方程求出a,由双曲线的定义求出|PF2|.【解答】解:由双曲线的方程、渐近线的方程可得=,∴a=3.由双曲线的定义可得|PF2|﹣2=6,∴|PF2|=8,故选C.7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】列举出所有情况,求出满足条件的概率即可.【解答】解:由题意得:正面不能相邻,即正反正反,反正反正,3反一正,全反,其中3反一正中有反反反正,反反正反,反正反反,正反反反,故共7中情况,故P==,故选:B.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是()A.B.C.D.【考点】简单空间图形的三视图.【分析】该几何体为正方体截去一部分后的四棱锥P﹣ABCD,作出图形,可得结论.【解答】解:该几何体为正方体截去一部分后的四棱锥P﹣ABCD,如图所示,该几何体的俯视图为C.故选:C.9.设函数f(x)=x3+ax2,若曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,则点P的坐标为()A.(0,0)B.(1,﹣1)C.(﹣1,1)D.(1,﹣1)或(﹣1,1)【考点】利用导数研究曲线上某点切线方程.【分析】由曲线y=f(x)在点P(x0,f(x))处的切线方程为x+y=0,导函数等于﹣1求得点(x0,f(x))的横坐标,进一步求得f(x)的值,可得结论.【解答】解:∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x))处的切线方程为x+y=0,∴3x02+2ax=﹣1,∵x0+x3+ax2=0,解得x=±1.当x0=1时,f(x)=﹣1,当x0=﹣1时,f(x)=1.故选:D.10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P﹣ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P﹣ABC的四个顶点都在球O的球面上,则球O的表面积为()A.8π B.12πC.20πD.24π【考点】球的体积和表面积.【分析】由题意,PC为球O的直径,求出PC,可得球O的半径,即可求出球O的表面积.【解答】解:由题意,PC为球O的直径,PC==2,∴球O的半径为,∴球O的表面积为4π•5=20π,故选C.11.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为,则()A.f(x)在上单调递减B.f(x)在上单调递减C.f(x)在上单调递增D.f(x)在上单调递增【考点】三角函数中的恒等变换应用.【分析】根据两角和的正弦函数化简解析式,由条件和诱导公式求出φ的值,由条件和周期共识求出ω的值,根据正弦函数的单调性和选项判断即可.【解答】解:由题意得,f(x)=sin(ωx+φ)+cos(ωx+φ)= [sin(ωx+φ)+cos(ωx+φ)]=,∵函数f(x)(ω>0,0<φ<π)是奇函数,∴,则,又0<φ<π,∴φ=,∴f(x)==,∵y=与f(x)的图象的两个相邻交点的横坐标之差的绝对值为,∴T=,则ω=4,即f(x)=,由得4x∈(0,π),则f(x)在上不是单调函数,排除A、C;由得4x∈,则f(x)在上是增函数,排除B,故选:D.12.已知函数f(x)=+cos(x﹣),则的值为()A.2016 B.1008 C.504 D.0【考点】数列的求和.【分析】函数f(x)=+cos(x﹣),可得f(x)+f(1﹣x)=0,即可得出.【解答】解:∵函数f(x)=+cos(x﹣),∴f(x)+f(1﹣x)=+cos(x﹣)++=1+0=1,则=2016=1008.故选:B.二、填空题:本小题共4题,每小题5分.13.已知向量=(1,2),=(x,﹣1),若∥(﹣),则•= .【考点】平面向量的坐标运算.【分析】利用向量共线定理即可得出.【解答】解: =(1﹣x,3),∵∥(﹣),∴2(1﹣x)﹣3=0,解得x=﹣.则•=﹣﹣2=﹣.故答案为:﹣.14.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,则该圆的标准方程是x2+(y﹣1)2=2 .【考点】抛物线的简单性质.【分析】求出抛物线的焦点即圆心坐标,利用切线的性质计算点C到切线的距离即为半径,从而得出圆的方程.【解答】解:抛物线的标准方程为:x2=4y,∴抛物线的焦点为F(0,1).即圆C的圆心为C(0,1).∵圆C与直线y=x+3相切,∴圆C的半径为点C到直线y=x+3的距离d==.∴圆C的方程为x2+(y﹣1)2=2.故答案为:x2+(y﹣1)2=2.15.满足不等式组的点(x,y)组成的图形的面积是5,则实数a的值为 3 .【考点】简单线性规划;二元一次不等式(组)与平面区域.【分析】根据题意,将不等式组表示的平面区域表示出来,分析可得必有a>1,此时阴影部分的面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a的值,即可得答案.【解答】解:根据题意,不等式组⇔或;其表示的平面区域如图阴影部分所示:当a≤1时,其阴影部分面积S<S=×2×1=1,不合题意,△AOB必有a>1,当a>1时,阴影部分面积S=×2×1+×(a﹣1)×[a+1﹣(3﹣a)]=5,解可得a=3或﹣1(舍);故答案为:3.16.在△ABC中,∠ACB=60°,BC>1,AC=AB+,当△ABC的周长最短时,BC的长是+1 .【考点】三角形中的几何计算.【分析】设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,以及b=c+可得c的长,再利用均值不等式即可求出答案.【解答】解:设A,B,C所对的边a,b,c,则根据余弦定理可得a2+b2+c2=2abcosC,将b=c+代入上式,可得a2+c+=ac+,化简可得c=,所以△ABC的周长l=a+b+c=++a,化简可得l=3(a﹣1)++,因为a>1,所以由均值不等式可得3(a﹣1)=时,即6(a﹣1)2=3,解得a=+1时,△ABC的周长最短,故答案为: +1.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{an }的前n项和为Sn,且Sn=2an﹣2(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{Sn }的前n项和Tn.【考点】数列的求和;数列递推式.【分析】(I)Sn =2an﹣2(n∈N*),可得n=1时,a1=2a1﹣2,解得a1.n≥2时,an=Sn﹣Sn﹣1,再利用等比数列的通项公式即可得出.(II)利用等比数列的求和公式即可得出.【解答】解:(I)∵Sn =2an﹣2(n∈N*),∴n=1时,a1=2a1﹣2,解得a1=2.n≥2时,an =Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2),化为:an=2an﹣1,∴数列{an}是等比数列,公比为2.∴an=2n.(II)Sn==2n+1﹣2.∴数列{Sn }的前n项和Tn=﹣2n=2n+2﹣4﹣2n.18.某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面2×2列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?甲生产线乙生产线合计合格品不合格品合计附:(其中n=a+b+c+d为样本容量)P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828【考点】独立性检验的应用;频率分布直方图.【分析】(Ⅰ)利用(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,即可估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)求出甲,乙两条流水线生产的不合格的概率,即可得出结论;(Ⅲ)计算可得K2的近似值,结合参考数值可得结论.【解答】解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x,因为0.48=(0.012+0.032+0.052)×5<0.5<(0.012+0.032+0.052+0.076)×5=0.86,…则(0.012+0.032+0.052)×5+0.076×(x﹣205)=0.5,…解得.…(Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为,…乙流水线生产的产品为不合格品的概率为,…于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:.…(Ⅲ)2×2列联表:甲生产线乙生产线合计合格品354075不合格品151025合计5050100…则,…因为1.3<2.072,所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”.…19.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD 沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(Ⅰ)求证:AB⊥平面ADC;(Ⅱ)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为,求点B到平面ADE的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(Ⅰ)由题意结合面面垂直的性质可得BD⊥DC,有DC⊥平面ABD,进一步得到DC⊥AB,再由线面垂直的判定可得AB⊥平面ADC;(Ⅱ)由(Ⅰ)知DC⊥平面ABD,可得AC在平面ABD内的正投影为AD,求解直角三角形得到AB的值,然后利用等积法求得点B到平面ADE的距离.【解答】(Ⅰ)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又BD⊥DC,∴DC⊥平面ABD,∵AB⊂平面ABD,∴DC⊥AB,又∵折叠前后均有AD⊥AB,DC∩AD=D,∴AB⊥平面ADC.(Ⅱ)解:由(Ⅰ)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠CAD为AC与其在平面ABD内的正投影所成角.依题意,AD=1,∴.设AB=x(x>0),则,∵△ABD~△BDC,∴,即,解得,故.由于AB⊥平面ADC,AB⊥AC,E为BC的中点,由平面几何知识得AE=,同理DE=,∴.∵DC⊥平面ABD,∴.设点B到平面ADE的距离为d,则,∴,即点B到平面ADE的距离为.20.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)由椭圆C的离心率为,且过点A(2,1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)法一:由∠PAQ的角平分线总垂直于x轴,知PA与AQ所在直线关于直线x=2对称.设直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).由,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.由点A(2,1)在椭圆C上,求出.同理,由此能求出直线PQ的斜率为定值.法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知,再由点P(x1,y1),Q(x2,y2)在椭圆C上,能求出直线PQ的斜率为定值.法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.由∠PAQ的角平分线总垂直于x轴,知=,由,得(4k2+1)x2+8kbx+4b2﹣8=0,由此利用韦达定理能求出直线PQ的斜率为定值.【解答】解:(Ⅰ)因为椭圆C的离心率为,且过点A(2,1),所以,.…因为a2=b2+c2,解得a2=8,b2=2,…所以椭圆C的方程为.…(Ⅱ)解法一:因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.设直线PA的斜率为k,则直线AQ的斜率为﹣k.…所以直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).设点P(xP ,yP),Q(xQ,yQ),由,消去y,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.①因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则,…所以.…同理.…所以.…又.…所以直线PQ的斜率为.…所以直线PQ的斜率为定值,该值为.…解法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以kPA =﹣kQA,即,①…因为点P(x1,y1),Q(x2,y2)在椭圆C上,所以,②.③由②得,得,④…同理由③得,⑤…由①④⑤得,化简得x 1y 2+x 2y 1+(x 1+x 2)+2(y 1+y 2)+4=0,⑥… 由①得x 1y 2+x 2y 1﹣(x 1+x 2)﹣2(y 1+y 2)+4=0,⑦… ⑥﹣⑦得x 1+x 2=﹣2(y 1+y 2).… ②﹣③得,得.…所以直线PQ 的斜率为为定值.…解法三:设直线PQ 的方程为y=kx+b ,点P (x 1,y 1),Q (x 2,y 2), 则y 1=kx 1+b ,y 2=kx 2+b , 直线PA 的斜率,直线QA 的斜率.…因为∠PAQ 的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线x=2对称. 所以k PA =﹣k QA ,即=,…化简得x 1y 2+x 2y 1﹣(x 1+x 2)﹣2(y 1+y 2)+4=0.把y 1=kx 1+b ,y 2=kx 2+b 代入上式,并化简得2kx 1x 2+(b ﹣1﹣2k )(x 1+x 2)﹣4b+4=0.(*) …由,消去y 得(4k 2+1)x 2+8kbx+4b 2﹣8=0,(**)则,…代入(*)得,…整理得(2k ﹣1)(b+2k ﹣1)=0, 所以或b=1﹣2k .…若b=1﹣2k ,可得方程(**)的一个根为2,不合题意.… 若时,合题意.所以直线PQ的斜率为定值,该值为.…21.已知函数f(x)=lnx+.(Ⅰ)若函数f(x)有零点,求实数a的取值范围;(Ⅱ)证明:当a≥时,f(x)>e﹣x.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)法一:求出函数f(x)的导数,根据函数的单调性求出a的范围即可;法二:求出a=﹣xlnx,令g(x)=﹣xlnx,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为xlnx+a>xe﹣x,令h(x)=xlnx+a,令φ(x)=xe﹣x,根据函数的单调性证明即可.【解答】解:(Ⅰ)法1:函数的定义域为(0,+∞).由,得.…因为a>0,则x∈(0,a)时,f'(x)<0;x∈(a,+∞)时,f'(x)>0.所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.…当x=a时,[f(x)]=lna+1.…min当lna+1≤0,即0<a≤时,又f(1)=ln1+a=a>0,则函数f(x)有零点.…所以实数a的取值范围为.…法2:函数的定义域为(0,+∞).由,得a=﹣xlnx.…令g(x)=﹣xlnx,则g'(x)=﹣(lnx+1).当时,g'(x)>0;当时,g'(x)<0.所以函数g(x)在上单调递增,在上单调递减.…故时,函数g(x)取得最大值.…因而函数有零点,则.…所以实数a的取值范围为.…(Ⅱ)要证明当时,f(x)>e﹣x,即证明当x>0,时,,即xlnx+a>xe﹣x.…令h(x)=xlnx+a,则h'(x)=lnx+1.当时,f'(x)<0;当时,f'(x)>0.所以函数h(x)在上单调递减,在上单调递增.当时,.…于是,当时,.①…令φ(x)=xe﹣x,则φ'(x)=e﹣x﹣xe﹣x=e﹣x(1﹣x).当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.所以函数φ(x)在(0,1)上单调递增,在(1,+∞)上单调递减.当x=1时,.…于是,当x>0时,.②…显然,不等式①、②中的等号不能同时成立.…故当时,f(x)>e﹣x.…选修4-4:坐标系与参数方程22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C:ρ=2cos(θ﹣).(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)将直线l的参数方程消去t参数,可得直线l的普通方程,将ρcosθ=x,ρsinθ=y,ρ2=x2+y2,带入ρ=2cos(θ﹣)可得曲线C的直角坐标方程.(Ⅱ)法一:设曲线C上的点为,点到直线的距离公式建立关系,利用三角函数的有界限可得最大值.法二:设与直线l平行的直线为l':x+y+b=0,当直线l'与圆C相切时,得,点到直线的距离公式可得最大值.【解答】解:(Ⅰ)由直线l的参数方程消去t参数,得x+y﹣4=0,∴直线l的普通方程为x+y﹣4=0.由=.得ρ2=2ρcosθ+2ρsinθ.将ρ2=x2+y2,ρcosθ=x,ρsinθ=y代入上式,得:曲线C的直角坐标方程为x2+y2=2x+2y,即(x﹣1)2+(y﹣1)2=2.(Ⅱ)法1:设曲线C上的点为,则点P到直线l的距离为==当时,∴曲线C上的点到直线l的距离的最大值为;法2:设与直线l平行的直线为l':x+y+b=0.当直线l'与圆C相切时,得,解得b=0或b=﹣4(舍去).∴直线l'的方程为x+y=0.那么:直线l与直线l'的距离为故得曲线C上的点到直线l的距离的最大值为.选修4-5:不等式选讲23.已知函数f(x)=|x+a﹣1|+|x﹣2a|.(Ⅰ)若f(1)<3,求实数a的取值范围;(Ⅱ)若a≥1,x∈R,求证:f(x)≥2.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)通过讨论a的范围得到关于a的不等式,解出取并集即可;(Ⅱ)基本基本不等式的性质证明即可.【解答】解:(Ⅰ)因为f(1)<3,所以|a|+|1﹣2a|<3.①当a≤0时,得﹣a+(1﹣2a)<3,解得,所以;②当时,得a+(1﹣2a)<3,解得a>﹣2,所以;③当时,得a﹣(1﹣2a)<3,解得,所以;综上所述,实数a的取值范围是.(Ⅱ)因为a≥1,x∈R,所以f(x)=|x+a﹣1|+|x﹣2a|≥|(x+a﹣1)﹣(x﹣2a)|=|3a﹣1|=3a﹣1≥2.。
2019-2020学年广东省广州市高考数学一模试卷(文科)(有答案)

广东省广州市高考数学一模试卷(文科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={x|﹣1≤x ≤1},B={x|x 2﹣2x ≤0},则A∩B=( ) A .{x|﹣1≤x ≤2} B .{x|﹣1≤x ≤0}C .{x|1≤x ≤2}D .{x|0≤x ≤1}2.已知复数z 满足z=(i 为虚数单位),则复数z 所对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知函数则f (f (﹣2))的值为( )A .B .C .D .4.设P 是△ABC 所在平面内的一点,且=2,则△PAB 与△PBC 的面积之比是( )A .B .C .D .5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为( )A .3B .6C .12D .246.执行如图所示的程序框图,如果输入x=3,则输出k 的值为( )A .6B .8C .10D .127.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( ) A .B .C .D .8.已知f (x )=sin (x+),若sinα=(<α<π),则f (α+)=( )A .B .﹣C .D .9.如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F|+|P 2F|+…+|P n F|=( ) A .n+10 B .n+20 C .2n+10D .2n+2010.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( ) A .20π B .C .5πD .11.已知下列四个命题:p 1:若直线l 和平面α内的无数条直线垂直,则l ⊥α; p 2:若f (x )=2x ﹣2﹣x ,则∀x ∈R ,f (﹣x )=﹣f (x ); p 3:若,则∃x 0∈(0,+∞),f (x 0)=1;p 4:在△ABC 中,若A >B ,则sinA >sinB . 其中真命题的个数是( ) A .1B .2C .3D .412.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为( )A .8+8+4B .8+8+2C .2+2+D . ++二.填空题:本大题共4小题,每小题5分. 13.函数f (x )=x 3﹣3x 的极小值为 .14.设实数x ,y 满足约束条件,则z=﹣2x+3y 的取值范围是 .15.已知双曲线C :(a >0,b >0)的左顶点为A ,右焦点为F ,点B (0,b ),且,则双曲线C 的离心率为 . 16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,,CD=5,BD=2AD ,则AD 的长为 .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =2log 2a n ﹣1,求数列{a n b n }的前n 项和T n .18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.20.已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为F1(﹣2,0),点B(2,)在椭圆C上,直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)在x轴上是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标,若不存在,请说明理由.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.广东省广州市高考数学一模试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.{x|﹣1≤x≤2} B.{x|﹣1≤x≤0} C.{x|1≤x≤2} D.{x|0≤x≤1}【考点】交集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:B={x|x2﹣2x≤0}={x|0≤x≤2},则A∩B={x|0≤x≤1},故选:D2.已知复数z满足z=(i为虚数单位),则复数z所对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】根据复数的几何意义,即可得到结论.【解答】解:z===,对应的坐标为(2,﹣1),位于第四象限,故选:D.3.已知函数则f(f(﹣2))的值为()A.B.C.D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数,∴f(﹣2)=(﹣2)2﹣(﹣2)=6,f(f(﹣2))=f(6)==﹣.故选:C.4.设P是△ABC所在平面内的一点,且=2,则△PAB与△PBC的面积之比是()A.B.C.D.【考点】向量数乘的运算及其几何意义.【分析】由=2可知P为AC上靠近A点的三等分点.【解答】解:∵=2,∴P为边AC靠近A点的三等分点,∴△PAB与△PBC的面积比为1:2.故选:B.5.如果函数(ω>0)的相邻两个零点之间的距离为,则ω的值为()A.3 B.6 C.12 D.24【考点】y=Asin(ωx+φ)中参数的物理意义.【分析】根据余弦函数的相邻两个零点之间的距离恰好等于半个周期,即可求得ω的值.【解答】解:函数(ω>0)的相邻两个零点之间的距离为,∴T=2×=,又=,解得ω=6.故选:B.6.执行如图所示的程序框图,如果输入x=3,则输出k的值为()A.6 B.8 C.10 D.12【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,直到满足条件x>100,跳出循环体,确定输出k的值.【解答】解:模拟执行程序,可得x=3,k=0x=9,k=2不满足条件x>100,x=21,k=4不满足条件x>100,x=45,k=6不满足条件x>100,x=93,k=8不满足条件x>100,x=189,k=10满足条件x>100,退出循环,输出k的值为10.故选:C.7.在平面区域{(x,y)|0≤x≤1,1≤y≤2}内随机投入一点P,则点P的坐标(x,y)满足y≤2x的概率为()A.B.C.D.【考点】简单线性规划;几何概型.【分析】作出不等式组对应的区域,利用几何概型的概率公式,即可得到结论.【解答】解:不等式组表示的平面区域为D的面积为1,不等式y≤2x对应的区域为三角形ABC,则三角形ABC的面积S==,则在区域D内任取一点P(x,y),则点P满足y≤2x的概率为,故选:A.8.已知f(x)=sin(x+),若sinα=(<α<π),则f(α+)=()A.B.﹣C.D.【考点】两角和与差的正弦函数.【分析】根据同角的三角函数的关系,以及两角和的正弦公式,即可求出.【解答】解:∵<α<π,sinα=,∴cosα=﹣∵f(x)=sin(x+),∴f (α+)=sin (α++)=sin (α+)=sinαcos +cos αsin =﹣(﹣)=,故选:C .9.如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F|+|P 2F|+…+|P n F|=( ) A .n+10 B .n+20 C .2n+10 D .2n+20【考点】抛物线的简单性质. 【分析】由抛物线性质得|P n F|==x n +1,由此能求出结果. 【解答】解:∵P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点, 它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点, x 1+x 2+…+x n =10, ∴|P 1F|+|P 2F|+…+|P n F| =(x 1+1)+(x 2+1)+…+(x n +1) =x 1+x 2+…+x n +n =n+10. 故选:A .10.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( ) A .20π B .C .5πD .【考点】球的体积和表面积.【分析】作出六棱柱的最大对角面与外截球的截面,设正六棱柱的上下底面中心分别为O 1,O 2,球心为O ,一个顶点为A ,如右图.可根据题中数据结合勾股定理算出球的半径OA ,再用球的体积公式即可得到外接球的体积.【解答】解:作出六棱柱的最大对角面与外截球的截面,如右图,则该截面矩形分别以底面外接圆直径和六棱柱高为两边,设球心为O ,正六棱柱的上下底面中心分别为O 1,O 2,则球心O 是O 1,O 2的中点. ∵正六棱柱底面边长为1,侧棱长为1, ∴Rt △AO 1O 中,AO 1=1,O 1O=,可得AO==,因此,该球的体积为V=π•()3=.故选:D .11.已知下列四个命题:p1:若直线l和平面α内的无数条直线垂直,则l⊥α;p2:若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);p 3:若,则∃x∈(0,+∞),f(x)=1;p4:在△ABC中,若A>B,则sinA>sinB.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】p1:根据线面垂直的判断定理判定即可;p2:根据奇函数的定义判定即可;p3:对表达式变形可得=x+1+﹣1,利用均值定理判定即可;p4:根据三角形角边关系和正弦定理判定结论成立.【解答】解:p1:根据判断定理可知,若直线l和平面α内两条相交的直线垂直,则l⊥α,若没有相交,无数的平行直线也不能判断垂直,故错误;p2:根据奇函数的定义可知,f(﹣x)=2﹣x﹣2x=﹣f(x),故∀x∈R,f(﹣x)=﹣f(x),故正确;p 3:若=x+1+﹣1≥1,且当x=0时,等号成立,故不存在x∈(0,+∞),f(x)=1,故错误;p4:在△ABC中,根据大边对大角可知,若A>B,则a>b,由正弦定理可知,sinA>sinB,故正确.故选:B.12.如图,网格纸上小正方形的边长为1,粗线画出的是某个四面体的三视图,则该四面体的表面积为()A.8+8+4B.8+8+2C.2+2+D. ++【考点】由三视图求面积、体积.【分析】由三视图可知几何体为从边长为4的正方体切出来的三棱锥.作出直观图,计算各棱长求面积.【解答】解:由三视图可知几何体为从边长为4的正方体切出来的三棱锥A﹣BCD.作出直观图如图所示:其中A,C,D为正方体的顶点,B为正方体棱的中点.∴S△ABC ==4,S△BCD==4.∵AC=4,AC⊥CD,∴S△ACD==8,由勾股定理得AB=BD==2,AD=4.∴cos∠ABD==﹣,∴sin∠ABD=.∴S△ABD==4.∴几何体的表面积为8+8+4.故选A.二.填空题:本大题共4小题,每小题5分.13.函数f(x)=x3﹣3x的极小值为﹣2 .【考点】利用导数研究函数的极值.【分析】首先求导可得f′(x)=3x2﹣3,解3x2﹣3=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值.【解答】解析:令f′(x)=3x2﹣3=0,得x=±1,可求得f(x)的极小值为f(1)=﹣2.故答案:﹣2.14.设实数x,y满足约束条件,则z=﹣2x+3y的取值范围是[﹣6,15] .【考点】简单线性规划.【分析】由题意作平面区域,化简z=﹣2x+3y为y=x+,从而结合图象求解.【解答】解:由题意作平面区域如下,化简z=﹣2x+3y为y=x+,故结合图象可知,在点B(3,0)处有最小值,在点C(﹣3,3)处有最大值,故﹣2×3+3×0≤z≤﹣2×(﹣3)+3×3,即z∈[﹣6,15],故答案为:[﹣6,15].15.已知双曲线C:(a>0,b>0)的左顶点为A,右焦点为F,点B(0,b),且,则双曲线C的离心率为.【考点】双曲线的简单性质.【分析】设出A ,F 的坐标,运用向量的数量积的坐标表示,结合a ,bc 的关系和离心率公式,计算即可得到所求值.【解答】解:由题意可得A (﹣a ,0),F (c ,0),B (0,b ), 可得=(﹣a ,﹣b ),=(c ,﹣b ),由,可得﹣ac+b 2=0,即有b 2=c 2﹣a 2=ac , 由e=,可得e 2﹣e ﹣1=0, 解得e=(负的舍去).故答案为:.16.在△ABC 中,点D 在边AB 上,CD ⊥BC ,,CD=5,BD=2AD ,则AD 的长为 5 .【考点】三角形中的几何计算.【分析】根据题意画出图象,延长BC 、过A 做AE ⊥BC 、垂足为E ,根据平行线的性质和勾股定理依次求出AE 、CE 、BC 、BD ,由条件求出AD 的长.【解答】解:如图所示:延长BC ,过A 做AE ⊥BC ,垂足为E , ∵CD ⊥BC ,∴CD ∥AE , ∵CD=5,BD=2AD ,∴,解得AE=,在RT △ACE ,CE===,由得BC=2CE=5,在RT △BCD 中,BD===10,则AD=5, 故答案为:5.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =2log 2a n ﹣1,求数列{a n b n }的前n 项和T n . 【考点】数列递推式;等差数列与等比数列的综合.【分析】(Ⅰ)等比数列{a n }中,a 2=4,a 3+2是a 2和a 4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果; (Ⅱ)把(1)中求得的结果代入b n =2log 2a n ﹣1,求出b n ,利用错位相减法求出T n . 【解答】解:(Ⅰ)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,.)因为a 3+2是a 2和a 4的等差中项,所以2(a 3+2)=a 2+a 4. 即2(4q+2)=4+4q 2,化简得q 2﹣2q=0. 因为公比q ≠0,所以q=2. 所以(n ∈N *).(Ⅱ)因为,所以b n =2log 2a n ﹣1=2n ﹣1.所以.则,①, ,②,①﹣②得,.=,所以.18.从某企业生产的某中产品中抽取100件,测量这些产品的质量指标值.由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1. (Ⅰ)求这些产品质量指标落在区间[75,85]内的概率;(Ⅱ)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和,利用之比为4:2:1,即可求出这些产品质量指标值落在区间[75,85]内的频率;(2)由频率分布直方图得从[45,65)的产品数中抽取5件,记为A,B,C,D,E,从[65,75)的产品数中抽取1件,记为a,由此利用列举法求出概率.【解答】解:(I)由题意,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之和为1﹣0.04﹣0.12﹣0.19﹣0.3=0.35,∵质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1,∴这些产品质量指标值落在区间[75,85]内的频率为0.35×=0.05,(Ⅱ)由频率分布直方图得:这些产品质量指标值落在区间[55,65)内的频率为0.35×=0.2,这些产品质量指标值落在区间[65,75)内的频率为0.35×=0.1,这些产品质量指标值落在区间[45,55)内的频率为0.03×10=0.30,所以这些产品质量指标值落在区间[45,65)内的频率为0.3+0.2=0.5,∵=∴从[45,65)的产品数中抽取6×=5件,记为A,B,C,D,E,从[65,75)的产品数中抽取6×=1件,记为a,从中任取两件,所有可能的取法有:(A,B),(A,C),(A,D),(A,E),(A,a),(B,C),(B,D),(B,E),(B,a),(C,D),(D(C,E),(C,a),(D,E),(D,a),(E,a),共15种,这2件产品都在区间[45,65)内的取法有10种,∴从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率=.19.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(Ⅰ)证明:BD⊥平面A1CO;(Ⅱ)若∠BAD=60°,求点C到平面OBB1的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定. 【分析】(Ⅰ)证明A 1O ⊥BD .CO ⊥BD .即可证明BD ⊥平面A 1CO .(Ⅱ)解法一:说明点B 1到平面ABCD 的距离等于点A 1到平面ABCD 的距离A 1O .设点C 到平面OBB 1的距离为d , 通过,求解点C 到平面OBB 1的距离.解法二:连接A 1C 1与B 1D 1交于点O 1,连接CO 1,OO 1,推出OA 1O 1C 为平行四边形.证明CH ⊥平面BB 1D 1D ,然后求解点C 到平面OBB 1的距离.【解答】(Ⅰ)证明:因为A 1O ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1O ⊥BD .…因为ABCD 是菱形,所以CO ⊥BD .… 因为A 1O∩CO=O,A 1O ,CO ⊂平面A 1CO , 所以BD ⊥平面A 1CO .…(Ⅱ)解法一:因为底面ABCD 是菱形,AC∩BD=O,AB=AA 1=2,∠BAD=60°, 所以OB=OD=1,.…所以△OBC 的面积为.…因为A 1O ⊥平面ABCD ,AO ⊂平面ABCD , 所以A 1O ⊥AO ,.…因为A 1B 1∥平面ABCD ,所以点B 1到平面ABCD 的距离等于点A 1到平面ABCD 的距离A 1O .… 由(Ⅰ)得,BD ⊥平面A 1AC . 因为A 1A ⊂平面A 1AC ,所以BD ⊥A 1A . 因为A 1A ∥B 1B ,所以BD ⊥B 1B .… 所以△OBB 1的面积为.…设点C 到平面OBB 1的距离为d , 因为,所以.…所以.所以点C 到平面OBB 1的距离为.…解法二:由(Ⅰ)知BD ⊥平面A 1CO , 因为BD ⊂平面BB 1D 1D , 所以平面A 1CO ⊥平面BB 1D 1D .… 连接A 1C 1与B 1D 1交于点O 1, 连接CO 1,OO 1,因为AA 1=CC 1,AA 1∥CC 1,所以CAA 1C 1为平行四边形. 又O ,O 1分别是AC ,A 1C 1的中点,所以OA 1O 1C 为平行四边形. 所以O 1C=OA 1=1.…因为平面OA 1O 1C 与平面BB 1D 1D 交线为OO 1, 过点C 作CH ⊥OO 1于H ,则CH ⊥平面BB 1D 1D .… 因为O 1C ∥A 1O ,A 1O ⊥平面ABCD ,所以O 1C ⊥平面ABCD .因为OC ⊂平面ABCD ,所以O •1C ⊥OC ,即△OCO 1为直角三角形.… 所以.所以点C 到平面OBB 1的距离为.…20.已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(﹣2,0),点B (2,)在椭圆C 上,直线y=kx (k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)在x 轴上是否存在点P ,使得无论非零实数k 怎样变化,总有∠MPN 为直角?若存在,求出点P 的坐标,若不存在,请说明理由. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可设椭圆标准方程为+=1(a >b >0),结合已知及隐含条件列关于a ,b ,c 的方程组,求解方程组得到a 2,b 2的值,则椭圆方程可求;(Ⅱ)设F(x0,y),E(﹣x,﹣y),写出AE、AF所在直线方程,求出M、N的坐标,得到以MN为直径的圆的方程,由圆的方程可知以MN为直径的圆经过定点(±2,0),即可判断存在点P.【解答】解:(Ⅰ)由题意可设椭圆方程为+=1(a>b>0),则c=2,a2﹣b2=c2, +=1,解得:a2=8,b2=4.可得椭圆C的方程为+=1;(Ⅱ)如图,设F(x0,y),E(﹣x,﹣y),则+=1,A(﹣2,0),AF所在直线方程y=(x+2),取x=0,得y=,∴N(0,),AE所在直线方程为y=(x+2),取x=0,得y=.则以MN为直径的圆的圆心坐标为(0,),半径r=,圆的方程为x2+(y﹣)2==,即x2+(y+)2=.取y=0,得x=±2.可得以MN为直径的圆经过定点(±2,0).可得在x轴上存在点P(±2,0),使得无论非零实数k怎样变化,总有∠MPN为直角.21.已知函数f(x)=me x﹣lnx﹣1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求得m=1时,f(x)的导数,可得切点坐标和切线的斜率,由点斜式方程可得所求切线的方程;(Ⅱ)证法一:运用分析法证明,当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0,思路1:设g(x)=e x﹣lnx﹣2,求得导数,求得单调区间,可得最小值,证明大于0即可;思路2:先证明e x≥x+1(x∈R),设h(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0;证明x ﹣lnx﹣1≥0.设p(x)=x﹣lnx﹣1,求得导数和单调区间,可得最小值大于0,即可得证;思路3:先证明e x﹣lnx>2.:因为曲线y=e x与曲线y=lnx的图象关于直线y=x对称,结合点到直线的距离公式,求得两曲线上的点的距离AB>2,即可得证;证法二:因为f(x)=me x﹣lnx﹣1,要证明f(x)>1,只需证明me x﹣lnx﹣2>0.思路1:设g(x)=me x﹣lnx﹣2,求得导数和单调区间,求得最小值,证明大于0,即可得证;思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).设F(x)=e x﹣x﹣1,求得导数和单调区间,可得最小值大于0,再证明me x﹣lnx﹣2>0,运用不等式的性质,即可得证.【解答】(Ⅰ)解:当m=1时,f(x)=e x﹣lnx﹣1,所以.…所以f(1)=e﹣1,f'(1)=e﹣1.…所以曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e﹣1)=(e﹣1)(x﹣1).即y=(e﹣1)x.…(Ⅱ)证法一:当m≥1时,f(x)=me x﹣lnx﹣1≥e x﹣lnx﹣1.要证明f(x)>1,只需证明e x﹣lnx﹣2>0.…以下给出三种思路证明e x﹣lnx﹣2>0.思路1:设g(x)=e x﹣lnx﹣2,则.设,则,所以函数h (x )=在(0,+∞)上单调递增.…因为,g'(1)=e ﹣1>0,所以函数在(0,+∞)上有唯一零点x 0,且.…因为g'(x 0)=0时,所以,即lnx 0=﹣x 0.…当x ∈(0,x 0)时,g'(x )<0;当x ∈(x 0,+∞)时,g'(x )>0. 所以当x=x 0时,g (x )取得最小值g (x 0).… 故.综上可知,当m ≥1时,f (x )>1.… 思路2:先证明e x ≥x+1(x ∈R ).… 设h (x )=e x ﹣x ﹣1,则h'(x )=e x ﹣1.因为当x <0时,h'(x )<0,当x >0时,h'(x )>0,所以当x <0时,函数h (x )单调递减,当x >0时,函数h (x )单调递增. 所以h (x )≥h (0)=0.所以e x ≥x+1(当且仅当x=0时取等号).… 所以要证明e x ﹣lnx ﹣2>0, 只需证明(x+1)﹣lnx ﹣2>0.… 下面证明x ﹣lnx ﹣1≥0. 设p (x )=x ﹣lnx ﹣1,则.当0<x <1时,p'(x )<0,当x >1时,p'(x )>0,所以当0<x <1时,函数p (x )单调递减,当x >1时,函数p (x )单调递增. 所以p (x )≥p (1)=0.所以x ﹣lnx ﹣1≥0(当且仅当x=1时取等号).… 由于取等号的条件不同, 所以e x ﹣lnx ﹣2>0.综上可知,当m ≥1时,f (x )>1.…(若考生先放缩lnx ,或e x 、lnx 同时放缩,请参考此思路给分!) 思路3:先证明e x ﹣lnx >2.因为曲线y=e x 与曲线y=lnx 的图象关于直线y=x 对称,设直线x=t (t >0)与曲线y=e x ,y=lnx 分别交于点A ,B , 点A ,B 到直线y=x 的距离分别为d 1,d 2, 则.其中,(t >0).①设h (t )=e t ﹣t (t >0),则h'(t )=e t ﹣1. 因为t >0,所以h'(t )=e t ﹣1>0.所以h (t )在(0,+∞)上单调递增,则h (t )>h (0)=1. 所以.②设g (t )=t ﹣lnt (t >0),则.因为当0<t <1时,g'(t )<0;当t >1时,g'(t )>0,所以当0<t <1时,g (t )=t ﹣lnt 单调递减;当t >1时,g (t )=t ﹣lnt 单调递增. 所以g (t )≥g (1)=1. 所以.所以.综上可知,当m ≥1时,f (x )>1.… 证法二:因为f (x )=me x ﹣lnx ﹣1,要证明f (x )>1,只需证明me x ﹣lnx ﹣2>0.… 以下给出两种思路证明me x ﹣lnx ﹣2>0. 思路1:设g (x )=me x ﹣lnx ﹣2,则.设,则.所以函数h (x )=在(0,+∞)上单调递增.…因为,g'(1)=me ﹣1>0,所以函数在(0,+∞)上有唯一零点x 0,且.…因为g'(x 0)=0,所以,即lnx 0=﹣x 0﹣lnm .…当x ∈(0,x 0)时,g'(x )<0;当x ∈(x 0,+∞)时,g'(x )>0. 所以当x=x 0时,g (x )取得最小值g (x 0).…故.综上可知,当m≥1时,f(x)>1.…思路2:先证明e x≥x+1(x∈R),且lnx≤x+1(x>0).…设F(x)=e x﹣x﹣1,则F'(x)=e x﹣1.因为当x<0时,F'(x)<0;当x>0时,F'(x)>0,所以F(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增.所以当x=0时,F(x)取得最小值F(0)=0.所以F(x)≥F(0)=0,即e x≥x+1(当且仅当x=0时取等号).…由e x≥x+1(x∈R),得e x﹣1≥x(当且仅当x=1时取等号).…所以lnx≤x﹣1(x>0)(当且仅当x=1时取等号).…再证明me x﹣lnx﹣2>0.因为x>0,m≥1,且e x≥x+1与lnx≤x﹣1不同时取等号,所以me x﹣lnx﹣2>m(x+1)﹣(x﹣1)﹣2=(m﹣1)(x+1)≥0.综上可知,当m≥1时,f(x)>1.…请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.【选修4-1:几何证明选讲】22.如图所示,△ABC内接于⊙O,直线AD与⊙O相切于点A,交BC的延长线于点D,过点D作DE∥CA交BA的延长线于点E.(I)求证:DE2=AE•BE;(Ⅱ)若直线EF与⊙O相切于点F,且EF=4,EA=2,求线段AC的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)推导出△AED∽△DEB,由此能证明DE2=AE•BE.(Ⅱ)由切割线定理得EF2=EA•EB,由DE∥CA,得△BAC∽△BED,由此能求出AC.【解答】证明:(Ⅰ)∵AD是⊙O的切线,∴∠DAC=∠B,∵DE∥CA,∴∠DAC=∠EDA,∴∠EDA=∠B,∵∠AED=∠DEB,∴△AED∽△DEB,∴,∴DE2=AE•BE.解:(Ⅱ)∵EF是⊙O的切线,EAB是⊙O割线,∴EF2=EA•EB,∵EF=4,EA=2,∴EB=8,AB=EB﹣EA=6,由(Ⅰ)知DE2=AE•BE,∴DE=4,∵DE∥CA,∴△BAC∽△BED,∴,∴AC==.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,以坐标原点0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).(1)求曲线C的直角坐标方程;(2)在曲线C上求一点D,使它到直线l:,(t为参数,t∈R)的距离最短,并求出点D的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)利用可把圆C的极坐标方程化为普通方程.(II)消去参数把直线l的参数方程化为普通方程,求出圆心C到直线l的距离d,得出直线与圆的位置关系即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π),即ρ2=2ρsinθ,化为x2+y2﹣2y=0,配方为x2+(y﹣1)2=1.(2)曲线C的圆心C(0,1),半径r=1.直线l:,(t为参数,t∈R)化为普通方程:﹣y﹣1=0,可得圆心C到直线l的距离d==1=0,∴直线l与圆C相切,其切点即为所求.联立,解得D.选修4-5:不等式选讲24.设函数f(x)=|x+|﹣|x﹣|.(I)当a=1时,求不等式f(x)≥的解集;(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,求实数b的取值范围.【考点】绝对值不等式的解法.【分析】(I)当a=1时,利用绝对值的意义求得不等式的解集.(Ⅱ)由题意可得b大于f(x)的最大值.再根据绝对值的意义可得f(x)的最大值为1,可得实数b的范围.【解答】解:(I)当a=1时,不等式f(x)≥,即|x+1|﹣|x|≥,即数轴上的x对应点到﹣1对应点的距离减去它到原点的距离大于,而﹣0.25对应点到﹣1对应点的距离减去它到原点的距离正好等于,故|x+1|﹣|x|≥的解集为{x|x≥﹣0.25}.(Ⅱ)若对任意a∈[0,1],不等式f(x)≥b的解集为空集,则b大于f(x)的最大值.而由绝对值的意义可得f(x)的最大值为1,故实数b>1.。
广东省广州市天河区高考数学一模试卷(文科)解析版

高考数学一模试卷(文科)一、选择题(本大题共12小题,共60.0分)1.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩B=()A. {3}B. {2,3}C. {-1,3}D. {0,1,2}2.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地,这n座城市共享单车的使用量(单位;人次/天)分别为x1,x2,…x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A. x1,x2,…x n的平均数B. x1,x2,…x n的标准差C. x1,x2,…x n的最大值D. x1,x2,…x n的中位数3.若复数为纯虚数,则|3-ai|=()A. B. 13 C. 10 D.4.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A. 18B. 36C. 45D. 605.已知cos(θ+)=,<θ<,则sin2θ的值等于()A. B. C. D.6.若实数x,y满足,则z=y-2x的最小值为()A. 2B. -2C. 1D. -17.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实,黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简,得勾2+股2=弦2,设勾股中勾股比为1:,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. 866B. 500C. 300D. 1348.已知满足,则()A. B. C. D.9.在棱长为的正方体中,是棱的中点,是侧面上的动点,且面,则在侧面上的轨迹的长度是B. C. D.A.10.已知函数f(x)=sin(ωx+φ)(ω>0,-<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是()A. (2k-,2k+),k∈ZB. (2kπ-π,2kπ+π),k∈ZC. (4k-,4k+),k∈ZD. (4kπ-π,4kπ+π),k∈Z11.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a元一年定期,若年利率为r保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为()A. a(1+r)17B. [(1+r)17-(1+r)]C. a(1+r)18D. [(1+r)18-(1+r)]12.已知函数f(x)=(k+)ln x+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为()A. ()B. ()C. [)D. [)二、填空题(本大题共4小题,共20.0分)13.已知向量=(3,-2),=(m,1).若向量(-2)∥,则m=______.14.已知数列{a n}满足a1=1,a n=1+a1+…+a n-1(n∈N*,n≥2),则当n≥1时,a n=______.15.如图所示,位于A处的信息中心获悉:在其正东方向相距30海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西45°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cosθ的值为______.16.已知直三棱柱ABC-A1B1C1外接球的表面积为52π,AB=1,若△ABC外接圆的圆心O1在AC上,半径r1=1,则直三棱柱ABC-A1B1C1的体积为______.三、解答题(本大题共7小题,共82.0分)17.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.18.在等比数列{a n}中,公比q∈(0,1),且满足a3=2,a1a3+2a2a4+a3a5=25.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,当取最大值时,求n 的值.19.在△ABC中,角A、B、C所对的边分别为a、b、c,且-2sin2C+2cos C+3=0.(1)求角C的大小;(2)若b=a,△ABC的面积为sin A sin B,求sin A及c的值.20.如图,四棱锥P-ABCD的底面ABCD是矩形,侧面PAB是正三角形,AB=2,BC=,PC=.E、H分别为PA、AB的中点.(1)求证:PH⊥AC;(2)求点P到平面DEH的距离.21.已知函数f(x)=ln x-mx2,g(x)=+x,m∈R,F(x)=f(x)+g(x).(1)讨论函数f(x)的单调区间及极值;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.22.在直角坐标系xOy中,曲线C的参数方程为(α为参数),以坐标原点O为极点,x轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l 的极坐标方程为ρcos(θ+)=2(Ⅰ)求曲线C和直线l的直角坐标方程;(Ⅱ)直线l与y轴交点为P,经过点P的直线与曲线C交于A,B两点,证明:|PA|•|PB|为定值.23.已知函数f(x)=|x﹣1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x﹣3|在x∈[0,1]上有解,求实数m的取值范围.答案和解析1.【答案】C【解析】解:由B中不等式变形得:x(x-2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={-1,0,1,2,3},∴A∩B={-1,3},故选:C.求出B中不等式的解集确定出B,找出A与B的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】B【解析】解:表示一组数据x1,x2,…x n的稳定程度是方差或标准差.故选:B.利用方差或标准差表示一组数据的稳定程度.本题考查了利用方差或标准差表示一组数据的稳定程度,是基础题.3.【答案】A【解析】解:由=.因为复数为纯虚数,所以,解得a=2.所以|3-ai|=|3-2i|=.故选:A.把给出的复数化简,然后由是不等于0,虚部不等于0求解a的值,最后代入模的公式求模.本题考查了复数代数形式的乘除运算,考查了复数是纯虚数的充要条件,考查了复数模的求法,是基础题.4.【答案】C【解析】【分析】本题考查等差数列的性质和应用,解题时要注意等差数列的通项公式和前n项和公式的合理运用,是基础题.由等差数列的通项公式知a2+a8=15-a5⇒a5=5,再由等差数列的前n项和公式知S9=×2a5.【解答】解:∵a2+a8=15-a5,∴a5=5,∴S9===45.故选C.5.【答案】C【解析】解:∵cos(θ+)=-sinθ=,∴sinθ=-,∵<θ<,∴cosθ=-=-,∴sin2θ=2sinθcosθ=2×(-)×(-)=.故选:C.由已知利用诱导公式可求sinθ,根据同角三角函数基本关系式可求cosθ,进而根据二倍角的正弦函数公式即可求解.本题主要考查了诱导公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.6.【答案】B【解析】解:作出不等式组表示的平面区域,如图:由图可知,z=y-2x在x+y=1与x轴的交点(1,0)处取得最小值,即z=0-2=-2.故选:B.作出不等式组对应的平面区域,利用数形结合即可得出结论.本题考查了线性规划,求最值问题,属于基础题.7.【答案】D【解析】解:如图,设勾为a,则股为,∴弦为2a,则图中大四边形的面积为4a2,小四边形的面积为=()a2,则由测度比为面积比,可得图钉落在黄色图形内的概率为.∴落在黄色图形内的图钉数大约为1000≈134.故选:D.设勾为a,则股为,弦为2a,求出大的正方形的面积及小的正方形面积,再求出图钉落在黄色图形内的概率,乘以1000得答案.本题考查几何概型,考查几何概型概率公式的应用,是基础的计算题.8.【答案】A【解析】【分析】可以看出ln x3>0,从而得出x3>1,又可看出,从而得出x1,x2,x3的大小关系.考查指数函数的值域,对数函数和指数函数的单调性.【解答】解:∵e-x>0;∴ln x3>0;∴x3>1;又;∴x1<x2<x3.故选:A.9.【答案】D【解析】【分析】本题考查线面平行的判定,其中分析出F落在线段HI上是解答本题的关键,属于中档题.设G,H,I分别为CD、CC1、C1D1边上的中点,根据面面平行的判定定理,可得平面A1BGE∥平面B1HI,结合已知中B1F∥面A1BE,可得F落在线段HI上,则答案可求.【解答】解:设G,H,I分别为CD、CC1、C1D1边上的中点则A1BEG四点共面,且平面A1BGE∥平面B1HI又∵B1F∥面A1BE,∴F落在线段HI上,∵正方体ABCD-A1B1C1D1中的棱长为a,∴HI=.即F在侧面CDD1C1上的轨迹的长度是.故选:D.10.【答案】C【解析】【分析】由题意可得+=42,求得ω的值,再根据对称中心求得φ的值,可得函数f(x)的解析式,利用正弦函数的单调性,求得f(x)的单调递增区间.本题主要考查正弦函数的周期性、最值以及单调性,属于中档题.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,-<φ<),A(,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,∴+=42,即12+=16,求得ω=.再根据•+φ=kπ,k∈Z,可得φ=-,∴f(x)=sin(x-).令2kπ-≤x-≤2kπ+,求得4k-≤x≤4k+,故f(x)的单调递增区间为(4k-,4k+),k∈Z,故选:C.11.【答案】D【解析】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a元产生的本利合计为a(1+r)17,同理:孩子在2周岁生日时存入的a元产生的本利合计为a(1+r)16,孩子在3周岁生日时存入的a元产生的本利合计为a(1+r)15,……孩子在17周岁生日时存入的a元产生的本利合计为a(1+r),可以看成是以a(1+r)为首项,(1+r)为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数S=a(1+r)17+a(1+r)16+……+a(1+r)==[(1+r)18-(1+r)];故选:D.根据题意,依次分析孩子在1周岁时、2周岁时、……17周岁时存入的a元产生的本利合计,进而可得取回的钱的总数S=a(1+r)17+a(1+r)16+……+a(1+r),由等比数列的前n项和公式分析可得答案.本题考查数列的应用,涉及等比数列的前n项和公式的应用,属于基础题.12.【答案】B【解析】解:函数f(x)=(k+)ln x+,导数f′(x)=(k+)•--1.由题意可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2).即有--1=--1,化为4(x1+x2)=(k+)x1x2,而x1x2<()2,∴4(x1+x2)<(k+)()2,化为x1+x2>对k∈[4,+∞)都成立,令g(k)=k+,k∈[4,+∞),g′(k)=1->0,对k∈[4,+∞)恒成立,即g(k)在[4,+∞)递增,∴g(k)≥g(4)=5,∴≤,∴x1+x2>,即x1+x2的取值范围是(,+∞).故选:B.求得f(x)的导数f′(x),由题意可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2),化为4(x1+x2)=(k+)x1x2,因此x1+x2>对k∈[4,+∞)都成立,令g(k)=k+,k∈[4,+∞),利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究函数的单调性极值与最值、问题的等价转化方法、基本不等式的性质,考查了推理能力与计算能力,属于中档题.13.【答案】【解析】解:∵向量=(3,-2),=(m,1),∴,∵(-2)∥,∴-4m=3-2m,∴m=.故答案为:.根据(-2)∥,可得方程-4m=3-2m,解方程可得m的值.本题考查平面向量的坐标运算和向量平行,考查方程思想和计算能力,属基础题.14.【答案】2n-1【解析】解:∵数列{a n}满足a1=1,a n=1+a1+…+a n-1(n∈N*,n≥2),则a1=1=20,a2=2=21,a3=4=22,,…由此可得当n≥1时,.故答案为:2n-1.根据已知条件写出数列的前几项,分析规律,并归纳出数列的通项公式即可.本题考查了用归纳法求数列的通项公式,关键是能够根据数列的前几项分析规律,并大胆猜想,属于基础题.15.【答案】【解析】解:如图所示,在△ABC中,AB=30,AC=20,∠BAC=135°定理得BC2=AB2+AC2-2AB•AC•cos135°=3600,所以BC=10,正弦定理得sin∠ACB=•sin∠BAC=.由∠BAC=135°知∠ACB为锐角,故cos∠ACB=.故cosθ=cos(∠ACB+45°)=cos∠ACB cos45°-sin∠ACB sin45°==.故答案为:.利用余弦定理求出BC的数值,正弦定理推出∠ACB的余弦值,利用cosθ=cos(∠ACB+45°)展开求出cosθ的值.本题是中档题,考查三角函数的化简求值,余弦定理、正弦定理的应用,注意角的变换,方位角的应用,考查计算能力.16.【答案】6【解析】解:如图,∵△ABC外接圆的圆心O1在AC上,∴O1为AC的中点,且△ABC是以∠ABC为直角的直角三角形,由半径r1=1,得AC=2,又AB=1,∴BC=.把直三棱柱ABC-A1B1C1补形为长方体,设BB1=x,则其外接球的半径R=.又直三棱柱ABC-A1B1C1外接球的表面积为52π,∴4πR2=52π,即R=.∴R==,解得x=4.∴直三棱柱ABC-A1B1C1的体积为=6.故答案为:6.由题意可得,直三棱柱ABC-A1B1C1的底面为直角三角形,由其外接球的表面积求得侧棱长,代入体积公式得答案.本题考查球内接多面体体积的求法,考查数形结合的解题思想方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运用求解能力,是中档题.17.【答案】解:(1)由频率分布直方图得第七组的频率为:1-(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+1 30×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n==10,他们的分差的绝对值小于10分包含的基本事件个数m==4,∴他们的分差的绝对值小于10分的概率p==.【解析】(1)由频率分布直方图能求出第七组的频率,由此能完成频率分布直方图.(2)用样本数据能估计该校的2000名学生这次考试成绩的平均分.(3)样本成绩属于第六组的有3人,样本成绩属于第八组的有2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n==10,他们的分差的绝对值小于10分包含的基本事件个数m==4,由此能求出他们的分差的绝对值小于10分的概率.本题考查频率、平均分、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)a1a3+2a2a4+a3a5=25,可得a22+2a2a4+a42=(a2+a4)2=25,由a3=2,即a1q2=2,①,可得a1>0,由0<q<1,可得a n>0,可得a2+a4=5,即a1q+a1q3=5,②由①②解得q=(2舍去),a1=8,则a n=8•()n-1=24-n;(2)b n=log2a n=log224-n=4-n,可得S n=n(3+4-n)=,=,则=3++…+=n(3+)==-(n-)2+,可得n=6或7时,取最大值.则n的值为6或7.【解析】(1)由条件判断a n>0,再由等比数列的性质和通项公式,解方程可得首项和公比,进而得到所求通项公式;(2)求得b n=log2a n=log224-n=4-n,可得S n=,=,再由等差数列的求和公式和配方法,可得所求最大值时的n的值.本题考查等比数列的通项公式和性质,同时考查等差数列的通项公式和求和公式的运用,以及最值求法,考查化简运算能力,属于中档题.19.【答案】解:(1)∵-2sin2C+2cos C+3=0,可得:-2(1-cos2C)+2cos C+3=0,∴2cos2C+2cos C+1=0,∴cos C=-,∵0<C<π,∴C=.(2)∵c2=a2+b2-2ab cos C=3a2+2a2=5a2,∴c=a,∴sin C=sin A,∴sin A=sin C=,∵S△ABC=ab sin C=sin A sin B,∴ab sin C=sin A sin B,∴••sin C=()2sin C=,∴c==1.【解析】(1)利用正弦定理和已知等式,化简可求得cos C的值,进而求C.(2)利用余弦定理可求得c与a的关系,进而求得sin C,然后利用三角形面积公式和已知等式求得c.本题主要考查了正弦定理和余弦定理的应用.在解三角形的问题中应灵活运用余弦和正弦定理实现边角的转化,属于中档题.20.【答案】解:(1)证明:∵PAB为正三角形,AB=2,∴PB=AB=2,∵BC=,PC=,∴PC2=BC2+PB2∴根据勾股定理得BC⊥PB,∵ABCD为矩形,∴BC⊥AB,∵PB,AB⊂面PAB且交于点B,∴BC⊥面PAB,∵BC⊂面ABCD,∴面PAB⊥面ABCD,∵H为AB的中点,PAB为正三角形,∴PH⊥AB,∴PH⊥平面ABCD,∵AC⊂平面ABCD,∴PH⊥AC.(Ⅱ)解:取CD中点E,以H为原点,HA为x轴,HB为y轴,HP为z轴,建立空间直角坐标系,则P(0,0,),D(1,,0),A(1,0,0),E(),H(0,0,0),=(1,,0),=(),=(0,0,),设平面DEH的法向量=(x,y,z),则,取y=1,得=(-,1,),∴点P到平面DEH的距离d===.【解析】(1)推导出PB=AB=2,BC⊥PB,BC⊥AB,从而BC⊥面PAB,进而面PAB⊥面ABCD,PH⊥AB,PH⊥平面ABCD,由此能证明PH⊥AC.(Ⅱ)取CD中点E,以H为原点,HA为x轴,HB为y轴,HP为z轴,建立空间直角坐标系,利用向量法能求出点P到平面DEH的距离.本题考查线线垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21.【答案】解:(1)定义域为(0,+∞),f′(x)=-2mx=,①当m≤0时f′(x)>0恒成立,∴f(x)在(0,+∞)上是增函数,无极值,②当m>0时令f′(x)>0,∴0<x<,令f′(x)<0,∴x>,所以函数f(x)在(0,)上为增函数,在(,+∞)为减函数,所以当x=时,有极大值,极大值为-(ln2m+1),无极小值,(2):由F(x)≤mx-1恒成立知m≥恒成立,令h(x)=,则h′(x)=,令φ(x)=2ln x+x,因为φ()=-ln4<0,φ(1)=1>0,则φ(x)为增函数.故存在x0∈(,1),使φ(x0)=0,即2ln x0+x0=0,当0<x<x0时,h′(x)>0,h(x)为增函数,当x0<x时,h′(x)<0,h(x)为减函数.所以h(x)max=h(x0)==,而x0∈(,1),所以∈(1,2),所以整数m的最小值为2.【解析】(1)求导后,根据m取值的情况分类讨论;(2)利用分离参数法,利用函数的最大值进行求解.本题主要考查利用导数研究函数的单调性、函数不等式问题,属于高档题目,有一定难度.22.【答案】解:(Ⅰ)由x2+y2=(cosα+sinα)2+(sinα-cosα)2=4,得曲线C:x2+y2=4.直线l的极坐标方程展开为ρcosθ-ρsinθ=2,故l的直角坐标方程为.(Ⅱ)显然P的坐标为(0,-4),不妨设过点P的直线方程为(t为参数),代入C:x2+y2=4得t2-8t sinα+12=0,设A,B对应的参数为t1,t2所以|PA|•|PB|=|t1t2|=12为定值.【解析】(Ⅰ)由x2+y2=(cosα+sinα)2+(sinα-cosα)2=4可得曲线C的直角坐标方程;根据互化公式可得直线l的直角坐标方程;(Ⅱ)根据参数t的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(1)若m=2时,|x-1|+|2x+2|≤3,当x≤-1时,原不等式可化为-x+1-2x-2≤3解得x≥-,所以,当-1<x<1时,原不等式可化为1-x+2x+2≤3得x≤0,所以-1<x≤0,当x≥1时,原不等式可化为x-1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x-3|得1-x+|2x+m|≤3-2x,即|2x+m|≤2-x,故x-2≤2x+m≤2-x得-x-2≤m≤2-3x,又由题意知:(-x-2)min≤m≤(2-3x)max,即-3≤m≤2,故m的范围为[-3,2].【解析】本题考查解绝对值不等式,不等式的恒成立问题,分类讨论思想,化归与转化思想,考查运算化简的能力,属于中档题.(1)通过分段讨论去掉绝对值符号解不等式,最后将每一段的解集并在一起即可;(2)当x∈[0,1]时,转化为|2x+m|≤2-x有解,即-x-2≤m≤2-3x在x∈[0,1]时有解,即(-x-2)≤m≤(2-3x)max,可求解实数m的取值范围.min。
2020年广东广州高三一模文科数学试卷答案

【答案】 ①④
【解析】 ①∵
, 平面 ,
∴ 平面 ,
∵ 平面 ,
∴ ①正确.
②∵ , 平面 ,
∴或
,
∴ 未必成立. ②错误.
③同理 , 均是 , 位置关系中的一种情况,但由题目中条件 , 可成任
意夹角,
∴②③均错.
④∵ 平面 , ,
∴ 平面 ,
∵ 平面 ,
∴ ,故④正确.
⑤当平面 与平面 成锐角时,交线为 ,
由
,同理求得
,
所以
,
所以 的值为
.
19. 某种昆虫的日产卵数和时间变化有关,现收集了该昆虫第 天到第 天的日产卵数据: 第天
日产卵数 (个)
对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
此时∵ 平面 ,
∴,
但 并不平行于 ,
∴⑤错误,
综上,正确答案为①④.
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
9/21
更多资料请微信搜索小程序“真题试卷”获取
,所以
在
中,
,
,
在
和
中,因为
,
所以
,
所以
,
所以
.
( 2 )方法一:因为
,
所以
,
, ,
https:///#/print?id=17dcff57d654467dbaf323a78df2c57a&type=analyze
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广州市普通高中毕业班文科数学综合测试(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.复数21i+的虚部是( )A .2- B.1- C.1 D.2 2.已知集合}{}{2001x x ax ,+==,则实数a 的值为( )A .1-B .0 C.1 D.2 3.已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则cos2θ=( ) A.45 B.35 C.35- D .45-4.阅读如图的程序框图. 若输入5n =,则输出k 的值为( )A .2B .3 C.4 D.5 ﻩ5.已知函数()122,0,1log ,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f ( )A.43 B.23C .43- D .3-6.已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线 C 的左、右焦点,点P 在双曲线C 上, 且12=PF , 则2PF 等于( )A .4 B.6 C .8 D.107.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A.14 B .716 C.12 D.9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形) 和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )A .()0,0B .()1,1- C.()1,1- D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面 积为( )A .8π B.12π C.20π D.24π11.已知函数()()()()sin cos 0,0=+++><<ωϕωϕωϕπf x x x 是奇函数,直线2y =()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递减 B.()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫ ⎪⎝⎭上单调递增 D.()f x 在3,88ππ⎛⎫ ⎪⎝⎭上单调递增 12.已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫⎪⎝⎭∑的值为( ) A.2016 B .1008 C.504 D.0第Ⅱ卷二、填空题:本小题共4题,每小题5分13.已知向量a ()1,2=,b (),1=-x ,若a //()a b -,则a b ⋅=14.若一个圆的圆心是抛物线24=x y 的焦点,且该圆与直线3+=x y 相切,则该圆的标准方_____ 15.满足不等式组⎩⎨⎧≤≤≥-++-ax y x y x 00)3)(1(的点(),x y 组成的图形的面积是5,则实数a 的值是_____ 16.在ABC ∆中,160,1,2ACB BC AC AB ︒∠=>=+,当ABC ∆的周长最短时,BC 的长是三、解答题:解答应写出文字说明、证明过程或演算步骤 17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*N n ∈) (Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}n S 的前n 项和n T 18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?(Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++(其中=+++n a b c d 为样本容量)()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k2.072 2.7063.841 5.024 6.6357.87910.82819.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体 (Ⅰ)求证:AB ⊥平面ADC ; ABD (Ⅱ)若1=AD ,AC 与其在平面6,求内的正投影所成角的正切值为点B 到平面ADE 的距离20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为23,且过点)1,2(A(Ⅰ)求椭圆C 的方程;(Ⅱ)若Q P ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由21.(本小题满分12分)已知函数)0(ln )(>+=a xax x f (Ⅰ)若函数)(x f 有零点,求实数a 的取值范围;(Ⅱ)证明:当e a 2≥时,xex f ->)(请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为3,(1,=-⎧⎨=+⎩x t t y t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线:22cos .4⎛⎫=-⎪⎝⎭πρθC(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值 23.(本小题满分10分)选修4-5:不等式选讲已知函数()12=+-+-f x x a x a .(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若1,≥∈a x R ,求证:()2≥f x .甲生产线乙生产线合计 合格品 不合格品 合计E DC B A2017年广州市普通高中毕业班文科数学综合测试(一)答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分. 一、选择题(1)B (2)A (3)C (4)B (5)A (6)C(7)B (8)D (9)D (10)C (11)D (12)B 二、填空题(13)52- (14)()2212x y +-=(15)3 (16)12+ 三、解答题 (17) 解:(Ⅰ)当1n =时,1122S a =-,即1122a a =-, ………………………………………1分 解得12a =. ………………………………………………………2分当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-, ………………3分 即12n n a a -=, ………………………………………………………4分 所以数列{}n a 是首项为2,公比为2的等比数列.……………………………………5分 所以1222n n n a -=⨯=(n ∈N *). ………………………………………………6分(Ⅱ) 因为12222n n n S a +=-=-, ………………………………………………8分所以12n n T S S S =++⋅⋅⋅+ ………………………………………………9分2312222n n +=++⋅⋅⋅+- ………………………………………………10分 ()412212n n ⨯-=-- (1)2242n n +=--. ………………………………………………12分(18) 解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()()0.480.0120.0320.05250.50.0120.0320.0520.07650.86=++⨯<<+++⨯=,………………………………………1分 则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= ……………………………3分 解得390019x =. ………………………………………4分(Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 ………………………5分乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, ………6分 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. …………………………8分 (Ⅲ)列联表:10分则()221003506004 1.3505075253K ⨯-==≈⨯⨯⨯, ……………………………………………11分因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”. ……………………………………………………12分 (19) 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分 因为AB ⊂平面ABD ,所以DC ⊥AB …………………………………2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, …………………………………3分所以AB ⊥平面ADC . …………………………………4分 (Ⅱ) 由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角. ……………………………5分依题意6tan ==∠ADCDCAD , 因为1AD ,= 所以6=CD . …………………………6分设()0AB x x =>,则12+=x BD ,因为△ABD ~△BDC ,所以BDDCAD AB =, ………………………………7分 即1612+=x x ,解得x =3,3,2===BC BD AB . ………………………………8分由于AB ⊥平面ADC ,AB ⊥AC , E 为BC 的中点,由平面几何知识得AE 322BC ==,同理DE 322==BC ,所以22=∆ADE S . …………………………9分因为DC ⊥平面ABD ,所以3331=⋅=-ABD BCD A S CD V . ………………………10分 设点B 到平面ADE 的距离为d ,则632131====⋅---BCD A BDE A ADE B ADE V V V S d , …………………………11分 所以26=d ,即点B 到平面ADE 的距离为26. …………………………12分(20) 解:(Ⅰ) 因为椭圆C, 且过点()2,1A , 所以22411a b+=,c a = ………………………………………………2分因为222a b c =+,解得28a =, 22b =, ………………………………………………3分所以椭圆C 的方程为22182x y +=. ……………………………………………4分(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对 称. 设直线PA 的斜率为k , 则直线AQ 的斜率为k -. ………………………………5分 所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--. 设点(),P P P x y , (),Q Q Q x y ,由()2212,1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根, 则2216164214P k k x k --=+,……………………………………………6分所以2288214P k k x k --=+. ……………………………………………7分同理2288214Q k k x k+-=+. ……………………………………………8分 所以21614P Q kx x k-=-+. ……………………………………………9分 又()28414P Q P Q ky y k x x k -=+-=-+. ……………………………………………10分 所以直线PQ 的斜率为12P Q PQ P Q y y k x x -==-. …………………………………………11分所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分法2:设点()()1122,,,P x y Q x y ,则直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-, 即1112y x --22102y x -+=-, ① ………………………………………5分 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③ 由②得()()22114410x y -+-=, 得()111112241y x x y -+=--+, ④ ………………………6分 同理由③得()222212241y x x y -+=--+, ⑤ ………………………………………………7分由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ ……………………………8分 由①得()()12211212240x y x y x x y y +-+-++=, ⑦ ……………………………9分 ⑥-⑦得()12122x x y y +=-+. …………………………………………10分②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. …………………11分 所以直线PQ 的斜率为121212PQ y y k x x -==-为定值. …………………………………12分法3:设直线PQ 的方程为y kx b =+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+,直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. ………………………5分 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-, 即1112y x --2212y x -=--, ……………………………………………6分 化简得()()12211212240x y x y x x y y +-+-++=. 把1122,y kx b y kx b =+=+代入上式, 并化简得()()1212212440kx x b k x x b +--+-+=. (*) …………………………………7分由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=, (**)则2121222848,4141kb b x x x x k k -+=-=++, ……………………………………………8分代入(*)得()()2222488124404141k b kb b k b k k -----+=++, ……………………………9分整理得()()21210k b k -+-=, 所以12k =或12b k =-. ...................................................10分 若12b k =-, 可得方程(**)的一个根为2,不合题意. (1)若12k =时, 合题意.所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 (21) 解:(Ⅰ)法1: 函数()ln af x x x=+的定义域为()0,+∞. 由()ln a f x x x =+, 得()221a x af x x x x-'=-=. ……………………………………1分 因为0a >,则()0,x a ∈时, ()0f x '<;(),x a ∈+∞时, ()0f x '>.所以函数()f x 在()0,a 上单调递减, 在(),a +∞上单调递增. ………………………2分 当x a =时,()min ln 1f x a =+⎡⎤⎣⎦. …………………………………………………3分当ln 10a +≤, 即0a <≤1e时, 又()1ln10=+=>f a a , 则函数()f x 有零点. …4分所以实数a 的取值范围为10,e⎛⎤ ⎥⎝⎦. ……………………………………………………5分法2:函数()ln af x x x=+的定义域为()0,+∞. 由()ln 0af x x x=+=, 得ln a x x =-. …………………………………………………1分 令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()0g x '>; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………………2分故1x e =时, 函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. …………………………3分因而函数()ln af x x x=+有零点, 则10a e <≤. ………………………………………4分所以实数a 的取值范围为10,e⎛⎤ ⎥⎝⎦. …………………………………………………5分(Ⅱ) 要证明当2a e≥时, ()->x f x e , 即证明当0,x >2a e ≥时, ln x ax e x-+>, 即ln x x x a xe -+>.………………………6分令()ln h x x x a =+, 则()ln 1h x x '=+.当10x e <<时, ()0f x '<;当1x e >时,()0f x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e =时, ()min1h x a e=-+⎡⎤⎣⎦. ……………………………………………………7分 于是,当2a e≥时, ()11.h x a e e ≥-+≥ ① ……………………………………8分令()x x xe ϕ-=, 则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时, ()0f x '>;当1x >时,()0f x '<.所以函数()x ϕ在()0,1上单调递增, 在()1,+∞上单调递减.当1x =时, ()max 1x e ϕ=⎡⎤⎣⎦. ……………………………………………………9分 于是, 当0x >时, ()1.x e ϕ≤② ……………………………………………………10分显然, 不等式①、②中的等号不能同时成立. …………………………………11分 故当2a e≥时, ()->x f x e . ……………………………………………………12分 (22)解:(Ⅰ) 由3,1,=-⎧⎨=+⎩x t y t消去t 得40+-=x y , ………………………………………1分所以直线l 的普通方程为40+-=x y . ………………………………………2分由4⎛⎫=- ⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ, ……3分得22cos 2sin =+ρρθρθ. ………………………………………4分 将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y , 即()()22112-+-=x y . ………5分 (Ⅱ) 法1:设曲线C上的点为()1,1ααP , ………………………………6分则点P 到直线l的距离为=d 分==………………………………………8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d ………………………………………9分所以曲线C 上的点到直线l 的距离的最大值为10分 法2: 设与直线l 平行的直线为:0l x y b '++=, ………………………………………6分 当直线l '与圆C相切时,= ………………………………………7分解得0b =或4b =-(舍去),所以直线l '的方程为0x y +=. ………………………………………8分 所以直线l 与直线l'的距离为d == …………………………………9分所以曲线C 上的点到直线l 的距离的最大值为. ………………………………10分 (23)解:(Ⅰ) 因为()13<f ,所以123+-<a a . ………………………………………1分① 当0≤a 时,得()123-+-<a a ,解得23>-a ,所以203-<≤a ; ……………2分 ② 当102<<a 时,得()123+-<a a ,解得2>-a ,所以102<<a ; ……………3分③ 当12a ≥时,得()123--<a a ,解得43<a ,所以1423a ≤<; ……………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ………………………………………5分 (Ⅱ) 因为1,≥∈a x R ,所以()()()1212=+-+-≥+---f x x a x a x a x a ……………………………7分31=-a ……………………………………………………………………8分31=-a ……………………………………………………………………9分2≥.……………………………………………………………………10分。