海洋工程装备---海洋油气资源开发装备(甘丰录)
海洋工程支持船(OSV)船员特殊培训课程体系构建

海洋工程支持船(OSV)船员特殊培训课程体系构建张亚东1,李国梁1,刘强2,乔卫亮2,马来好2,陈海泉2(1.中海油田服务股份有限公司,天津300450;2.大连海事大学,辽宁大连116026)摘要:针对中国海洋工程支持船(OSV)拥有量规模增大、对OSV船员的需求不断增加的现状,在分析海洋工程支持船(OSV)与普通货船的差异的基础上,分析了对船员进行OSV特殊培训的必要性和可行性,根据OSV 的操纵特点和作业方式,提出针对OSV甲板部和轮机部船员的培训内容及考核要求。
关键词:船员培训;海洋工程支持船(OSV);课程体系;甲板部;轮机部中图分类号:U676.2文献标识码:A ?文章编号:1006-8724(2019)01-0013-04一、引言海上资源开发是海洋强国战略的重要内容之一。
截至2016年,中国海油在我国海域建成探井115口,国内外油气年产量超过1亿吨,国内累计生产原油2.1亿吨,仅2016年全年生产原油7697万吨,天然气245亿立方米,中国已经成为世界海洋石油生产大国之一。
海洋工程支持船(Offshore Supply Vessel,以下简称OSV)作为海洋石油开发的必备装备,肩负“海上石油城”和“陆地石油基地”的生产支持重任,包括为海上设施提供抛锚、拖曳、定位、物料供应、守护、消防、人员载运、溢油回收、提油支持、破冰等多种作业支持,在海洋资源开发市场活跃的背景下,其支持和保障作用也越来越重要。
根据CLARKSON的统计数据,截至2017年5月,我国共有OSV类船舶291艘,其中处于营运状态的占87%。
我国的OSV基本上属于40家公司,其中中海油田服务股份有限公司和救捞局是国内最大的两家OSV船舶经营者,两家公司合计占国内OSV市场份额的70%[1]。
我国目前对OSV按照普通货船进行归类管理,船员到OSV任职无需进行特殊培训。
相关分析表明,OSV在特殊操纵性能指标[2]、甲板货物作业安全[3]、抛起锚作业安全[4]、靠离平台操纵作业安全及风险控制[5]等方面均与普通货船存在差别,因此有必要针对OSV船员的适任能力进行研究,积极推进开展OSV特殊培训课程建设,以满足不断增长的海洋资源开发的需求。
世黼油气勘探开发技术与装备览观(中)——浅海开发技术及装备

随着深海工程船舶特别是浮式起
重船和铺管船的吨位增大 ,定位锚
绞车 的拉力也在逐渐增大 ,额定单 索拉力现 已发展至20 0 吨以上,最大 单索拉力 已达60 0吨,单筒容绳量可
达N350 ,0米以上。
浅海油气钻采平 台 海洋平台 按功 能划 分主要 分为钻井平 台和生 产平 台两 大类 ,在钻井平 台上 设有 钻 井设备 ,在生产平台上则设有采 油设备 。若按结构型式及特 点来划
新 知 ・ 备 知 识 装
业不可缺少的动力装备。 由于 动 力 定 位 系 统 的起 点很
清理井。因为所有的油井都将 需要 在其寿命期进行 “ 维护 ”,研 究表
高 ,这 一 技 术仅 被少 数 几个 国家
垄 断 :挪 威 ( o g b r )、法 k n s eg
国 ( o v r e m 、美 国 ( 3 C neta ) L)
固定式平 台、移动式平台和顺 应式
平台。
威 )、W se h( e tc 挪威)、P is l lm o l ( 新加坡 ),这些厂家 的主打产 品 为液压驱动,而ZM主打产品为电力 PC
驱动 。
目前世界上铺管设备主要供应商
共有3 家,分别是荷兰SS A公司、意大  ̄Rm ct ]eau公司和美国W seh etc 公司, 其中以荷兰sS A 公司实力最强,三家
一
备和软件系统。 锚 绞车 锚 绞车是 一种抛锚机 械装置 ,通过调节钢丝绳 的负载来 达到海上工程船舶移船或定位的 目
的,是浮式起重机 、浅水铺管船等 大型工程作业船舶和石油钻井平台
很多不 同之处 ,根据海深 的方案设
计 、海上搬迁拖航技术 、海底设备
海洋工程装备-海洋油气资源开发装备(甘丰录)

海洋油气资源开发装备分类
钻井平台
钻井平台是海洋油气资源开发 的主要装备之一,用于钻探和 开采海底油气资源。根据不同 类型,钻井平台可分为固定式 、自升式和半潜式等。
采油平台
采油平台主要用于海底油气的 收集和初步处理,通常与钻井 平台配合使用。采油平台可分 为张力腿平台、重力支撑平台 和Spar平台等。
进行钻井作业。
海洋油气资源开发装备的应用前景
随着全球能源需求的不断增加,海洋 油气资源开发装备的应用前景广阔。
数字化、智能化技术的应用将进一步 提高海洋油气资源开发装备的效率和 安全性,降低生产成本。
未来,海洋油气资源开发装备将更加 注重环保、安全和智能化,以适应更 加严格的国际标准和法规要求。
未来,我国将继续加大海洋油气资源 开发装备的研发和制造力度,推动我 国海洋工程装备产业的快速发展。
市场拓展
鼓励企业积极参与国际市场竞争,提升品牌 影响力和竞争力。
05 未来海洋油气资源开发装 备的发展趋势
未来海洋油气资源开发装备的技术发展方向
深海油气资源开发装备技术
随着深海油气资源的不断开发,对深海油气资源 开发装备技术的需求将不断增加,包括深海钻井 平台、深海采油设备、深海管道等。
环保和可持续发展技术
海洋工程装备是推动海洋经济发展的 重要支撑,能够带动相关产业链的发 展,创造更多的就业机会和经济效益。
海洋工程装备的发展历程与趋势
发展历程
我国海洋工程装备经历了从无到有、从弱到强的过程,目前已经具备了自主研 发和制造各类高端海洋工程装备的能力。
发展趋势
未来我国海洋工程装备将朝着更加智能化、绿色化、集成化、国际化的方向发 展,重点发展深海油气资源开发装备、海洋可再生能源开发装备等领域。
海上油气生产平台硫化氢气体扩散

海上油气生产平台硫化氢气体扩散
霍有利,李艳华,覃柳莎,祝皎琳
(海洋石油工程股份有限公司,天津300451)
摘 要:为评估高含硫化氢气体海上油气生产平台硫化氢气体泄漏风险,对硫化氢气体泄漏后质量浓度
分布进行模拟计算,以指导硫化氢气体泄漏后果评估和个人防护装备的配置。在分析气体扩散分析理论公式
的基础上,对海上油气生产平台硫化氢气体扩散模拟分析的场景选择、感受点选取、硫化氢气体的破坏标准
第3"卷第3 期 2021 年0"月
文章编号:1001-4500(2021)03-0053-05
中国海洋平台
CHINA OFFSHORE PLATFORM
Vol.3"No.3 Jun.,2021
DOI: 10. 12226/j. issn. 1001-4500. 2021. 03. 20210310
和模拟结果的应用等硫化氢气体扩散的各重要影响因素进行讨论,并结合实际工程实例对工程实践中各影响Βιβλιοθήκη 因素的选择和考量进行讨论&
关键词:海上油气生产平台;硫化氢;扩散;风险评估
中图分类号:TE58
文献标志码:A
Hydrogen Sulfide Gas Dispersion from Offshore Oil and Gas Production Platform
冷放空用于释放平台上低压或常压工艺设备内 的天然气或闪蒸气。工艺物流中的硫化氢气体也会 随着天然气从冷放空释放。在通常情况下,冷放空 作为释放源是间歇的,在放空量较大的情况下会持 续一段时间。部分海上油气生产平台上存在连续放 空工况。以冷放空作为释放源的硫化氢气体扩散模 拟与火炬熄灭工况类似,其重点在于放空工况的识 别和放空量的确定。
海上油气开采工程与生产系统资料讲解

海上油气开采工程与生产系统中海工业有限公司第一章海上油气开采工程概述海底油气资源的存在是海洋石油工业得以发展的前提。
海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。
世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。
一、海上油气开采历史进程、现状和将来一个多世纪以来,世界海洋油气开发经历如下几个阶段:早期阶段:1887年~1947年。
1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。
到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。
起步阶段:1947年~1973年。
1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建造了世界上第一个钢制固定平台。
此后钢平台很快就取代了木结构平台,并在钻井设备上取得突破性进展。
到20世纪70年代初,海上石油开采已遍及世界各大洋。
发展阶段:1973年~至今。
1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特别是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采用更先进的海工技术,建造能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。
海洋石油开发从此进入大规模开发阶段,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。
进军深海是近年来世界海洋石油开发的主要技术趋势之一。
二、海上油气开采流程海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个阶段:勘探评价阶段:在第一口探井有油气发现后,油气田就进入勘探评价阶段,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。
前期研究阶段:一般情况,在勘探部门提交储量报告后,才进人前期研究阶段。
石油工业出版社季教材推介

高等学校教材
钻井装备与工具
已出
金业权 刘 刚 编
内容简介 本书全方面简介了石油钻井主要装 备和常用工具旳构成、原理、技术 参数和部分设备和工具旳使用措施。 读者对象 石油工程及有关专业旳本科学生
出版时间:2023.6 定价:28.00元 书号:ISBN 978-7-5021-9023-1
读者对象
石油地质、地球物理及有关专业旳本科生
估计出版时间:2023.2
目录
第一篇 晶体光学 第一章 晶体光学基础 第二章 偏光显微镜 第三章 单偏光系统下晶体旳光学性质 第四章 正交偏光系统下晶体旳光学性质 第五章 聚敛偏光系统下晶体旳光学性质 附录A 试验课 第二篇 光性矿物各论 第一章 均质矿物 第二章 一轴晶矿物 第三章 二轴晶矿物 附录B 矿物英文索引
读者对象
勘查技术与工程、资源勘查工程等专业本科 师生,地球探测与信息技术、矿产普查与勘 探及地址工程专业硕士硕士教学使用。
目录 第一章 绪论 第二章 测井资料预处理 第三章 碎屑岩储层评价 第四章 碳酸盐岩储层评价 第五章 火山岩储层测井评价 第六章 水淹层和剩余油测井评价 第七章 油藏描述技术简介
目录 绪论 第一章 地震资料采集仪器概论 第二章 地震资料采集技术 第三章 地震资料采集旳施工措施 第四章 多变量分类分析 第五章 地震勘探生产实习报告旳编写
高等学校教材
已出
测井资料处理与解释
赵军龙 主编
内容简介
本书遵照地质约束测井、测井服务于地质及 开发旳原则而编写,主要内容涉及绪论、测 井资料预处理、碎屑岩储层评价、碳酸盐岩 储层评价、火山岩储层测井评价、剩余油和 水淹层测井评价、油藏描述技术简介等七大 部分。
海底射流开沟机模型试验及效果分析

海底射流开沟机模型试验及效果分析!!李振旺!赵淮宾"于宗冰" &邹!丽"王!凯"曹!林%!!#中国船舶科学研究中心"江苏!无锡!"!%$$$&"#大连理工大学!船舶工程学院"辽宁!大连!!!($"%&&#大连理工大学!海岸和近海工程国家重点实验室"辽宁!大连!!!($"%&%#中国造船工程学会"北京!!$$.(!#摘要!为了保证海底管道与缆线的安全和稳定"人们采用了许多措施$其中"最为经济有效的方法是利用开沟机等相关设备将管道或缆线埋入海底$本文研究水下开沟"设计了一款具有轻型结构%可自主推进的水下射流开沟机"并对加工完成后的样机模型开展了水下开沟的试验$验证了所设计的开沟机在淹没状态下不仅可以完成自主推进工作"还能在管道流量达到+$O &'H 时破坏抗剪强度为.T ]A 的沙土"最大沟深可达$-%!O "为后续的模型优化以及管线埋设提供理论与依据$关键词!开沟机&水下射流&自主推进&开沟埋设中图分类号 Z &+.文献标志码*文章编号 "$'+,"',!"$"&#$$%%$.!"# !$-!"$.,'/001-"$'+,"',-"$"&-$%-$,J "!%/6%&4'-!N 00%)48-'/;&#&"01B 97'(#-%X %46(%-)*%(B C 2H 09M A 9:!;23*Z 3?A 7J 79";_)2/9:J 79:&;%;2Z )B 7";6*45b A 7";[*ZB 79+E !"=2/*&12/%1A /$*(/,/AV $8$&'A 2=$*($'0h .U /:!<;;;04/&*38.0=2/*&O :"1A 2++?+,F &7&?-'A 2/($A (.'$0#&?/&*6*/7$'8/(9+,5$A 2*+?+390#&?/&*!!P ;:<0I /&+*/*30=2/*&O E "1(&($Q $9I &R +'&(+'9+,=+&8(&?&*JG ,,82+'$>*3/*$$'/*30#&?/&*6*/7$'8/(9+,5$A 2*+?+390#&?/&*!!P ;:<0I /&+*/*30=2/*&O <"52$=2/*$8$1+A /$(9+,F &7&?-'A 2/($A (8&*JB &'/*$>*3/*$$'80C $/D /*3!;;M P !0=2/*&F 89&4(')4!^A 9P O 0A L ?N 0L H A Q 0J 009?L 081/09L ?N 01H 0L A @01P A 98L 1A J 7K 71P /@L ?J O A N 790I 7I 0K 790L A 98S A J K 0L R Z 90/@1H 0O /L 1S /L 1X 0@@0S 17Q 0O 01H /8L 7L 1/?L 01N 09S H 0N L A 98/1H 0N N 0K A 1080e ?7I O 0911/J ?N P 1H 0I 7I 0K 790/N S A J K 0791/1H 0L 0A @K //N R C 91H 7L I A I 0N ;A K 7:H 1X M 07:H 1;A ?1/9/O /?L K PI N /I 0K K 08?980N M A 10N Y 011N 09S H 0N H A L J 00980L 7:908A 98S /98?S 108?980N M A 10N 1N 09S H 79:10L 1L/91H 0O A S H 7908I N /1/1P I 0O /80K 1/Q 0N 7@P 1H A 11H 080L 7:9081N 09S H 0N S A 91N 09S H?980NL ?J O 0N :08S /98717/9;A 98S /O I K 0101H 0A ?1/9/O /?L I N /I ?K L 7/9M /N T1/80L 1N /P LA 98M 71HL H 0A N L 1N 09:1H /@.T ]AM H 091H 0I 7I0K 790@K /MN 0A S H 0L +$O &m H R D H 0O A h 7O ?O871S H 80I 1H S A 9N 0A S H $R %!OR D H 7LM /N T I N /Q 780L 1H 01H 0/N P A 98J A L 7L @/N L ?J L 0e ?091O /80K /I 17O 7U A 17/9A 98I 7I 0K 790J ?N 7A K R :%;<"(!&!1N 09S H 0N V L ?J O A N 790Y 01V A ?1/9/O /?L I N /I ?K L 7/9V 871S H A 98J ?N P =!引!言随着海上风电和跨洋通信的发展"海底电缆%光缆在保障能源和数据安全%稳定%高效传输中扮演着越来越重要的角色+!$&,$海底管道运输是海洋油气运输中最快捷%经济%可靠的方式"被称为海洋油气田生命线+%%+,$海底电缆和油气管道对数据传输和油气资源的运输有着非常重要的战略意义"而且随着对海洋开发利用的不断加深"海底管线埋设路线会与人类活动频繁的区域产生交集"!作者简介(李振旺!!'.')!#"男"硕士"主要从事船舶装备总体设计及[a <技术方向的研究工作$第!$卷!第%期!"$"&年!"月海洋工程装备与技术Z [W *4W 45C 4W W \C 45W >)C ]^W 4D*4<D W [34Z B Z 5_`/K -!$"4/-%<0S -""$"&第%期李振旺"等(海底射流开沟机模型试验及效果分析*%+!*!例如海运航道%围海造陆工程%捕鱼活动区以及船舶锚泊区"这些人类活动严重威胁了海底缆线的安全+(,$在海底开沟将管线埋设一定深度"可以提高管线的稳定性并防止外部机械损伤"这也是海底缆线和油气管道防护措施中最经济%最有效的方法+,$',$现今用于电缆和油气管线埋设的开沟方式有以下&种(犁式开沟%机械式开沟和喷射式开沟+!$$!",$不同的开沟方式意味着设计理念与应用范围也不相同+!&,$相较于其他两种开沟机"喷射式挖沟机结构简单%重量小&不容易受深海海流影响"维修成本低&不需要母船拖行"有自主行进能力&作业过程中噪音小"对周围环境的干扰小&还可以用于海底管道的维修$目前"国内自主研制的开沟机仍以喷射式为主"但往往存在效率低%故障率高%作业水深浅等缺点+!%$!(,$基于理论与概念模型的研究+!,$!',"设计了一种兼具射流开沟和自主推进的水下射流式开沟机"具有结构轻巧%适应性强%效率高%成本低的优点$本文介绍了模型的结构设计以及测试设备"并通过改变喷射臂和喷嘴角度进行试验"研究了开沟机在不同影响因素下的水下开沟效果"以此为依据优化了开沟机的技术性能$>!模型设计开沟机模型!图!#由支撑架%进流管道%喷冲臂%支撑轮组成$支撑架选用密度","$T :'O &的铝型材作为主体材料"框架的组装采用可调节式连接单元%焊接%定位螺栓等连接方式"如图"所示$铝型材之间用与其相匹配的特制螺母及连接单元连接"支撑轮的轮轴以焊接的方式安装在铝型材上"喷冲臂由定位螺栓固定在支撑架上$进流管道与前%后喷嘴以及管路连接件皆选用承压极限为!^]A 的]`[材料&前置喷嘴与后置喷嘴通过两通%三通等连接件布置在进流管道上"并在连接处加装阀门"用于调节前后喷嘴的流量$进流管道与喷冲臂之间的连接部件采用一种可变形的钢丝软管"可以配合试验中喷冲臂的调节$通过绑扎的方式将进流管道固定在铝型材框架上"完成试验模型的组装"模型参数如表!所示$图!!开沟机原理样机模型设计示意图a 7:-!!G S H 0O A 17S 87A :N A O/@I N /1/1P I080L 7:9/@871S H 79:OA S H 790图"!开沟机的加工%组装a 7:-"!]N /S 0L L 79:A 98A L L 0O J K P /@871S H 79:OA S H 790*%(!*海洋工程装备与技术第!$卷表>!开沟机模型参数6'9E >!I #4)*#-,7')*#-%7"!%/2'('7%4%(&结构车架]`[管道喷冲臂参数型长型宽最大型高最大型深进流内径前喷嘴内径后喷嘴内径壁厚型长型宽型厚壁厚尺寸'S O !'$!,$($($,-""-$!-+$-"!"(!.&$-+总质量'T :,+!!喷冲臂及喷嘴是开沟机模型最重要的部件"其精度及质量会直接影响到开沟机工作的效果$前置喷嘴用于冲沟"!+个喷嘴从上至下等间距布置在喷射臂上"如图&所示$采用直径为"S O 的渐缩式标准喷嘴&后置喷嘴设计为!-+S O "为开沟机提供前进动力$图&!喷嘴布置图a 7:-&!4/U U K 0K A P/?1?!试验设置试验内容主要包括破土效果试验%自主推进开沟试验和参数调节优化试验"如图%所示$首先开展破土效果试验"用于验证在管道流量达到+$O &'H 时"开沟机能否破坏抗剪强度为.T ]A 的沙土&自主推进开沟试验用于验证开沟机在水下能否实现自主推进开沟作业&最后"考虑到开沟机行进速度的大小是影响其开沟能力的重要因素+"$,"且埋深是海底电缆和油气管线埋设工程中较为重要的参数"故开展参数调节优化试验"探究开沟机的作业性能$自主推进开沟试验装置主要包括试验水池%供水池%水泵%水流管路%传送滑道%喷冲机构"测量仪器为剪切仪%流量计%自制的沟型测深杆等"如图+所示$试验方案如图(所示"先将开沟机模型放置于在试验水池中"向水池中注水使开沟机处于被淹没状态$然后"送水泵通过管路将供水池中的水输送至模型中"模型通过高速射流实现水下冲刷破土开沟"并借助射流的反作用力实现自主推进$此时"可借助流量计测得管道内的流量%流速"并以录像的形式记录开沟机的行走状态"可计算其开沟速度"利用测深杆可以在开沟机自主推进开沟的过程中测量其不同位移处的水下沟形"如图,所示$在参数调节优化试验中"设置喷冲臂与水平面之间的夹角分别为"'y %&'y %%'y"设置喷嘴全部垂向地面或者交替向内倾斜&$y"如图.所示"参数设置如表"所示"比较开沟机的行进速度与所测沟形的最大深度"选取最佳功能参数$!A#破土效果试验!J#自主推进开沟试验!S#参数调节优化试验图%!试验内容安排a 7:-%!*N N A 9:0O 091/@10L 1S /91091L第%期李振旺"等(海底射流开沟机模型试验及效果分析*%,!*!!A#微型十字板剪切仪!J#超声式管道流量计!S#测深杆图+!测量设备a 7:-+!^0A L ?N 79:0e ?7IO 091图(!自主推进开沟试验布置方案示意图a 7:-(!D H 0L S H 0O A 17S 87A :N A O/@L 0K @X I N /I 0K K 08871S H79:1L 1KAP/?1图,!测深杆测量水下沟形a 7:-,!D H 0L /?980NO 0A L ?N 0L 1H 0L H A I0/@1H 0?980N M A 10N 1N 09S H表!工况参数设置6'9E ?!6*%2'('7%4%(&%44#-,"0<"(Y #-,)"-!#4#"-工况喷冲臂与水平面夹角'!y#喷嘴布置喷冲臂间距'S O 管道流量'!O &'H#!%'垂向"$+$"%'交替"$+$&&'交替"$+$%&'垂向"$+$+"'垂向"$+$("'交替"$+$@!试验结果与分析在开沟机破土效果试验中"开沟机喷冲臂冲刷的沟形深度为$-&(O "宽度为$-%!O "冲沟两侧基*%.!*海洋工程装备与技术第!$卷图.!喷冲臂角度调节和喷嘴的垂向%交替布置a 7:-.!D H 0A 9:K 0A 8Y ?L 1O 091/@1H 0L I N A P A N OA 981H 0Q 0N 17S A K A 98A K 10N 9A 10A N N A 9:0O 091/@1H 09/U U K 0本垂直"且能够在一定时间内保持沟形"如图'所示"验证了在管道流量达到+$O &'H 时"开沟机可以破坏抗剪强度为.T ]A 的沙土$在开沟机自主推进开沟试验中"所设计的海底射流开沟机在淹没%无外力牵引状态下实现了自主推进射流破土开沟"如图!$所示$图'!破土效果试验沟形a 7:-'!G /7K J N 0A T 79:0@@0S 110L1:N //Q 0L H A I0图!$!开沟机在淹没状态下实现自主推进开沟a 7:-!$!D H 0871S H 79:OA S H 790S A 9A S H 70Q 0L 0K @X I N /I 0K K 08871S H 79:?980N L ?J O 0N :08L 1A 10!!在开沟机相关参数优化试验中"用测深杆测得开沟机在(个工况下&个等间距不同位置处的水下沟形"如图!!所示$总体上看"各工况下的沟形基本呈倒梯形"且在同一工况下对比&个位置处的沟形可以看出(随着开沟机的前进与远离"沟形深度逐渐减小$这是由于开沟机由静止开始运动"速度缓慢增加最终到达稳定状态"单位时间内作用于沙土的水量逐渐减少"所以出现了深度逐渐减小的现象$第%期李振旺"等(海底射流开沟机模型试验及效果分析*%'!*!图!!!!$(工况下等间距三个不同位置处的沟形a7:-!!!5N//Q0L H A I0A11H N0087@@0N091I/L717/9LM71H0e?A K L I A S79:?980NM/N T79:S/98717/9L!)(*+$!*海洋工程装备与技术第!$卷!!通过录像时长与行进距离计算得出各工况下开沟机的行进速度"并对比各工况下开沟机冲刷所测得的最大沟深"如图!"所示$可以看出"在各个工况下开沟机的行进速度都大于"$$O'H"最大行进速度达到&("O'H$在最大开沟深度方面"工况(中开沟机冲出的沟形最深达到$-%!O$整体来说"喷嘴交替布置有利于提升开沟机的行进速度与开沟深度"一定程度上优化了开沟机的性能$各工况下实测沟形的最大深度皆超过$-&+O"平均深度达到$-&.O&在调节开沟机喷冲臂与水平面夹角过程中"测得最大型深为$-(O"并实现了在淹没状态下拥有一定的行进速度$另外"考虑到水下沟形两侧的泥沙会向沟中回淤"并且提供推进动力的水平射流会促使冲起的悬浮泥沙在开沟机的后方形成堆积"故开沟机冲出的实时沟形应该拥有图!"!各个工况下开沟机的平均行进速度与最大开沟深度a7:-!"!D H0A Q0N A:0L I008A98O A h7O?O80I1H/@871S H79:O A S H790?980N0A S HM/N T79:S/98717/9更大的深度$因此"判断所设计的开沟机在管道流量+$O&'H的情况下"稳定开沟深度可达$-%O"如图!&所示$图!&!推测开沟机所冲刷的实际沟形a7:-!&!C9@0N1H0A S1?A K:N//Q0L H A I0L S/?N08J P1H0871S H0NA!结!论根据需求"设计%加工了一款具备质量轻%易操作的自主推进式水下射流开沟机"通过破土效果试验与自主推进开沟试验"验证了开沟机可破坏抗剪强度为.T]A的土体"并可持续稳定地进行水下自主推进开沟作业$参数调节优化试验验证了开沟机在各工况下的平均行进速度都在"$$O'H以上"最大行进速度为&("O'H"实测最大开沟深度为$-%!O"在考虑泥沙淤积的情况下"开沟机可达到$-%O的稳定开沟深度$综合来看"当开沟机的喷冲臂与水平面之间的夹角为"'y"喷嘴交替向内倾斜&$y时"行进速度为&"%O'H"开沟深度达到$-%!O"性能相对最佳$在实际工程应用中"射流式开沟机的工作是一个十分复杂的过程"涉及了淹没射流%泥沙冲刷%泥沙输运%射流推进等相关过程$本文仅通过模型试验验证了所设计的开沟机自主推进开沟的可行性"但模型试验与实际工程施工存在一定的比例换算关系"无法完全呈现原型机施工时可能出现的所有问题"故仍需进一步开展研究"优化该型产品的性能$参考文献+!,赵靓-"$&$年全球海上风电市场展望+g,-风能""$"!"!!$#( %$%&-+",B7?_;2H A/r;6?g R*I I K7S A17/9G1A1?LA98]N/L I0S1/@ 3`<[G?J O A N790[A J K0]N/Y0S1L i g j R37:H`/K1A:0*I I A N A1?L;"$"";+.E"F k!.R+&,卢聃-海底光缆突围在即+g,-产城""$"!"!!!#(,$,!-+%,舟丹-世界海洋油气资源分布+g,-中外能源""$!,"""!!!#(++-++,牛爱军"毕宗岳"张高兰-海底管线用管线钢及钢管的研发与应用+g,-焊管""$!'"%"!(#(!(-+(,b/N8A H7^W;G H A I7N/G;B?S A L5R5K/J A K D N098L C9G?J O A N790[A J K0G P L10Oa A?K1L i[j R]N/S R G?J Z I17S;"$!(;!,R第%期李振旺"等(海底射流开沟机模型试验及效果分析*+!!*!i,j B7g3;b7O gD;B00^g;01A K R[/9S0I1?A K<0L7:9/@ Z I17O A K D H N?L1G P L10O@/NW@@7S7091[A J K0=?N P79:/@\Z`D H N09S H0N i[j R Z S0A9L X G1R g/H9l L[/9@0N09S0;"$!%R +.,迟令宝-海底犁式挖沟机总体结构研究+<,-哈尔滨(哈尔滨工程大学""$!$-+',戴必林-射流助推式\Z`型开沟机喷射臂及其冲刷过程研究+<,-杭州(浙江大学""$!(-+!$,*K K A9]5R3P8N/:N A I H7S C9@/N O A17/9A981H0G?J O A N790[A J K0 C98?L1N P i\j R793P8N/"$$!;"$$!R+!!,王亮-国内海底管道挖沟装备现状介绍+[,-"$!(年深海能源大会论文集""$!("&'$&'&-+!",张树森-海底冲射式开沟机喷冲系统研究与应用+<,-上海(上海交通大学""$!+-+!&,301179:0N a;^A S H79g R[A J K0A98]7I0K790=?N7A K A1&$$$^010N L i[j R79Z S0A9L"$$+;]N/S00879:L/@^D G m C W W W;"$$+;,++,($Ri!%j r79:r;_?5R G1?8P/91H0C910N A S17/9/@]7I0K790A98G/7K8?N79:G?J O A N790]K/?:HD N09S H0N6/N T79:i[j R"$!,C W W W C910N9A17/9A K[/9@0N09S0/9^0S H A1N/97S L A98*?1/O A17/9E C[^*F R C W W W;"$!,;!"("!"((R+!+,赵明宇-海底犁式挖沟机的设计研究及稳定性分析+<,-哈尔滨(哈尔滨工程大学""$!!-+!(,张新明"梁富浩"田帅-深水海底管线挖沟机的发展现状+[,-第十七届中国科协年会论文集""$!+"!,-+!,,邹丽"徐伟桐"孙哲"等-喷射式挖沟机的喷嘴参数设计及数值模拟+g,-哈尔滨工程大学学报""$!'"%$!!!#(!.!(!.""-+!.,邹丽"金国庆"孙哲"等-水下射流挖沟机喷冲臂的设计与优化+g,-哈尔滨工程大学学报""$"$"%!!"#(",!",(-+!',王子维-海底射流开沟机喷冲臂设计及试验验证+<,-大连(大连理工大学""$"!-+"$,B7g3;B00^g;b A9:3;01A K R<0L7:9;]0N@/N O A9S0 W Q A K?A17/9A98a70K8D0L1/@A6A10N Y01D//K@/N\Z`D N09S H0N i g j R g/?N9A K/@^A N790G S709S0A98W9:7900N79:;"$"!;'E&F k"'(R。
海洋石油工程概述

海洋石油工程概论
海洋石油工程概论
我国石油资源
我国平均探明率为38.9%,海洋仅为12.3%,远远低于世界平均探 明率73%和美国的探明率75%。我国天然气的平均探明率为23% ,海洋为10.9%,而世界平均探明率在60.5%左右。因此我国油气 资源的探明率(尤其是海洋)很低,整体上处于勘探的早中期阶段。
海洋油气资源
世界十大深水油藏发现国wo-07.09p59 Top 10 deepwater discover reserves countries
海洋石油工程概论
海洋油气资源
2010年世界前七位深水生产油气国的产油当量 (Top 7 deepwater producing countries 2000-2010)
海洋石油工程概论
海洋石油开发概述
海洋石油开发简史
1887年,美国人以栈桥连陆方式在加利福尼亚距海岸200多米处 打出了第一口海上油井 标志着海上石油工业的诞生。 20世纪40年代建造成功第一台专门设计用于海上石油钻井平台。 标志着海洋石油工业与陆地石油工业相同,开始了明确的分 工,即海上油公司与专业服务公司的分野。 50年代以后,研制成功移动式钻井平台 已经系统地形成了海洋石油工业体系,通过一种严密的社会 分工体系,多专业公司协作开展海洋石油的开发工作。 1976年浮动石油平台已超过350台 海洋石油勘探已经成为各个油公司是否可持续发展的重要指 标 80年代中期,海洋石油产量就已占世界石油产量的三分之一 海洋石油的勘探开发已经成为国际关系的重要环节
海洋石油工程概论 为什么海洋石油资源大部分在大陆架上?
根据石油海生理论,大河出口具有大量的海生物,容易形成 石油原生物,而大陆架往往是大河出口的主要沉积区域。
海洋石油工程概论