高速铁路工程测量
高速铁路精密工程测量技术体系与特点

02
轨道控制网(CPⅢ)测量体系要求控制点位的选择应满足通视良好、地质稳定等 条件,以确保测量精度和稳定性。
03
轨道控制网(CPⅢ)测量体系的主要任务是测定轨道的几何参数和轨道状态参数, 为高速铁路轨道的铺设、精调和运营维护提供基础数据。
无砟轨道精调测量体系
01
无砟轨道精调测量体系是高速铁路精密工程测量的重要组成 部分,主要采用全球定位系统(GPS)、卫星定位技术、惯 性导航技术和精密测量技术,对无砟轨道进行高精度、高效 率的调整,以确保高速铁路的安全、稳定和舒适运行。
02 03
发展阶段
20世纪80年代至21世纪初,随着科技的不断进步和应用,高速铁路精 密工程测量技术逐渐发展壮大,引入了数字化测量设备和智能化测量技 术,提高了测量精度和效率。
成熟阶段
21世纪初至今,高速铁路精密工程测量技术已经进入了成熟阶段,形成 了完善的测量技术体系和标准,并不断向更高精度、更高效率的方向发 展。
高程控制测量体系要求控制点位 的选择应满足远离干扰源、地质 稳定等条件,以确保测量精度和 稳定性。
高程控制测量体系的主要任务是 测定各控制点的高程坐标,为高 速铁路线路的定线、施工放样和 运营维护提供基础数据。
轨道控制网(CPⅢ)测量体系
01
轨道控制网(CPⅢ)测量体系是高速铁路精密工程测量的核心,主要采用卫星定 位技术、惯性导航技术和精密测量技术,建立高精度、高稳定性的轨道控制网,为 高速铁路的轨道铺设和运营维护提供准确的轨道位置信息。
高速铁路精密工程测量技术的应用领域
01
02
03
线路测量
包括轨道线路的平面、纵 面和高程测量,以及线路 中线、边线、轨面高程等 要素的测量。
桥梁测量
简述高速铁路施工测量工作内容及流程

简述高速铁路施工测量工作内容及流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高速铁路施工测量工作内容及流程高速铁路的建设是一项复杂而庞大的工程,其中测量工作是至关重要的环节之一。
高速铁路工程测量特点

引言高速铁路的建设要求较高,对各个环节的控制测量也非常精准,一点细小的误差都可能引发重大的安全事故。
因此,必须加强高速铁路工程测量的相关工作,尤其是沉降变形等方面的测量必须高度重视,这样才能保证高速铁路的建设符合标准,质量可靠。
1对比分析高速铁路的工程测量与传统铁路的工程测量1.1高速铁路工程测量从实际情况来看,高速铁路工程测量涉及的主要测量内容包括了三个方面:①设计控制网;②建立基础控制网和框架控制网;③建立线路控制网。
对第一个方面的内容而言,关键是进行精准的工程测量。
控制网的设计涉及到平面控制网和高程控制网,平面设计网要全面考虑高程投影的边长变形和高斯投影的边长变形,合理选择平差基准。
而高程控制网需要依照国家高程基准水平点展开设计,如果没有对应的水平点,可以在测量的过程中自行建立,并按照相关的转换关系将其换算成国家标准。
对第二和第三个方面,基础控制网主要是对高速铁路工程测量提供必要的勘察、施工和维护的坐标信息。
而线路控制网是在基础控制网的基础上建立的,在前期勘察中还需要高程控制网的参与,依照水准基点进行引用和建立。
1.2传统铁路的工程测量传统的铁路工程测量流程主要可以分为初测、定测、线下测量和铺轨测量这几个部分。
由于传统铁路的建设标准比较低,这也就导致其对应的工程测量相关标准也比较低。
通过和高速铁路工程测量进行对比分析,可以明确传统铁路测量存在的不足之处。
①传统铁路测量具有较大的高斯投影变形。
②传统铁路工程测量会产生较大的高程投影边长变形。
③传统的铁路工程测量没有建立其完善的平面高程控制网,仅仅是依靠直线控制桩、曲线控制桩等进行控制测量,不仅误差较高,而且容易丢失。
④传统测量的精度比较低,导致在进行复测时容易产生曲线偏角超过极限值的问题,会对行车的安全和舒适度形成较大的影响。
此外,传统测量方式还会使铺轨基准出现缺陷,进而使轨道的铺设出现质量上的问题。
2高速铁路工程测量的特点分析2.1三网合一所谓三网合一,主要是指高速铁路工程测量将施工控制网、勘测控制网和轨道控制网实现了融合。
高速铁道工程测量精度和测量模式

高速铁道工程测量精度和测量模式随着现代交通事业的迅猛发展,高速铁道工程成为现代化交通网络的重要组成部分。
高速铁道的建设涉及到众多的环节,而工程测量便是其中的重要一环。
如今,高速铁道工程测量技术的发展日新月异,应用范围也越来越广泛,对于高速铁道建设的安全与可靠性起着决定性的作用。
本文将从高速铁道工程测量精度和测量模式两个方面进行浅谈。
一、高速铁道工程测量精度高速铁道工程测量的精度决定了轨道的准确性,它与列车行驶的平稳度、安全性密切相关。
测量精度的高低关系到高速铁道的整个工程质量,因此,测量工作的质量也是非常重要的。
高速铁道工程测量精度的主要影响因素包括测量仪器的精度、测量环境的影响、操作员的专业技能等。
其中测量仪器的精度是影响测量精度的首要因素之一。
要想保证测量的精度,首先要选用精度高的测量仪器,并且在测量之前要进行仔细校准,确保仪器的各项参数的准确性。
此外,测量环境的影响也是不能忽略的因素。
如高速风的影响、天气的变化等都会对测量精度产生影响,因此,在测量过程中需要进行相应的控制。
此外,操作员的专业技能水平也直接影响着测量精度的高低,因此,在测量之前需要对操作员进行一定的培训和考核,确保其掌握了正确的操作技能。
二、高速铁道工程测量模式高速铁道工程测量的目的是确定轨道的几何形状,以保证铁路交通的运行安全和舒适性。
因此,高速铁道工程测量的模式与测量方法选取是至关重要的。
目前,常用的高速铁道工程测量模式有传统测量模式和全站仪测量模式。
传统测量模式是一种较为传统的测量方法,在高速铁道工程中广泛应用。
传统测量模式主要采用全站仪、水准仪等测量仪器进行测量,通过测量轨距、坡度、曲率半径等参数,来确定铁路道床的几何形状。
传统测量模式的特点是操作简便,测量速度快,适用于长距离高速铁道工程的测量。
全站仪测量模式是一种新兴的测量方法,广泛应用于目前的高速铁道工程中。
全站仪测量模式主要采用激光测距仪、全站仪等高精度测量仪器进行轨道测量。
简述高速铁路施工测量工作内容及流程

简述高速铁路施工测量工作内容及流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download Tip: This document has been carefully written by the editor. I hope that after you download, they can help you solve practical problems. After downloading, the document can be customized and modified. Please adjust and use it according to actual needs. Thank you!高速铁路施工测量工作内容及流程:①前期准备:熟悉设计图纸,制定测量方案,校验测量仪器,确保其精度符合高速铁路施工要求。
②控制网建立:布设精密控制网(CPⅠ、CPⅡ、CPⅢ),进行复测与加密,为施工提供精准的坐标基准。
③地形测量:利用GPS、全站仪等设备进行地形图测绘,为线路设计、土方计算提供依据。
④施工放样:依据控制点,对桥梁、隧道、路基、轨道等关键结构进行三维空间放样,指导现场施工。
⑤沉降观测:设置沉降观测点,定期监测地基与结构沉降,评估稳定性,指导调整施工工艺。
⑥轨道控制:铺设CPⅢ控制网,精细控制轨道几何尺寸,确保轨道平顺性与行车安全。
⑦安装测量:对接触网、信号设备进行精密测量,确保安装精度,满足高速运行要求。
⑧监测与调整:施工全程实施动态监测,根据测量数据及时调整施工偏差,保证工程质量。
⑨资料整理:记录测量数据,绘制测量成果图,编写测量报告,为工程质量验收及后期运维提供依据。
⑩竣工验收:参与竣工测量,验证工程是否满足设计标准,提交最终测量资料,完成项目验收。
高速铁路工程测量规范

高速铁路工程测量规范高速铁路工程测量规范一、总则高速铁路工程测量规范是为确保高速铁路工程施工质量和安全,规范测量工作的进行而制定的标准。
本规范适用于高速铁路工程项目的测量工作。
二、测量设备1.测量设备的选择应符合项目要求,具备相应的精度和测量范围。
2.测量设备应定期进行校准和检测,确保其准确度和可靠性。
三、测量点的设置1.测量点应合理布置,以确保对工程的全面测量。
2.测量点应具有代表性,避免选取过多或过少的测点。
3.测量点应标明编号,并在工程图纸上注明清楚。
四、测量方法1.测量方法应符合国家标准和相关规范要求。
2.测量应有足够的精度和准确度,尽量避免人为误差。
3.测量应根据工程进展情况及时进行,并记录相应的数据。
五、测量数据处理1.采集到的测量数据应真实可靠,准确记录并保存。
2.测量数据应进行及时处理,生成相应的报告和图纸,并提交相关部门审核。
3.测量数据应与实际工程进行比对,及时发现和纠正问题。
六、质量控制1.测量工程师应具备相应的资质和经验,能够独立进行测量工作。
2.测量工程师应遵守国家法律法规和相关规定,严格按照测量规范进行操作。
3.测量过程中的质量控制应定期进行,确保测量结果准确可靠。
七、安全措施1.测量工程师应穿着符合规定的个人防护装备,确保个人安全。
2.在进行测量工作时,应严格遵守安全操作规程,确保不影响施工和运营安全。
八、检查和验收1.测量工程部门应定期进行检查,确保测量工作的质量和安全进行。
2.测量工作完成后,应经过相关方面的验收,并记录相关证明文件。
九、违规处理1.违反测量规范的行为将受到相应的纪律处分和法律责任。
2.对于严重的违规行为,将进行相关的事故调查和处理,并追究相关责任。
高速铁路工程测量规范是确保工程质量和安全的重要环节,能够确保工程测量的准确可靠。
所有从事高速铁路工程测量工作的人员应严格按照本规范进行操作,提高工作质量和效率,为高速铁路工程的建设作出贡献。
(整理)《高速铁路工程测量规范》tb10601-学习版[1]
![(整理)《高速铁路工程测量规范》tb10601-学习版[1]](https://img.taocdn.com/s3/m/ab99083069eae009591bec08.png)
.................................. 《高速铁路工程测量规范》TB10601-2009学习版总则1.0.1 为统一高速铁路工程测量的技术要求,保证其测量成果质量满足勘测、施工、运营维护各个阶段测量的要求,适应高速铁路工程建设和运营管理的需要,制定本规范。
1.0.2 本规范适用于新建250~350km /h高速铁路工程测量。
高速铁路定义为速度值大于250km/h。
1.0.3 高速铁路工程测量平面坐标系应采用工程独立坐标系统,在对应的线路轨面设计高程面上坐标系统的投影长度变形值不宜大于10mm/km。
公路和一般铁路投影变形值不大于25mm/km。
1.0.4 高速铁路工程测量的高程系统应采用1985国家高程基准。
当个别地段无1985国家高程基准的水准点时,可引用其它高程系统或以独立高程起算。
但在全线高程测量贯通后,应消除断高,换算成1985国家高程基准。
有困难时亦应换算成全线统一的高程系统。
1.0.5 在国家控制点满足平面、高程控制要求的情况下,应优先采用国家控制点座位高速铁路的平面、高程控制点。
1.0.6 高速铁路工程测量的平面、高程控制网,按施测阶段、施测目的及功能可分为勘测控制网、施工控制网、运营维护控制网。
各阶段平面控制测量应以基础平面控制网(CPⅠ)为基准,高程控制测量应以线路水准基点控制网为基准。
1.0.7 为满足高速铁路平面GPS控制测量三维约束平差的要求,在平面控制测量工作开展前,应首先采用GPS测量方法建立高速铁路框架控制网(CP0)。
1.0.8 高速铁路工程测量平面控制网应在框架控制网(CP0)基础上分三级布设,第一级为基础平面控制网(CPⅠ),主要为勘测、施工、运营维护提供坐标基准;第二级为线路平面控制网(CPⅡ),主要为勘测和施工提供控制基准;第三级为轨道控制网(CPⅢ),主要为轨道铺设和运营维护提供控制基准。
高速铁路精密工程测量技术

演讲人
目录
壹
高 速 铁 路 测 量 技 术 概 述
贰
高 速 铁 路 精 密 工 程 测 量 技 术
叁
的高 挑速 战铁 与路 对精 策密
工 程 测 量 技 术
肆
的高 未速 来铁 发路 展精
密 工 程 测 量 技 术
高速铁路测量技术概 述
测量技术在铁路工程中的重要性
2018
国际合作:加强国际合作,共享高速铁路精密工程测量技 术的研究成果和经验,提高全球铁路工程测量技术水平
谢谢
01 精度要求高:高速铁路对 测量精度要求极高,需要 克服各种误差和干扰
02 环境复杂:高速铁路沿线 环境复杂,需要应对各种 恶劣天气和地形条件
03 施工难度大:高速铁路施 工难度大,需要克服各种 技术难题和安全隐患
04 成本控制:高速铁路建设 成本高,需要控制成本, 提高效益
技术改进与创新
提高测量精度:采用高精度传感器和测量设备, 提高测量精度和可靠性
动化和智能化
高精度:随着科技的发展,测 量精度不断提高,以满足高速
铁路建设的需求
实时化:通过实时监测和数据 传输技术,实现测量数据的实
时传输和处理
集成化:将多种测量技术集成, 实现多种测量功能的一体化和
自动化
网络化:利用互联网技术,实 现测量数据的远程传输和处理,
提高测量效率和准确性
高速铁路精密工程测 量技术
精密工程测量技术的发展离不开科 技的进步,如传感器技术、通信技 术、数据处理技术等的发展,为精 密工程测量技术的应用提供了技术 支持。
精密工程测量技术的应用
● 轨道测量:用于轨道铺设和维护,确保轨道的平顺性和稳定性 ● 桥梁测量:用于桥梁设计和施工,确保桥梁的强度和稳定性 ● 隧道测量:用于隧道设计和施工,确保隧道的贯通性和安全性 ● 路基测量:用于路基设计和施工,确保路基的承载力和稳定性 ● 地形测量:用于地形分析和设计,确保地形的合理性和美观性 ● 建筑物测量:用于建筑物设计和施工,确保建筑物的强度和稳定性 ● 地下管线测量:用于地下管线设计和施工,确保地下管线的安全性和可靠性 ● 地质灾害监测:用于地质灾害监测和预警,确保地质灾害的预防和治理 ● 环境保护监测:用于环境保护监测和预警,确保环境保护的实施和效果 ● 城市规划测量:用于城市规划和设计,确保城市规划的合理性和美观性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1997年4月1日 1998年10月1日 2000年10月21日 2001年10月21日 2004年4月18日 2007年4月18日
全国铁路旅客列车平均时速
从48.1公里提升到65.7公里; 直达特快最高时速160公里
新增“D”字头的动车组 时速200~250公里
.
10
1 绪论
1.6 中国高铁发展历程 ➢ 追赶——
板式无砟轨道系统
Ⅱ型双块系统
Ⅰ双块系统
连续结构:有挡肩,板间张拉连接并灌注砼
Ⅰ型板式系统
Ⅱ板式系统
单元板:无挡肩,板间不连接
2020/6/26
双块轨将枕轨枕精确压入混凝土将中双块轨枕排精调好后再浇混凝土
.
6
1 绪论
1.3 高速铁路修建过程(以CRTSⅡ型板为例介绍)
部主体工程施工
• 桥梁、隧道、路基、涵洞 • 厘米级精度
.
4
1 绪论
1.2 高速铁路分类
优点:轨道稳固、线路平顺, 运营维护工作量小。 缺点:造价高。
轮轨系统按照道床结构划分
优点:造价低。 缺点:线路不稳定,昼间运营, 夜间维护,运营维护成本高。
无砟轨道系统
有砟轨道系统
2020/6/26
.
5
1 绪论
1.2 高速铁路分类
无砟轨道系统分类
双块式无砟轨道系统
全长1069公里,设15个客运站;桥隧比67%; 2005年6月23日开工,2009年12月通车运营; 设计时速为350公里,全程运行时间3小时; 设计行车间隔3分钟,每天开行列车达201对。
2020/6/26
.
12
1 绪论
1.6 中国高铁发展历程 ➢ 领跑——
2010年12月3日,京沪高铁创造了486.1km/h的铁路运营试验的世界最高速 度——中国高铁,领先世界
工程测量学
第十章 高速铁路工程测量
2020/6/26
.
1
主要内容和重点
主要内容:
1 绪论
2 高速铁路控制网布设和精密测量基准
3 轨道控制网布设和处理
4 轨道系统精密测量 5 双块轨枕精调 6 轨道板精调
友情提示!
重点
7 通用型强制对中装置 8 高速铁路的变形监测
难点
需要掌握点
2020/6/26
.
2
精度0.3毫米
基础
承轨 结构
轨道 扣件
轨道 系统
精密工程测量
• 独立测量基准 • 三网合一技术 • 专用测量工具 • 特殊测量手段 • 强调相对精度 • 精密测量设备
.
8
1 绪论
1.5 高速铁路测量关键技术 • 变形控制和精密测量技术是高速铁路建设中与测量 相关的两大关键技术。
• 高速铁路实现列车高速行驶的前提条件: ① 轨道系统的高稳定性
1 绪论
1.1 高速铁路定义
国际铁路联盟对高速铁路的定义:
通过改造原有线路,使营运速率达到每小时200公里以上, 或者专门修建新的“高速新线”,使营运速率达到每小时250 公里以上的铁路系统。
中
国 1.
对 2.
速 度
3.
的 4.
界 5.
定
时速100~120公里称为常速; 时速120 ~ 160公里称为中速或准高速; 时速160 ~ 200公里称为快速; 时速200 ~ 400公里称为高速; 时速400公里以上称为特高速。
一次性建成稳固、可靠的线下工程; 严格控制沉降和变形。
② 轨道系统的高平顺性
精密测量技术:测量精度0.3mm ; 特殊测量手段:严格控制误差传递和积累,确保轨道平顺。
2020/6/26
.
9
1 绪论
1.6 中国高铁发展历程 提速——中国铁路步入现代化的起点
铁 路 六 次 大 面 积 提 速
2020/6/26
2020/6/26
.
3
1 绪论
1.2 高速铁路分类
优点:技术成熟,经济,与 既有路网的兼容性好。 缺点:噪声大。
按驱动方式划分
轮轨系统高速铁路
优点:速度快,噪声小。 缺点:技术不成熟且造价高, 与既有路网不兼容。
磁悬浮铁路
上海磁悬浮——世界唯一磁悬浮营运线路
列车在钢轨上运行 2020/6/26
列车悬浮在轨道上
2020/6/26
.
14
2 高速铁路控制网布设和精密测量基准
2.1 高速铁路测量控制网分级
• 平面控制网分四级,逐级向下控制;高程控制网为二等水准网。
• 第一级为框架控制网,简称为CP0网; • 第二级为基础平面控制网,简称CPⅠ网; • 第三级为线路平面控制网,简称CPⅡ网; • 第四级为轨道控制网,简称CPⅢ网。
支承层或底座板施工
• 毫米级精度(3mm)
轨道板铺设和精调
• 亚毫米级精度(0.3mm)
灌注CA砂浆填充层
• 轨道板与底座板耦合
轨道板纵连与锁定
• 形成带状受力结构
CA砂浆灌注孔
浇筑轨道板间的接缝
宽接缝 通过锁件张拉
钢轨铺设和轨道精调(精度0.3毫米)
无砟轨道成型
.
7
1 绪论
1.4 高速铁路工程分类和测量要求
控制网
测量方法
相邻点的相对中误差(mm)
CP0
GPS
20
CPⅠ
GPS
10
GPS
8
CPⅡ
附合导线
8
CPⅢ
自由测站边角交会
1
二等水准
二等水准测量
高差中误差2mm/km
说明:1、相邻点的相对中误差指X、Y坐标分量中误差。 2、相邻CPⅢ点高程的相对中误差为0.5mm。
2020/6/26
.
点间距 约50km 约4000m 600~800m 400~800m 点对间距50~70m 约2000m
2008年8月1日,中国第一条时速350公里高速铁路建成通车——中 国高铁进入世界先进行列
京津城际铁路,全长119公里,桥梁比例86 %; 2005年7月4日开工,三年建成,运营时速350公里; 运营第一年,旅客输送量达1870万人次。
.
11
1 绪论
1.6 中国高铁发展历程 ➢ 超越—— 武广高铁首次实现两车组重联动最高试验时速394.2公 里——世界领先
下部主体工程施工
• 桥梁、隧道、路基、涵洞 • 厘米级精度
线下 工程
除了严格控制沉降和变形外,其它 方面与传统铁路测量并无本质区别
支承层或底座板施工
• 毫米级精度(3mm)
轨道板铺设和精调
• 亚毫米级精度(0.3mm)
灌注CA砂浆填充层 轨道板纵连与锁定 浇筑轨道板间的接缝
钢轨铺设和轨道精调
全长1318公里,世界上一次建成里程最长,技术最先进; 设计时速380公里,全程运行时间4小时; 行车间隔3分钟,为沿线居民提供“陆地飞行”般的便利。
2020/6/26
.
13
1 绪论
1.6 中国高铁发展历程
到 2014 年 底 , 中国高铁运营里 程 将 达 到 16500 公里,约占世界 总里程的2/3; “四纵 四 横 ” 高铁路网主骨架 已经大部分建成。