近五年高考数学试题(理科)及解答全过程
浙江近五年高考理科数学试题及参考答案

2007年普通高等学校招生全国统一考试(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“1x >”是“2x x >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件D.既不充分也不必要条件(2)若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)3f =,则( ) A .126ωϕπ==, B .123ωϕπ==, C .26ωϕπ==,D .23ωϕπ==,(3)直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-= B.210x y +-= C.230x y +-=D.230x y +-=(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为6米的圆面,则需安装这种喷水龙头的个数最少是( ) A.3B.4C.5D.6(5)已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( ) A .0.16 B .0.32 C .0.68D ,0.84(6)若P 两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面 (7)若非零向量,a b 满足+=a b b ,则( ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(8)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )(9)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是( ) A.2B.3C.2D.3(10)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞第II 卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分. (11)已知复数11i z =-,121i z z =+,则复数2z = . (12)已知1sin cos 5θθ+=,且324θππ≤≤,则cos2θ的值是 . (13)不等式211x x --<的解集是 .(14)某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答). (15)随机变量ξ的分布列如下:ξ 1-0 1Pabc其中a b c ,,成等差数列,若13E ξ=,则D ξ的值是 . (16)已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=.若对于β内异于y x O y x O y x O yxO A . B . C . D.O 的任意一点Q ,都有45POQ ∠≥,则二面角AB αβ--的大小是.(17)设m 为实数,若{}22250()30()250x y x y x x y x y mx y ⎧⎫-+⎧⎪⎪⎪-⊆+⎨⎨⎬⎪⎪⎪+⎩⎩⎭≥,≥,≤≥,则m 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. (18)(本题14分)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.(19)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (I )求证:CM EM ⊥;(II )求CM 与平面CDE 所成的角.(20)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.(21)(本题15分)已知数列{}n a 中的相邻两项212k ka a -,是关于x 的方程2(32)320k kx k x k -++=的两个根,且212(123)k k a a k -=≤,,,.(I )求1a ,2a ,3a ,7a ; (II )求数列{}n a 的前2n 项和2n S ;(Ⅲ)记sin 1()32sin nf n n ⎛⎫=+⎪⎝⎭, EDCMA(第19题)BAyxO B(第20题)(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n nT a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤. (22)(本题15分)设3()3x f x =,对任意实数t ,记232()3t g x t x t =-.(I )求函数()()t y f x g x =-的单调区间;(II )求证:(ⅰ)当0x >时,()f x g ()()t f x g x ≥对任意正实数t 成立; (ⅱ)有且仅有一个正实数0x ,使得00()()x t g x g x ≥对任意正实数t 成立.2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.(1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. (11)1 (12)725-(13){}02x x << (14)266(15)59(16)90(17)403m ≤≤三、解答题(18)解:(I )由题意及正弦定理,得21AB BC AC ++=+,2BC AC AB +=,两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC+-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(I )证明:因为AC BC =,M 是AB 的中点, 所以CM AB ⊥. 又EA ⊥平面ABC , 所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD .FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM ⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥.设EA a =,2BD BC AC a ===,在直角梯形ABDE 中,22AB a =,M 是AB 的中点, 所以3DE a =,3EM a =,6MD a =,得EMD △是直角三角形,其中90EMD =∠, 所以2EM MDMF a DE==.在Rt CMF △中,tan 1MFFCM MC==∠, 所以45FCM =∠,故CM 与平面CDE 所成的角是45. 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,. (I )证明:因为()EM a a a =--,,,(0)CM a a =,,,所以0EM CM =, 故EM CM ⊥.(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n ,EDC MABE H即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,,所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,n n n, 直线CM 与平面CDE 所成的角θ是n 与CM 夹角的余角, 所以45θ=,因此直线CM 与平面CDE 所成的角是45.(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分14分.(Ⅰ)解:设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由2214x b +=,解得21221x b =±-,, 所以1212S b x x =- 221b b =-2211b b +-=≤.当且仅当22b =时,S 取到最大值1. (Ⅱ)解:由2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得22212104k x kbx b ⎛⎫+++-= ⎪⎝⎭,2241k b ∆=-+,EDCMAByzx211||1||AB k x x =+-2222411214k b kk -+=+=+. ②设O 到AB 的距离为d ,则21||Sd AB ==, 又因为2||1b d k=+,所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0∆>,故直线AB 的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.21.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分15分.(I )解:方程2(32)320k kx k x k -++=的两个根为13x k =,22k x =,当1k =时,1232x x ==,, 所以12a =;当2k =时,16x =,24x =, 所以34a =;当3k =时,19x =,28x =, 所以58a =时;当4k =时,112x =,216x =, 所以712a =.(II )解:2122n n S a a a =+++2(363)(222)n n =+++++++2133222n n n ++=+-.(III )证明:(1)123456212111(1)f n n n nT a a a a a a a a +--=+-++, 所以112116T a a ==, 2123411524T a a a a =+=. 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++, 345621211116n n a a a a a a -⎛⎫+-++⎪⎝⎭≥2311111662622n⎛⎫+-++⎪⎝⎭≥ 1116626n=+>, 同时,(1)5678212511(1)24f n n n n T a a a a a a +--=--++5612212511124n n a a a a a a -⎛⎫-+++⎪⎝⎭≤31511112492922n ⎛⎫-+++⎪⎝⎭≤ 515249224n =-<. 综上,当n ∈N*时,15624n T ≤≤. 22.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15分.(I )解:316433x y x =-+.由240y x '=-=,得2x =±.因为当(2)x ∈-∞-,时,y '>0, 当(22)x ∈-,时,0y '<, 当(2)x ∈+∞,时,0y '>,故所求函数的单调递增区间是(2)-∞-,,(2)+∞,, 单调递减区间是(22)-,. (II )证明:(i )方法一:令2332()()()(0)33t x h x f x g x t x t x =-=-+>,则 223()h x x t '=-,当0t >时,由()0h x '=,得13x t =,当13()x x ∈+∞,时,()0h x '>, 所以()h x 在(0)+∞,内的最小值是13()0h t =. 故当0x >时,()()t f x g x ≥对任意正实数t 成立. 方法二:对任意固定的0x >,令232()()(0)3t h t g x t x t t ==->,则 11332()()3h t t x t -'=-,由()0h t '=,得3t x =. 当30t x <<时,()0h t '>. 当3t x >时,()0h t '<,所以当3t x =时,()h t 取得最大值331()3h x x =. 因此当0x >时,()()f x g x ≥对任意正实数t 成立.(ii )方法一:8(2)(2)3t f g ==. 由(i )得,(2)(2)t t g g ≥对任意正实数t 成立.即存在正实数02x =,使得(2)(2)x t g g ≥对任意正实数t 成立. 下面证明0x 的唯一性: 当02x ≠,00x >,8t =时,300()3x f x =,0016()43x g x x =-,由(i )得,30016433x x >-, 再取30t x =,得30300()3x x g x =,所以303000016()4()33x x x g x x g x =-<=, 即02x ≠时,不满足00()()x t g x g x ≥对任意0t >都成立. 故有且仅有一个正实数02x =,使得00()0()x t g x g x ≥对任意正实数t 成立. 方法二:对任意00x >,0016()43x g x x =-, 因为0()t g x 关于t 的最大值是3013x ,所以要使00()()x t g x g x ≥对任意正实数成立的充分必要条件是:300161433x x -≥, 即200(2)(4)0x x -+≤,①又因为00x >,不等式①成立的充分必要条件是02x =,所以有且仅有一个正实数02x =,使得00()()x t g x g x ≥对任意正实数t 成立.2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( ) A .1B .1-C .2D .2-2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()UUA B BA =( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0 B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5C .3D .58.若cos 2sin 5αα+=-,则tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2C .2D .2210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项:A B P α(第10题)1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.在ABC △中,角A B C ,,所对的边分别为a b c ,,.若(3)cos cos b c A a C -=,则cos A = .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = . 16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =,2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,ABCD (第14题)D A BEF C(第18题)(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图).(Ⅰ)求曲线C 的方程;(Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a 是实数,函数()()f x x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.AB OQyxlM (第20题)求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.12+ 12.8 13.33 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH .D A B EFCHG由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为3EG AD ==,2EF =,所以60CFE ∠=,1FG =. 又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是33sin 2BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,则(000)C ,,,(30)A a ,,,(300)B ,,,(30)E b ,,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(300)CB =,,,(00)BE b =,,,所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(30)EF c b =--,,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而23()03()2b c b c b -+-=⎧⎪⎨+-=⎪⎩,,解得34b c ==,.所以(330)E ,,,(040)F ,,. 设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,DA BEFCyz x解得33(13)n a=,,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分.(Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ 0 1 2 3P112 512 512 112ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.AB OQ y xl M解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =,从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0)+∞,,3()22x a x af x x x x--'=+=(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.AB OQ yxl M Hl 1若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增, 所以2()333a a a g a f ⎛⎫==-⎪⎝⎭. 若6a ≥,()f x 在[02],上单调递减, 所以()(2)2(2)g a f a ==-.综上所述,002()06332(2)6a a ag a a a a ⎧⎪⎪=-<<⎨⎪⎪-⎩,≤,,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得6232a +≤≤. 故a 的取值范围为3232a +≤≤.22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+≤,,,,≥所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥,于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<, 所以3n T <.绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。
2024年高考数学全国甲卷理科真题试卷附详解

2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.l.设5z i =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B = ()A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为()A.12B.0C.52-D.72-4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =()A.2- B.73C.1D.25.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.135B.137C.2D.36.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为()A.16B.13C.12D.237.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为()A. B.C. D.8.已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1-C.32D.19.设向量(1,),(,2)a x x b x =+=,则()A.3x =-是a b ⊥的必要条件B.3x =-是//a b 的必要条件C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件10.设,αβ为两个平面,,m n 为两条直线,且.m αβ= 下述四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥.其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=()A.32B. C.72D.3212.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.1B.2C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________.15.已知1a >且8115log log 42a a -=-,则a =_______.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答.(一)必考题:共60分.17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++2()P K k≥0.0500.0100.001 k 3.841 6.63510.828记n S 为数列{}n a 的前n 项和,已知434n n S a =+(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和nT 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =,M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴.(1)求C 的方程.(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.(12分)已知函数()(1)ln(1)f x ax x x =-+-(1)若2a =-,求()f x 的极值.(2)当0x 时,()0f x ,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+(1)写出C 的直角坐标方程.(2)设直线,:(x t l t y t a =⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值.23.[选修4—5:不等式选讲](10分)已知实数,a b 满足 3.a b + (1)证明:2222a b a b+>+(2)证明:2222 6.a b b a -+-∣∣∣∣2024年全国甲卷理科数学参考答案一、选择题.l.A【解析】因为5z i =+,所以()(55)10i z z i i i i +=-++=,故选A.2.D【解析】因为1,2,3,4,9{}5,A =,{|}{1,4,9,16,25,81}B x A ==所以{}()2,3,5A C A B = ,故选D.3.D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图由5z x y =-可得1155y x z =-即z 的几何意义为1155y x z =-的截距的15-则该直线截距取最大值时,z 有最小值此时直线1155y x z =-过点A 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭则min 375122z =-⨯=-.故选D.【解析】因为510S S =,所以788,0S S a ==,又因为51a =,所以公差1817,733d a a d =-=-=,故选B.5.C 【解析】1221||82||||106F F c e a PF PF ====--,故选C.6.A【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+即该切线方程为13y x -=,即31y x =+令0x =,则1y =,令0y =,则13x =-故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.B 【解析】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭故可排除D.故选:B.【解析】因为cos cos sin ααα=-所以11tan =-α,3tan 13⇒α=-所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭故选:B.9.C【解析】对A,当a b ⊥ 时,则0a b ⋅=所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=所以a b ⊥,即充分性成立,故C 正确;对B,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.A对①,当n ⊂α,因为//m n ,m β⊂,则//n β当n β⊂,因为//m n ,m α⊂,则//n α当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确故选:A.11.C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.C因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB最小1,PC AC r ===,此时24AB AP ====.故选:C 二、填空题.13.【答案】5由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.【答案】64【解析】由题可得两个圆台的高分别为)12 h r r ==-甲)12h r r==-乙所以((2121163143S S hV hV hS S h++-===++甲甲甲乙乙乙.故答案为:4.15.【答案】64【解析】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=2log1a⇒=-或2log6a=,又1a>所以622log6log2a==,故6264a==故答案为:64.16.【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A120=种设前两个球的号码为,a b,第三个球的号码为c,则1322a b c a b+++-≤故2()3c a b-+≤,故32()3c a b-≤-+≤故323a b c a b+-≤≤++若1c=,则5a b+≤,则(),a b为:()()2,3,3,2,故有2种若2c=,则17a b≤+≤,则(),a b为:()()()()()1,3,1,4,1,5,1,6,3,4()()()()()3,1,4,1,5,1,6,1,4,3,故有10种当3c =,则39a b ≤+≤,则(),a b 为()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4故有16种当4c =,则511a b ≤+≤,同理有16种当5c =,则713a b ≤+≤,同理有10种当6c =,则915a b ≤+≤,同理有2种共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=故所求概率为56712015=.故答案为:715三、解答题.(一)必考题:共60分.17.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯因为3.841 4.6875 6.635<<所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=用频率估计概率可得0.64p =又因为升级改造前该工厂产品的优级品率0.5p =则0.50.50.5 1.650.56812.247p +=+≈+⨯≈可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-而140a =≠,故0n a ≠,故13nn a a -=-∴数列{}n a 是以4为首项,3-为公比的等比数列所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-(21)31n n T n ∴=-⋅+.(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和nT 19.【答案】(1)证明见详解(2)13【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDECD ⊂平面CDE ,所以//BM 平面CDE 【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =所以ABM 为等边三角形,O 为AM 中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =四边形EFMD 为平行四边形,FM ED AF==所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系()0,0,3F,)()(),0,1,0,0,2,3B M E,()(),BM BF ==()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =平面EMB 的法向量为()222,,n x y z =则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =得113,1y z ==,即)m =则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩ ,即22222303230x y x y z ⎧-+=⎪⎨-++=⎪⎩,令23x =,得223,1y z ==-即()3,3,1n =- ,1111cos ,131313m n m n m n ⋅===⋅⋅,则43sin ,13m n =故二面角F BM E --的正弦值为4313.20.【答案】(1)22143x y +=(2)证明见解析【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故3b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=故()()422Δ102443464120k k k =-+->,故1122k -<<又22121222326412,3434k k x x x x k k -+==++而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-故1Q y y =,即AQ y ⊥轴.21.【答案】(1)极小值为0,无极大值.(2)12a ≤-【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数故()f x '在()1,∞-+上为增函数,而(0)0f '=故当10x -<<时,()0f x '<,当0x >时,()0f x '>故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++设()()()1ln 1,01a xs x a x x x+=-+->+则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数故()()00s x s >=,即()0f x '>所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍综上,12a ≤-.(二)选考题.22.【答案】(1)221y x =+(2)34a =【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4故直线的参数方程可设为222x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-且()()22Δ818116160a a a =---=->,故<1a12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=()22Δ(22)41880a a a =---=-+>,解得1a <设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-则AB ==2=解得34a =23.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥当a b =时等号成立,则22222()a b a b +≥+因为3a b +≥,所以22222()a b a b a b+≥+>+【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
全国高考理科数学试卷真题(江苏)参考答案解析

全国高考试卷真题(江苏) 数学理科参考答案1.5【解析】{123}{245}{12345}5AB ==,,,,,,,,,个元素.2.6【解析】平均数为46587666.322|||34|5||5||z i z z =+=⇒=⇒=.4.7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7S =. 5.56【解析】从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56.6.-3【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 7.(1,2)【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2)-. 8.3【解析】12tan()tan 7tan tan()321tan()tan 17αβαβαβααβα++-=+-===++-. 922221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒10.22(1)2x y 【解析】因为直线210()mx y m m R 恒过点(2,1),所以当点(2,1)为切点时,半径最大,此时半径2r ,故所求圆的标准方程为22(1)2x y .11.2011【解析】由题意得:112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)1212n n n n +=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++.122(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -==13.4【解析】当01x ≤时,()ln f x x ,()0g x ,此时方程|()()|1f x g x 即为ln 1x 或ln 1x,故x e 或1xe ,此时1x e符合题意,方程有一个实根. 当12x时,()ln f x x ,22()422g x x x ,方程|()()|1f x g x 即为2ln 21x x 或2ln 21x x ,即2ln 10x x 或2ln 30x x ,令2ln 1y x x ,则120yx x,函数2ln 1y x x 在(1,2)x 上单调递减,且1x 时0y,所以当12x 时,方程2ln 10x x 无解;令2ln 3yx x ,则120yx x,函数2ln 3y x x 在(1,2)x 上单调递减,且1x 时20y ,2x 时ln 210y ,所以当12x 时,方程2ln 30x x 有一个实根.当2x ≥时,()ln f x x ,2()6g x x ,方程|()()|1f x g x 即为2ln 61x x 或2ln 61x x,即2ln 70x x 或2ln 50x x ,令2y ln 7x x ,则120yx x,函数2y ln 7x x 在[2,)x 上单调递增,且2x 时ln 230y ,3x 时ln320y ,所以当2x ≥时方程2ln 70x x 有1个实根;同理2ln 50x x 在[2,)x 有1个实根.故方程1|)()(|=+x g x f 实根的个数为4个.14.1(1)(1)(1)(cos,sin cos )(cos ,sin cos )666666k k k k k k k k a a ππππππ++++⋅=+⋅+2(1)21(21)cossincos cos sin cos6666626k k k k k ππππππππ++++=++=++因此11103312k k k a a +=⋅==∑ 15.【解析】(1)由余弦定理知,2221C C 2C cos 4922372B =AB+A -AB⋅A ⋅A =+-⨯⨯⨯=,所以BC =(2)由正弦定理知,C sin C sin AB B =A ,所以21sin C sin C 7AB =⋅A==B .因为C AB <B,所以C 为锐角,则cosC 7===.因此212743sin 2C 2sin C cos C 2=⋅=⨯⨯=. 16.【证明】(1)由题意知,E 为1B C 的中点, 又D 为1AB 的中点,因此D //C E A .又因为D E ⊄平面11C C AA ,C A ⊂平面11C C AA , 所以D //E 平面11C C AA .(2)因为棱柱111C C AB -A B 是直三棱柱, 所以1CC ⊥平面C AB .因为C A ⊂平面C AB ,所以1C CC A ⊥.又因为C C A ⊥B ,1CC ⊂平面11CC B B ,C B ⊂平面11CC B B ,1C CC C B =,所以C A ⊥平面11CC B B .又因为1C B ⊂平面11CC B B ,所以1C C B ⊥A .因为1C CC B =,所以矩形11CC B B 是正方形,因此11C C B ⊥B . 因为C A ,1C B ⊂平面1C B A ,1CC C A B =,所以1C B ⊥平面1C B A .又因为1AB ⊂平面1C B A ,所以11C B ⊥AB .17.【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得10000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫ ⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈. ②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =, 此时()min f t =答:当t =l的长度最短,最短长度为千米.18.【解析】(1)由题意,得2c a =且23a c c +=,解得a =1c =,则1b =,所以椭圆的标准方程为222x y .(2)当x AB ⊥轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B , 将AB 的方程代入椭圆方程,得()()2222124210kxk x k +-+-=,则1,2x=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k k+AB ===+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()22231C 12k k k +P =+. 因为2PC AB=,所以(())222223111212k k kk k++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+.19.【解析】:(1)()232f x x ax '=+,令()0f x '=,解得10x =,223ax =-. 当0a =时,因为()230f x x '=>(0x ≠),所以函数()f x 在(),-∞+∞上单调递增; 当0a >时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,2,03a x ⎛⎫∈-⎪⎝⎭时,()0f x '<, 所以函数()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.(2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而34027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩.又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<.设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值范围恰好是()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥ ⎪⎝⎭,因此1c =.此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根,所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠, 解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.综上1c =. 20.【解析】(1)证明:因为112222n n n na a a d a ++-==(1n =,2,3)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠).假设存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列, 则()()34a a d a d =-+,且()()6422a d a a d +=+. 令d t a =,则()()3111t t =-+,且()()64112t t +=+(112t -<<,0t ≠), 化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,()()21212313410t t t t t t t t +++-=+=++=+=,则14t =-.显然14t =-不是上面方程得解,矛盾,所以假设不成立, 因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列. (3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k na a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦,且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++. 令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++, 则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦.令()()1t t ϕϕ'=,则()()()()163ln 134ln 12ln 1t t t t ϕ'=+-+++⎡⎤⎣⎦.令()()21t t ϕϕ'=,则()()()()212011213t t t t ϕ'=>+++.由()()()()1200000g ϕϕϕ====,()20t ϕ'>, 知()2t ϕ,()1t ϕ,()t ϕ,()g t 在1,03⎛⎫- ⎪⎝⎭和()0,+∞上均单调. 故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.数学Ⅱ(附加题)21.A .【证明】 因为AC AB =,所以ABD C ∠=∠.又因为C E ∠=∠,所以ABD E ∠=∠, 又BAE ∠为公共角,可知ABD ∆∽AEB ∆.B .B 【解析】 由已知,得2ααA =-,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦, 则122x y -=-⎧⎨=⎩,即12x y =-⎧⎨=⎩,所以矩阵1120-⎡⎤A =⎢⎥⎣⎦.从而矩阵A 的特征多项式()()()21fλλλ=+-,所以矩阵A 的另一个特征值为1.C .【解析】 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2cos 4022ρθθ⎛⎫+--= ⎪⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=, 即()()22116x y -++=,所以圆C.D .【解析】:原不等式可化为3232x x ⎧<-⎪⎨⎪--≥⎩或32332x x ⎧≥-⎪⎨⎪+≥⎩.解得5x ≤-或13x ≥-. 综上,原不等式的解集是153x x x 或⎧⎫≤-≥-⎨⎬⎩⎭.22.【解析】 以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系xyz A -,则各点的坐标为()1,0,0B ,()1,1,0C ,()0,2,0D ,()0,0,2P .A(第21——A 题)(1)因为AD ⊥平面PAB ,所以AD 是平面PAB 的一个法向量,()0,2,0AD =. 因为()1,1,2PC =-,()0,2,2PD =-.设平面PCD 的法向量为(),,m x y z =,则C 0m ⋅P =,D 0m ⋅P =,即20220x y z y z +-=⎧⎨-=⎩.令1y =,解得1z =,1x =.所以()1,1,1m =是平面PCD 的一个法向量. 从而D 3cos D,D m m mA ⋅A ==A ,所以平面PAB 与平面PCD 所成二面角的余弦值 (2)因为()1,0,2BP =-,设(),0,2BQ BP λλλ==-(01λ≤≤), 又()0,1,0CB =-,则(),1,2CQ CB BQ λλ=+=--,又()0,2,2DP =-, 从而cos ,10CQ DP CQ DP CQ DP⋅<>==.设12t λ+=,[]1,3t ∈,则2222229cos ,5109101520999t CQ DP t t t <>==-+⎛⎫-+⎪⎝⎭≤.当且仅当95t=,即25λ=时,cos CQ,D P 的最大值为10. 因为cos y x =在0,2π⎛⎫⎪⎝⎭上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP ==255BQ BP ==. 23.【解析】(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).下面用数学归纳法证明: ①当6n =时,()666621323f =+++=,结论成立; ②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,()2,1k +,()3,1k +中产生,分以下情形讨论: 1)若16k t +=,则()615k t =-+,此时有()()12132323k k f k f k k --+=+=++++ ()111223k k k ++=++++,结论成立; 2)若161k t +=+,则6k t =,此时有()()112123k kf k f k k +=+=++++ ()()()11111223k k k +-+-=++++,结论成立;3)若162k t +=+,则61k t =+,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立; 4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 5)若164k t +=+,则63k t =+,此时有 ()()1122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有 ()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立. 综上所述,结论对满足6n ≥的自然数n 均成立.。
高考数学试卷(理科)详细解析版(20200623175919)

河北省高考数学试卷(理科)(参考答案与试题解析)一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2019?上海)计算:= .考点:数列的极限.1483908专题:计算题.分析:由数列极限的意义即可求解.解答:解:==,故答案为:.点评:本题考查数列极限的求法,属基础题.2.(4分)(2019?上海)设m∈R, m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m= ﹣2 .考点:复数的基本概念.1483908专题:计算题.分析:根据纯虚数的定义可得m2﹣1=0,m2﹣1≠0,由此解得实数m的值.解答:解:∵复数z=(m2+m﹣2)+(m﹣1)i为纯虚数,∴m2+m﹣2=0,m2﹣1≠0,解得m=﹣2,故答案为:﹣2.点评:本题主要考查复数的基本概念,得到m2+m﹣2=0,m2﹣1≠0,是解题的关键,属于基础题.3.(4分)(2019?上海)若=, x+y= 0 .考点:二阶行列式的定义.专题:常规题型.分析:利用行列式的定义,可得等式,配方即可得到结论.解答:解:,﹣()故答案为点评:本题考查二阶行列式的定义,考查学生的计算能力,属于基础题.4.(4分)(2019?上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2﹣3c2=0,则角C的大小是.考点:余弦定理.1483908专题:解三角形.分析:把式子3a2+2ab+3b2﹣3c2=0变形为,再利用余弦定理即可得出.解答:解:∵3a2+2ab+3b2﹣3c2=0,∴,∴==.∴C=.故答案为.点评:熟练掌握余弦定理及反三角函数是解题的关键.5.(4分)(2019?上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a= ﹣2 .考点:二项式系数的性质.1483908专题:计算题.分析:利用二项展开式的通项公式求得二项展开式中的第r+1项,令x的指数为7求得x7的系数,列出方程求解即可.解答:解:的展开式的通项为T r+1=C5r x10﹣2r()r=C5r x10﹣3r a r令10﹣3r=7得r=1,∴x7的系数是aC51∵x7的系数是﹣10,∴aC51=﹣10,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了二项式系数的性质.二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(4分)(2019?上海)方程+=3x﹣1的实数解为log34 .考点:函数的零点.1483908专题:函数的性质及应用.分析:化简方程+=3x﹣1为=3x﹣1,即(3x﹣4)(3x+2)=0,解得3x=4,可得x的值.解答:解:方程+=3x﹣1,即=3x﹣1,即8+3x=3x﹣1(3x+1﹣3),化简可得32x﹣2?3x﹣8=0,即(3x﹣4)(3x+2)=0.解得3x=4,或3x=﹣2(舍去),∴x=log34,故答案为log34.点评:本题主要考查指数方程的解法,指数函数的值域,一元二次方程的解法,属于基础题.7.(4分)(2019?上海)在极坐标系中,曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为.考点:点的极坐标和直角坐标的互化;两点间的距离公式.1483908专题:计算题.分析:联立ρ=cosθ+1与ρcosθ=1消掉θ即可求得ρ,即为答案.解答:解:由ρ=cosθ+1得,cosθ=ρ﹣1,代入ρcosθ=1得ρ(ρ﹣1)=1,解得ρ=或ρ=(舍),所以曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离为,故答案为:.点评:本题考查两点间距离公式、极坐标与直角坐标的互化,属基础题.8.(4分)(2019?上海)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.1483908专题:概率与统计.分析:利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.解答:解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为点评:本题考查了古典概型及其概率计算公式,考查了简单的排列组合知识,考查了对立事件的概率,解答的关键是明确取到的两数均为奇数时其乘积为奇数,是基础题.9.(4分)(2019?上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.考点:椭圆的标准方程;椭圆的简单性质.1483908专题:圆锥曲线的定义、性质与方程.分析:由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.解答:解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.点评:本题考查椭圆的定义、解三角形,以及椭圆的简单性质的应用.10.(4分)(2019?上海)设非零常数d是等差数列x1,x2,…,x19的公差,随机变量ξ等可能地取值x1,x2,…,x19,则方差Dξ= 30d2.考点:极差、方差与标准差.1483908专题:概率与统计.分析:利用等差数列的前n项和公式可得x1+x2+…+x19=和数学期望的计算公式即可得出Eξ,再利用方差的计算公式即可得出Dξ=即可得出.解答:解:由题意可得Eξ===x1+9d.∴x n﹣Eξ=x1+(n﹣1)d﹣(x1+9d)=(n﹣10)d,∴Dξ=+…+(﹣d)2+0+d2+(2d)2+…+(9d)2]===30d2.故答案为30d2.点评:熟练掌握等差数列的前n项和公式、数学期望和方差的计算公式是解题的关键.11.(4分)(2019?上海)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)= .考点:三角函数的和差化积公式;两角和与差的余弦函数.1483908专题:三角函数的求值.分析:利用两角差的余弦公式及cosxcosy+sinxsiny=,可得cos(x﹣y)=,再利用和差化积公式sin2x+sin2y=,得到2sin(x+y)cos(x﹣y)=,即可得出sin (x+y).解答:解:∵cosxcosy+sinxsiny=,∴cos(x﹣y)=.∵sin2x+sin2y=,∴2sin(x+y)cos(x﹣y)=,∴,∴sin(x+y)=.故答案为.点评:熟练掌握两角和差的正弦余弦公式及和差化积公式是解题的关键.12.(4分)(2019?上海)设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=9x++7.若f(x)≥a+1对一切x≥0成立,则a的取值范围为..考点:函数奇偶性的性质;基本不等式.1483908专题:函数的性质及应用.分析:先利用y=f(x)是定义在R上的奇函数求出x≥0时函数的解析式,将f(x)≥a+1对一切x≥0成立转化为函数的最小值≥a+1,利用基本不等式求出f(x)的最小值,解不等式求出a的范围.解答:解:因为y=f(x)是定义在R上的奇函数,所以当x=0时,f(x)=0;当x>0时,则﹣x<0,所以f(﹣x)=﹣9x﹣+7因为y=f(x)是定义在R上的奇函数,所以f(x)=9x+﹣7;因为f(x)≥a+1对一切x≥0成立,所以当x=0时,0≥a+1成立,所以a≤﹣1;当x>0时,9x+﹣7≥a+1成立,只需要9x+﹣7的最小值≥a+1,因为9x+﹣7≥2=6|a|﹣7,所以6|a|﹣7≥a+1,解得,所以.故答案为..点评:本题考查函数解析式的求法;考查解决不等式恒成立转化成求函数的最值;利用基本不等式求函数的最值.13.(4分)(2019?上海)在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π+8π.试利用祖恒原理、一个平放的圆柱和一个长方体,得出Ω的体积值为2π2+16π.考点:进行简单的合情推理.1483908专题:计算题;阅读型.分析:由题目给出的Ω的水平截面的面积,可猜想水平放置的圆柱和长方体的量,然后直接求出圆柱的体积与长方体的体积作和即可.解答:解:因为几何体为Ω的水平截面的截面积为4+8π,该截面的截面积由两部分组成,一部分为定值8π,看作是截一个底面积为8π,高为2的长方体得到的,对于4,看作是把一个半径为1,高为2π的圆柱平放得到的,如图所示,这两个几何体与Ω放在一起,根据祖恒原理,每个平行水平面的截面积相等,故它们的体积相等,即Ω的体积为π?12?2π+2?8π=2π2+16π.故答案为2π2+16π.点评:本题考查了简单的合情推理,解答的关键是由几何体Ω的水平截面面积想到水平放置的圆柱和长方体的有关量,是中档题.14.(4分)(2019?上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= 2 .考点:反函数;函数的零点.1483908专题:函数的性质及应用.分析:根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x 有解即可得到x0的值.解答:解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故答案为:2.点评:本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2019?上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为()A .(﹣∞,2)B.(﹣∞,2]C.(2,+∞)D.[2,+∞)考点:并集及其运算;一元二次不等式的解法.1483908专题:不等式的解法及应用.分析:当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R 时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.解答:解:当a>1时,A=(﹣∞,1]∪[a,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤1,∴1<a≤2;当a=1时,易得A=R,此时A∪B=R;当a<1时,A=(﹣∞,a]∪[1,+∞),B=[a﹣1,+∞),若A∪B=R,则a﹣1≤a,显然成立∴a<1;综上,a的取值范围是(﹣∞,2].故选B.点评:此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.16.(5分)(2019?上海)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()A .充分条件B.必要条件C充分必要条件D既非充分又非必要条件..考点:必要条件、充分条件与充要条件的判断.1483908分析:因为“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.再据命题的真假与条件的关系判定出“不便宜”是“好货”的必要条件.解答:解:“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”?“不便宜”,所以“不便宜”是“好货”的必要条件,故选B点评:本题考查互为逆否命题的真假一致;考查据命题的真假判定条件关系,属于基础题.17.(5分)(2019?上海)在数列(a n)中,a n=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素c ij=a i?a j+a i+a j(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为()A.18 B.28 C.48 D.63考点:数列的函数特性.1483908分析:由于该矩阵的第i行第j列的元素c ij=a i?a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),要使a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12).则满足2i+j﹣1=2m+n﹣1,得到i+j=m+n,由指数函数的单调性可得:当i+j≠m+n 时,a ij≠a mn,因此该矩阵元素能取到的不同数值为i+j的所有不同和,即可得出.解答:解:该矩阵的第i行第j列的元素c ij=a i?a j+a i+a j=(2i﹣1)(2j﹣1)+2i﹣1+2j﹣1=2i+j ﹣1(i=1,2,…,7;j=1,2,…,12),当且仅当:i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12),因此该矩阵元素能取到的不同数值为i+j的所有不同和,其和为2,3, (19)共18个不同数值.故选A.点评:由题意得出:当且仅当i+j=m+n时,a ij=a mn(i,m=1,2,…,7;j,n=1,2,…,12)是解题的关键.18.(5分)(2019?上海)在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.若m、M分别为(++)?(++)的最小值、最大值,其中{i,j,k}?{1,2,3,4,5},{r,s,t}?{1,2,3,4,5},则m、M满足()A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.1483908专题:平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为(++)?(++)的最小值、最大值,∴m<0,M<0故选D.点评:本题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2019?上海)如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.考点:点、线、面间的距离计算;直线与平面平行的判定.1483908专题:空间位置关系与距离.分析:建立空间直角坐标系,求出平面D′AC的一个法向量为=(2,1,﹣2),再根据=﹣0,可得⊥,可得直线BC′平行于平面D′AC.求出点B到平面D′AC的距离d=的值,即为直线BC′到平面D′AC的距离.解答:解:以D′A′所在的直线为x轴,以D′C′所在的直线为y轴,以D′D所在的直线为z轴,建立空间直角坐标系.则由题意可得,点A(1,0,0 )、B(1,2,1)、C(0,2,1)、C′(0,2,0)、D′(0,0,0).设平面D′AC的一个法向量为=(u,v,w),则由⊥,⊥,可得,.∵=(1,0,1),=(0,2,1),∴,解得.令v=1,可得u=2,w=﹣2,可得=(2,1,﹣2).由于=(﹣1,0,﹣1),∴=﹣0,故有⊥.再由BC′不在平面D′AC内,可得直线BC′平行于平面D′AC.由于=(1,0,0),可得点B到平面D′AC的距离d===,故直线BC′到平面D′AC的距离为.点评:本题主要考查利用向量法证明直线和平面平行,求直线到平面的距离的方法,体现了转化的数学思想,属于中档题.20.(14分)(2019?上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣)元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.考点:函数模型的选择与应用.1483908专题:应用题.分析:(1)求出生产该产品2小时获得的利润,建立不等式,即可求x的取值范围;(2)确定生产900千克该产品获得的利润函数,利用配方法,可求最大利润.解答:解:(1)生产该产品2小时获得的利润为100(5x+1﹣)×2=200(5x+1﹣)根据题意,200(5x+1﹣)≥3000,即5x2﹣14x﹣4≥0∴x≥3或x≤﹣∵1≤x≤10,∴3≤x≤10;(2)设利润为y元,则生产900千克该产品获得的利润为y=100(5x+1﹣)×=90000()=9×104[+]∵1≤x≤10,∴x=6时,取得最大利润为=457500元故甲厂应以6千克/小时的速度生产,可获得最大利润为457500元.点评:本题考查函数模型的建立,考查解不等式,考查函数的最值,确定函数的模型是关键.21.(14分)(2019?上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)若y=f(x)在[﹣,]上单调递增,求ω的取值范围;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,在向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.考点:正弦函数的单调性;根的存在性及根的个数判断;函数y=Asin(ωx+φ)的图象变换.1483908专题:三角函数的图像与性质.分析:(1)已知函数y=f(x)在上单调递增,且ω>0,利用正弦函数的单调性可得,且,解出即可;(2)利用变换法则“左加右减,上加下减”即可得到g(x)=2.令g(x)=0,即可解出零点的坐标,可得相邻两个零点之间的距离.若b﹣a最小,则a和b都是零点,此时在区间[a,mπ+a](m∈N*)恰有2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,即可得到a,b满足的条件.进一步即可得出b﹣a的最小值.解答:解:(1)∵函数y=f(x)在上单调递增,且ω>0,∴,且,解得.(2)f(x)=2sin2x,∴把y=f(x)的图象向左平移个单位,在向上平移1个单位,得到,∴函数y=g(x)=,令g(x)=0,得,或x=(k∈Z).∴相邻两个零点之间的距离为或.若b﹣a最小,则a和b都是零点,此时在区间[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)分别恰有3,5,…,2m+1个零点,所以在区间[a,14π+a]是恰有29个零点,从而在区间(14π+a,b]至少有一个零点,∴.另一方面,在区间恰有30个零点,因此b﹣a的最小值为.点评:本题综合考查了三角函数的单调性、周期性、函数的零点等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.22.(16分)(2019?上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”考点:直线与圆锥曲线的关系;点到直线的距离公式;双曲线的简单性质.1483908 专题:新定义;圆锥曲线的定义、性质与方程.分析:(1)由双曲线方程可知,双曲线的左焦点为(),当过左焦点的直线的斜率不存在时满足左焦点是“C1﹣C2型点”,当斜率存在时,要保证斜率的绝对值大于等于该焦点与(0,1)连线的斜率;(2)由直线y=kx与C2有公共点联立方程组有实数解得到|k|>1,分过原点的直线斜率不存在和斜率存在两种情况说明过远点的直线不可能同时与C1和C2有公共点;(3)由给出的圆的方程得到圆的图形夹在直线y=x±1与y=﹣x±1之间,进而说明当|k|≤1时过圆内的点且斜率为k的直线与C2无公共点,当|k|>1时,过圆内的点且斜率为k的直线与C2有公共点,再由圆心到直线的距离小于半径列式得出k的范围,结果与|k|>1矛盾.从而证明了结论.解答:(1)解:C1的左焦点为(),写出的直线方程可以是以下形式:或,其中.(2)证明:因为直线y=kx与C2有公共点,所以方程组有实数解,因此|kx|=|x|+1,得.若原点是“C1﹣C2型点”,则存在过原点的直线与C1、C2都有公共点.考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).显然直线x=0与C1无公共点.如果直线为y=kx(|k|>1),则由方程组,得,矛盾.所以直线y=kx(|k|>1)与C1也无公共点.因此原点不是“C1﹣C2型点”.(3)证明:记圆O:,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,故可设l:y=kx+b.若|k|≤1,由于圆O夹在两组平行线y=x±1与y=﹣x±1之间,因此圆O也夹在直线y=kx±1与y=﹣kx±1之间,从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.因为l与C1由公共点,所以方程组有实数解,得(1﹣2k2)x2﹣4kbx﹣2b2﹣2=0.因为|k|>1,所以1﹣2k2≠0,因此△=(4kb)2﹣4(1﹣2k2)(﹣2b2﹣2)=8(b2+1﹣2k2)≥0,即b2≥2k2﹣1.因为圆O的圆心(0,0)到直线l的距离,所以,从而,得k2<1,与|k|>1矛盾.因此,圆内的点不是“C1﹣C2型点”.点评:本题考查了双曲线的简单几何性质,考查了点到直线的距离公式,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.23.(18分)(2019?上海)给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1,a2,a3,…满足a n+1=f(a n),n∈N*.(1)若a1=﹣c﹣2,求a2及a3;(2)求证:对任意n∈N*,a n+1﹣a n≥c;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.考点:数列的函数特性;等差关系的确定;数列与函数的综合.1483908专题:等差数列与等比数列.分析:(1)对于分别取n=1,2,a n+1=f(a n),n∈N*.去掉绝对值符合即可得出;(2)由已知可得f(x)=,分三种情况讨论即可证明;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.分以下三种情况讨论:当a1<﹣c﹣4时,当﹣c﹣4≤a1<﹣c时,当a1≥﹣c时.即可得出a1的取值范围.解答:解:(1)a2=f(a1)=f(﹣c﹣2)=2|﹣c﹣2+c+4|﹣|﹣c﹣2+c|=4﹣2=2,a3=f(a2)=f(2)=2|2+c+4|﹣|2+c|=2(6+c)﹣(c+2)=c+10.(2)由已知可得f(x)=当a n≥﹣c时,a n+1﹣a n=c+8>c;当﹣c﹣4≤a n<﹣c时,a n+1﹣a n=2a n+3c+8≥2(﹣c﹣4)+3c+8=c;当a n<﹣c﹣4时,a n+1﹣a n=2a n﹣c>﹣2(﹣c﹣4)﹣c﹣8=c.∴对任意n∈N*,a n+1﹣a n≥c;(3)由(2)及c>0,得a n+1≥a n,即{a n}为无穷递增数列.又{a n}为等差数列,所以存在正数M,当n>M时,a n≥﹣c,从而a n+1=f(a n)=a n+c+8,由于{a n}为等差数列,因此公差d=c+8.①当a1<﹣c﹣4时,则a2=f(a1)=﹣a1﹣c﹣8,又a2=a1+d=a1+c+8,故﹣a1﹣c﹣8=a1+c+8,即a1=﹣c﹣8,从而a2=0,当n≥2时,由于{a n}为递增数列,故a n≥a2=0>﹣c,∴a n+1=f(a n)=a n+c+8,而a2=a1+c+8,故当a1=﹣c﹣8时,{a n}为无穷等差数列,符合要求;②若﹣c﹣4≤a1<﹣c,则a2=f(a1)=3a1+3c+8,又a2=a1+d=a1+c+8,∴3a1+3c+8=a1+c+8,得a1=﹣c,应舍去;③若a1≥﹣c,则由a n≥a1得到a n+1=f(a n)=a n+c+8,从而{a n}为无穷等差数列,符合要求.综上可知:a1的取值范围为{﹣c﹣8}∪[﹣c,+∞).点评:本题综合考查了分类讨论的思方法、如何绝对值符号、递增数列、等差数列等基础知识与方法,考查了推理能力和计算能力.。
广东五年高考理科数学卷及答案(整理版)

绝密★启用前2006年普通高等学校招生全国统一考试(广东卷)数 学本试卷分选择题和非选择题两部分..共4页,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号写在答题卡上.用2B 铅笔将答题卡试卷类型(B )涂黑。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1、函数2()lg (31)f x x =+的定义域是A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-2、若复数z 满足方程220z +=,则3z =A.±B. -C. -D. ± 3、下列函数中,在其定义域内既是奇函数又是减函数的是A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈4、如图1所示,D 是A B C ∆的边A B 上的中点,则向量C D =A.12B C B A -+B.12B C B A--C.12B C B A- D. 12B C B A +5、给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行,④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是A.4B. 3C. 2D. 16、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为A.5B.4C. 3D. 2ACB图17、函数()y f x =的反函数1()y fx -=的图像与y 轴交于点(0,2)P (如图2所示),则方程()0f x =在[1,4]上的根是x =A.4B.3C. 2D.18、已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于B.3 C. 2 D. 49、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数32z x y=+的最大值的变化范围是A.[6,15]B. [7,15]C. [6,8]D. [7,8] 10、对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=A.(4,0)B. (2,0)C. (0,2)D. (0,4)-第二部分 非选择题(共100分)二、填空题:本大题共4小题,每题5分,共20分. 11、2241lim ()42x xx→--=-+________.12、棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______. 13、在112()x x -的展开式中,5x 的系数为________.14、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4, 堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n 堆的乒乓球总数,则(3)_____f =;()_____f n =(答案用n 表示).三解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15、(本题14分)已知函数()sin sin (),2f x x x x Rπ=++∈.(I)求()f x 的最小正周期;图4…x +y +(II)求()f x 的的最大值和最小值; (III)若3()4f α=,求sin 2α的值.16、(本题12分)某运动员射击一次所得环数X 的分布如下:X06 7 8 9 10 P0 0.2 0.3 0.3 0.2 现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(I)求该运动员两次都命中7环的概率 (II)求ξ的分布列(III) 求ξ的数学期望E ξ.17、(本题14分)如图5所示,A F 、D E 分别世O 、1O 的直径,AD 与两圆所在的平面均垂直,8A D =.B C是O的直径,6ABA C ==,//O E A D.(I)求二面角B A D F --的大小; (II)求直线B D 与E F 所成的角.18、(本题14分)设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4P A P B =,点Q 是点P关于直线2(4)y x =-的对称点.求(I)求点A B 、的坐标;(II)求动点Q 的轨迹方程.图5ABFD19、(本题14分)已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9,无穷等比数列{}2na 各项的和为815.(I)求数列{}n a 的首项1a 和公比q ;(II)对给定的(1,2,3,,)k k n = ,设()k T 是首项为k a ,公差为21k a -的等差数列,求(2)T 的前10项之和;(III)设i b 为数列()k T 的第i 项,12n n S b b b =+++ ,求n S ,并求正整数(1)m m >,使得limn mn S n→∞存在且不等于零.(注:无穷等比数列各项的和即当n →∞时该无穷等比数列前n 项和的极限)20、(本题12分)A 是定义在[2,4]上且满足如下条件的函数()x ϕ组成的集合:①对任意的[1,2]x ∈,都有(2)(1,2)x ϕ∈;②存在常数(01)L L <<,使得对任意的12,[1,2]x x ∈,都有1212|(2)(2)|||x x L x x ϕϕ-≤-.(I)设(2)[2,4]x x ϕ=∈ ,证明:()x A ϕ∈(II)设()x A ϕ∈,如果存在0(1,2)x ∈,使得00(2)x x ϕ=,那么这样的0x 是唯一的; (III) 设()x A ϕ∈,任取1(1,2)x ∈,令1(2)n n x x ϕ-=,1,2,n = ,证明:给定正整数k ,对任意的正整数p ,成立不等式121||||1k k p k Lx x x x L-+-≤--2006年高考数学参考答案广东卷 第一部分 选择题(50分)1、解:由1311301<<-⇒⎩⎨⎧>+>-x x x ,故选B. 2、由i z i z z 2220232±=⇒±=⇒=+,故选D.3、B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A. 4、BA BC BD CB CD 21+-=+=,故选A.5、①②④正确,故选B.6、3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C.7、0)(=x f 的根是=x 2,故选C8、依题意可知 3293,322=+=+==bac a ,2332===ac e ,故选C.9、由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y s x x y sy x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--,(1) 当43<≤s 时可行域是四边形OABC ,此时,87≤≤z (2) 当54≤≤s 时可行域是△OA C '此时,8max =z 故选D.10、由)0,5(),()2,1(=⊗q p 得⎩⎨⎧-==⇒⎩⎨⎧=+=-210252q p q p q p ,所以)0,2()2,1()2,1(),()2,1(=-⊕=⊕q p ,故选B.第二部分 非选择题(100分)二、填空题 11、4121lim)2144(lim 222=-=+---→-→xxxx x12、ππ274233332==⇒=⇒=RS R d13、85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r xC xx C T r rrrrrr所以5x 的系数为1320)2()2(3113111111-=-=---C C rr14、=)3(f 10,6)2)(1()(++=n n n n f三、解答题15解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ;(Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ,即167cos sin 2①43cos sin -=⇒⋅⋅⋅=+αααα,即1672sin -=α16解:(Ⅰ)求该运动员两次都命中7环的概率为04.02.02.0)7(=⨯=P ; (Ⅱ) ξ的可能取值为7、8、9、1004.0)7(==ξP 21.03.03.02.02)8(2=+⨯⨯==ξP39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP36.02.02.03.022.03.022.02.02)10(2=+⨯⨯+⨯⨯+⨯⨯==ξPξ分布列为(Ⅲ) ξ的数学希望为07.936.01039.0921.0804.07=⨯+⨯+⨯+⨯=ξE . 17、解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180,cos =⨯++=>=<EF BD设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α直线BD 与EF 所成的角为1082arccos18解: (Ⅰ)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(Ⅱ) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--∙---=∙n n m n m n m PB PA21-=PQ k ,所以21-=--mx n y ,又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222n x m y 消去n m ,得()()92822=++-y x 19解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a q a q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫ ⎝⎛⨯=n na ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155.(Ⅲ) i b =()()121--+i i a i a =()()112---i a i i =()()1321231--⎪⎭⎫⎝⎛--i i i ,()()2132271845--⎪⎭⎫⎝⎛+-=n n n S nn ,m n n n S ∞→lim =∞→n lim ()mnmm nn n n n n 2132271845--⎪⎭⎫ ⎝⎛+-当m=2时,mn n nS ∞→lim=-21,当m>2时,mn n nS ∞→lim=0,所以m=220、解:对任意]2,1[∈x ,]2,1[,21)2(3∈+=x x x ϕ,≤33)2(x ϕ35≤,253133<<<,所以)2,1()2(∈x ϕ 对任意的]2,1[,21∈x x ,()()()()23232132121211121212|||)2()2(|x x x x x x x x ++++++-=-ϕϕ,<3()()()()32321321112121x x x x ++++++,所以0<()()()()2323213211121212x x x x ++++++32<,令()()()()2323213211121212x x x x ++++++=L ,10<<L ,|||)2()2(|2121x x L x x -≤-ϕϕ所以A x ∈)(ϕ反证法:设存在两个0000),2,1(,x x x x '≠∈'使得)2(00x x ϕ=,)2(00x x '='ϕ则 由|||)2()2(|/00/00x x L x x -≤-ϕϕ,得||||/00/00x x L x x -≤-,所以1≥L ,矛盾,故结论成立。
全国统一高考数学试卷理科参考答案与试题解析

全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,110每小题4分,1115每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A .{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}考点:交集及其运算.分析:解出集合N中二次不等式,再求交集.解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于()A .﹣6B.﹣3C.D.考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行,∴它们的斜率相等,∴=3,∴a=﹣6.故选A.点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan ()在一个周期内的图象是()A .B.C.D.考点:正切函数的图象.专题:综合题.分析:先令tan ()=0求得函数的图象的中心,排除C,D;再根据函数y=tan ()的最小正周期为2π,排除B.解答:解:令tan ()=0,解得x=kπ+,可知函数y=tan ()与x 轴的一个交点不是,排除C,D∵y=tan ()的周期T==2π,故排除B故选A点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC﹣A的大小为()A .B.C.D.考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题.专题:计算题.分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的其它边与角的关系,解三角形进行求解.解答:解:如图所示,由三棱锥的三个侧面与底面全等,且AB=AC=,得PB=PC=,PA=BC=2,取BC的中点E,连接AE,PE,则∠AEP即为所求二面角的平面角.且AE=EP=,∵AP2=AE2+PE2,∴∠AEP=,故选C.点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin ()+cos2x的最小正周期是()A .B.πC.2πD.4π考点:三角函数的周期性及其求法.分析:先将函数化简为:y=sin(2x+θ),即可得到答案.解答:解:∵f(x)=sin ()+cos2x=cos2x ﹣sin2x+cos2x=(+1)cos2x ﹣sin2x=sin(2x+θ)∴T==π故选B.点评:本题主要考查三角函数的最小正周期的求法.属基础题.6.(4分)满足arccos(1﹣x)≥arccosx的x的取值范围是()A .[﹣1,﹣]B.[﹣,0]C.[0,]D.[,1]考点:反三角函数的运用.专题:计算题.分析:应用反函数的运算法则,反函数的定义及性质,求解即可.解答:解:arccos(1﹣x)≥arccosx 化为cos[arccos(1﹣x)]≤cos[arccosx]所以1﹣x≤x,即:x,又x∈[﹣1,1],所以x的取值范围是[,1]故选D.点评:本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,是中档题.7.(4分)将y=2x的图象____________再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象()A .先向左平行移动1个单位B.先向右平行移动1个单位C .先向上平行移动1个单位D.先向下平行移动1个单位考点:反函数;函数的图象与图象变化.分析:本题考查函数图象的平移和互为反函数的函数图象之间的关系两个知识点,作为本题,可以用逐一验证的方法排除不合题意的选项,验证的个数在1到3个,对于本题,这不是最佳选择,建议逆推得到平移后的解析式,这样就可以方便的观察到平移的方向及单位数.解答:解:利用指数式和对数式的互化,由函数y=log2(x+1)解得:x=2y﹣1则函数y=log2(x+1)(x>﹣1)的反函数为y=2x﹣1(x∈R)即函数y=2x平移后的函数为y=2x﹣1,易见,只需将其向下平移1个单位即可.故选D点评:本题采用先逆推获取平移后的解析式的方法,得到解析式后平移的方向和单位便一目了然,简便易行,值得尝试.8.(4分)长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()A .20πB.25πC.50πD.200π考点:球的体积和表面积.专题:计算题.分析:设出球的半径,由于直径即是长方体的体对角线,由此关系求出球的半径,即可求出球的表面积.解答:解:设球的半径为R,由题意,球的直径即为长方体的体对角线,则(2R)2=32+42+52=50,∴R=.∴S球=4π×R2=50π.故选C点评:本题考查球的表面积,球的内接体,考查计算能力,是基础题.9.(4分)曲线的参数方程是(t是参数,t≠0),它的普通方程是()A .(x﹣1)2(y﹣1)=1B.y=C.D.考点:参数方程的概念.专题:计算题.分析:由题意知x=1﹣,可得x﹣1=﹣,将方程两边平方,然后与y﹣1=﹣t2,相乘消去t即可求解.解答:解:∵曲线的参数方程是(t是参数,t≠0),∴,∴将两个方程相乘可得,(x﹣1)2(1﹣y)=1,∴y=,故选B.点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.10.(4分)函数y=cos2x﹣3cosx+2的最小值为()A .2B.0C.D.6考点:函数的值域;余弦函数的定义域和值域.专题:计算题.分析:先进行配方找出对称轴,而﹣1≤cosx≤1,利用对称轴与区间的位置关系求出最小值.解答:解:y=cos2x﹣3cosx+2=(cosx﹣)2﹣∵﹣1≤cosx≤1∴当cosx=1时ymin=0,故选B点评:本题以三角函数为载体考查二次函数的值域,属于求二次函数的最值问题,属于基本题.11.(5分)椭圆C与椭圆关于直线x+y=0对称,椭圆C的方程是()A .B.C.D.考点:直线与圆锥曲线的综合问题.专题:计算题.分析:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.根据原椭圆方程可求得其中心坐标,进而求得其关于直线x+y=0对称点,则椭圆方程可得.解答:解:依题意可知椭圆C关于直线x+y=0对称,长轴和短轴不变,主要椭圆的中心即可.∵椭圆的中心为(3,2)关于直线x+y=0对称的点为(﹣2,﹣3)故椭圆C的方程为故选A.点评:本题主要考查了直线与椭圆的关系及点关于直线对称的问题.属基础题.12.(5分)圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是()A .πB.2πC.πD.π考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过圆台的底面面积,求出上下底面半径,利用侧面积公式求出母线长,然后求出圆台的高,即可求得圆台的体积.解答:解:S1=π,S2=4π,∴r=1,R=2,S=6π=π(r+R)l,∴l=2,∴h=.∴V=π(1+4+2)×=π.故选D点评:本题是基础题,通过底面面积求出半径,转化为求圆台的高,是本题的难点,考查计算能力,常考题.13.(5分)(•碑林区一模)定义在区间(﹣∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:①f(b)﹣f(﹣a)>g(a)﹣g(﹣b);②f(b)﹣f(﹣a)<g(a)﹣g(﹣b);③f(a)﹣f(﹣b)>g(b)﹣g(﹣a);④f(a)﹣f(﹣b)<g(b)﹣g(﹣a),其中成立的是()A .①与④B.②与③C.①与③D.②与④考点:函数奇偶性的性质.分析:根据f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f (b),对①②③④进行逐一验证即可得答案.解答:解:由题意知,f(a)>f(b)>0又∵f(﹣a)=﹣f(a),f(﹣b)=﹣f(b),g(﹣a)=g(a)=f(a),g(﹣b)=g(b)=f(b);∴①f(b)﹣f(﹣a)>g(a)﹣g(﹣b)⇔f(b)+f(a)>f(a)﹣f(b)⇔f(b)>﹣f(b),故①对②不对.③f(a)﹣f(﹣b)>g(b)﹣g(﹣a)⇔f(b)+f(a)>f(b)﹣f(a)⇔f(a)>﹣f(a),故③对④不对.故选C.点评:本题主要考查函数奇偶性的应用.14.(5分)不等式组的解集是()A .{x|0<x<2}B.{x|0<x<2.5}C.D.{x|0<x<3}考点:其他不等式的解法.专题:压轴题.分析:可以直接去绝对值解不等式,比较复杂;可结合答案用特值法解决.解答:解:取x=2满足不等式,排除A;再取x=2.5,不满足,排除B、D故选C点评:本题考查解绝对值不等式和分式不等式问题,要注意选择题的特点,选择特殊做法解决.15.(5分)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有()A .150种B.147种C.144种D.141种考点:排列、组合的实际应用;计数原理的应用.专题:计算题;压轴题.分析:由题意知从10个点中任取4个点有C104种取法,减去不合题意的结果,4点共面的情况有三类,取出的4个点位于四面体的同一个面上;取任一条棱上的3个点及该棱对棱的中点;由中位线构成的平行四边形,用所有的结果减去不合题意的结果即可得答案.解答:解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类.第一类,取出的4个点位于四面体的同一个面上,有4C64种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4顶点共面,有3种.以上三类情况不合要求应减掉,∴不同的取法共有C104﹣4C64﹣6﹣3=141种.故选D.点评:本题考查分类计数原理,考查排列组合的实际应用,是一个排列组合同立体几何结合的题目,解题时注意做到不重不漏.二、填空题(共4小题,每小题4分,满分16分)16.(4分)已知的展开式中x3的系数为,常数a的值为4.考点:二项式定理;二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数,列出方程解得.解答:解:的展开式的通项为=令解得r=8∴展开式中x3的系数为∵展开式中x3的系数为∴解得a=4故答案为4点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.17.(4分)(•陕西模拟)已知直线的极坐标方程为,则极点到该直线的距离是.考点:简单曲线的极坐标方程;与圆有关的比例线段;不等式的基本性质.专题:计算题;压轴题.分析:先将原极坐标方程中的三角函数式展开后两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.解答:解:将原极坐标方程,化为:ρsinθ+ρcosθ=1,化成直角坐标方程为:x+y﹣1=0,则极点到该直线的距离是=.故填;.点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.18.(4分)的值为.考点:角的变换、收缩变换.专题:计算题;压轴题.分析:先将分式中的15°化为7°+8°,利用两角和的余弦、正弦展开,分子、分母分组提取sin7°,cos7°,再用同角三角函数的基本关系式,化简,然后,就会求出tan15°,利用两角差的正切,求解即可.解答:解:=======tan15°=tan(45°﹣30°)===,故答案为:点评:本题考查角的变换,两角和的正弦、余弦,同角三角函数的基本关系式,考查学生运算能力,是中档题.19.(4分)已知m、l是直线,α、β是平面,给出下列命题:①若l垂直于α内两条相交直线,则l⊥α;②若l平行于α,则l平行于α内所有的直线;③若m⊊α,l⊊β且l⊥m,则α⊥β;④若l⊊β且l⊥α,则α⊥β;⑤若m⊊α,l⊊β且α∥β,则l∥m.其中正确命题的序号是①④.考点:空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:压轴题.分析:对于①,考虑直线与平面垂直的判定定理,符合定理的条件故正确;对于②,考虑直线与平面平行的性质定理以及直线与平面的位置关系,故错误;对于③考虑α⊥β的判定方法,而条件不满足,故错误;对于④符合面面垂直的判定定理,故正确;对于⑤不符合线线平行的判定,故错误.正确命题的序号是①④解答:解:①,符合定理的条件故正确;②,若l平行于α,则l与α内的直线有两种:平行或异面,故错误;③m⊊α,l⊊β且l⊥m,则α与β可以相交但不垂直;④符合面面垂直的判定定理,故正确;⑤若m⊊α,l⊊β且α∥β,则l∥m或者异面,错误,故正确命题的序号是①④.点评:本题考查立体几何中线线关系中的平行、线面关系中的垂直、面面关系中的垂直的判定方法,要注意对比判定定理的条件和结论,同时要注意性质定理、空间直线与直线、直线与平面、平面与平面的位置关系的应用.三、解答题(共6小题,满分69分)20.(10分)已知复数,.复数,z2ω3在复数平面上所对应的点分别为P,Q.证明△OPQ是等腰直角三角形(其中O为原点).考点:复数代数形式的混合运算.分析:利用复数三角形式,化简复数,.然后计算复数,z2ω3,计算二者的夹角和模,即可证得结论.解答:解法一:,于是,,=因为OP与OQ的夹角为,所以OP⊥OQ.因为,所以|OP|=|OQ|由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.解法二:因为,所以z3=﹣i.因为,所以ω4=﹣1于是由此得OP⊥OQ,|OP|=|OQ|.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.点评:本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力,是中档题.21.(11分)已知数列{an},{bn}都是由正数组成的等比数列,公比分别为p、q,其中p>q,且p≠1,q≠1.设cn=an+bn,Sn为数列{cn}的前n项和.求.考点:等比数列的通项公式;极限及其运算;数列的求和.专题:计算题.分析:先根据等比数列的通项公式分别求出an和bn,再根据等比数列的求和公式,分别求得Sn和Sn﹣1的表达式,进而可得的表达式,分p>1和p<1对其进行求极限.解答:解:,.分两种情况讨论.(Ⅰ)p>1.∵,====p.(Ⅱ)p<1.∵0<q<p<1,==点评:本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.22.(12分)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?考点:根据实际问题选择函数类型;基本不等式在最值问题中的应用.专题:应用题.分析:(1)全程运输成本有两部分组成,将其分别分别表示出来依题意建立起程运输成本y(元)表示为速度v(千米/时)的函数,由题设条件速度不得超过c千米/时.故定义域为v∈(0,c].(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对对速度的范围进行分类讨论,如等号成立时速度值不超过c,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速v,可以判断出函数在(0,c]上的单调性,用单调性求出全程运输成本的最小值.解答:解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为故所求函数及其定义域为(2)依题意知S,a,b,v都为正数,故有当且仅当,.即时上式中等号成立若,则当时,全程运输成本y最小,若,即a>bc2,则当v∈(0,c]时,有==因为c﹣v≥0,且a>bc2,故有a﹣bcv≥a﹣bc2>0,所以,且仅当v=c时等号成立,也即当v=c时,全程运输成本y最小.综上知,为使全程运输成本y最小,当时行驶速度应为;当时行驶速度应为v=c.点评:本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.23.(12分)如图,在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1、CD的中点.(1)证明AD⊥D1F;(2)求AE与D1F所成的角.考点:异面直线及其所成的角.专题:计算题;证明题.分析:(1)证明线线垂直可先证线面垂直,欲证AD⊥D1F,可先证AD⊥面DC1,即可证得;(2)先通过平移将两条异面直线平移到同一个起点,取AB的中点G,将D1F平移到A1G,AB与A1G构成的锐角或直角就是异面直线所成的角,利用三角形全等求出此角即可.解答:解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D1F⊂面DC1,∴AD⊥D1F.(Ⅱ)取AB中点G,连接A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角.点评:本小题主要考查异面直线及其所成的角,考查逻辑推理能力和空间想象能力,属于基础题.25.(12分)(•北京模拟)设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x﹣2y=0的距离最小的圆的方程.考点:直线与圆的位置关系.专题:压轴题.分析:圆被x轴分成两段圆弧,其弧长的比为3:1,劣弧所对的圆心角为90°,设圆的圆心为P(a,b),圆P截X轴所得的弦长为,截y轴所得弦长为2;可得圆心轨迹方程,圆心到直线l:x﹣2y=0的距离最小,利用基本不等式,求得圆的方程.解答:解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截X轴所得的弦长为,故r2=2b2,又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1.又点P(a,b)到直线x﹣2y=0的距离为,所以5d2=|a﹣2b|2=a2+4b2﹣4ab≥a2+4b2﹣2(a2+b2)=2b2﹣a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.由此有解此方程组得或由于r2=2b2知.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.解法二:同解法一,得∴得①将a2=2b2﹣1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2﹣1)≥0,得5d2≥1.∴5d2有最小值1,从而d有最小值.将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由|a﹣2b|=1知a,b同号.于是,所求圆的方程是(x﹣1)2+(y﹣1)2=2,或(x+1)2+(y+1)2=2.点评:本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.易错的地方,P到x轴,y轴的距离,不能正确利用基本不等式.24.(12分)设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f (x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f (x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣[x+F(x)]=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)[1+a(x﹣x2)]因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.点评:本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
2023年高考全国乙卷理科数学试题(含答案详解)

2023年普通高等学校招生全国统一考试(全国乙卷)理科数学一、选择题1. 设252i1i iz +=++,则z =( ) A. 12i −B. 12i +C. 2i −D. 2i +2. 设集合U =R ,集合{}1M x x =<,{}12N x x =−<<,则{}2x x ≥=( ) A. ∁U (M ∪N ) B. N ∪∁U M C. ∁U (M ∩N )D. M ∪∁U N3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 25. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18 B.16C.14D.126. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.7. 甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A. 30种B. 60种C. 120种D. 240种8. 已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 的面积等于)A.πB.C. 3πD.9. 已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( ) A.15B.5C.D.2510. 已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A. -1B. 12−C. 0D.1211. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−12. 已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为( )A.12B.12+C. 1+D. 2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.15. 已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =______.16. 设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18. 在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19. 如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ; (2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的正弦值.20. 已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21. 已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由. (3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22. 在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23. 已知()22f x x x =+−. (1)求不等式()6f x x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+−≤⎩所确定的平面区域的面积.(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =( )(A )12i −(B )12i +(C )2i −(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)ii 2i 12i 1i i 11(i )i i iz ++++=====−−=−++−+,所以12i z =+. (2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =−<<,则{|2}x x ≥=( ) (A )∁U (M ∪N ) (B )N ∪∁U M (C )∁U (M ∩N ) (D )M ∪∁U N 答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}MN x x =<,所以(){|2}U MN x x =≥ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.答案详解(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =−是偶函数,则a =( )(A )2− (B )1− (C )1 (D )2 答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f −=,故1e ee 1e 1a a −−−=−− ①, 又111e e e e 11e e 1a a aa −−−−−−==−−−,代入①得1e e e 1e 1a a a −=−−, 所以1e e a −=,从而11a −=,故2a =, 经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x −=恒成立,从而e e e 1e 1x x ax ax x x −−−=−−,故e e e 1e 1x x ax ax −−−=−−,所以e e e 1e e 1x ax x axax −−⋅=−−,从而e e e 1e 1ax x xax ax −=−−,故e e ax x x −=, 所以ax x x −=,故(2)0a x −=,此式要对定义域内任意的x 都成立,只能20a −=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于 π4 的概率为( )( ) (A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π−=( ) (A) (B )12− (C )12(D答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析, 如图,2362T T πππ−=⇒=,所以22Tπω==,故2ω=±, 不妨取2ω=,则()sin(2)f x x ϕ=+, 再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=−,所以232k ππϕπ+=−,从而52()6k k πϕπ=−∈Z , 故55()sin(22)sin(2)66f x x k x πππ=+−=−,所以5555()sin[2()]sin()sin 1212633f πππππ−=⨯−−=−==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )(A )30种 (B )60种 (C )120种 (D )240种 答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的, 由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法, 由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷· 理· 8·★★★)已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆,则该圆锥的体积为( ) (A )π (B (C )3π (D ) 答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+−2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥, 所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又PAB S ∆=,所以32PQ =PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=,故OP ==所以圆柱PO 的体积213V π=⨯.PO ABQ(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD −−为o 150,则直线CD 与平面ABC 所成角的正切值为( )(A )15(B (C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直, 如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D −−的平面角, 且AB ⊥平面CDE ,所以o 150DEC ∠=, 作DO CE ⊥的延长线于O ,则DO ⊂平面CDE , 所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE = 因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=,52OC OE CE =+=,所以tan OD DCO OC ∠==. DACBEO【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =( )(A )1− (B )12− (C )0 (D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值. 但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可, 若为图1,则131cos cos 2a a ==,2cos 1a =−,所以S 中的元素是12和1−,故12ab =−;若为图2,则1cos 1a =,231cos cos 2a a ==−,所以S 中的元素是1和12−,故12ab =−.1图2图(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可能为线段AB 中点的是( )(A )(1,1) (B )(1,2)− (C )(1,3) (D )(1,4)−− 答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M , 所以AB 的方程为19(1)y x −=−,即98y x =− ①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x −=整理得:272144730x x −+=, 21(144)47273144(144273)2880∆=−−⨯⨯=⨯−⨯=−<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述; D 项,记(1,4)N −−,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =, 又直线AB 过点N ,所以AB 的方程为91(1)4y x −=−,整理得:9544y x =− ②, 将②代入2219y x −=整理得:263901690x x +−=, 判别式2290463(169)0∆=−⨯⨯−>,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO PA PD ⋅的最大值为( )(A (B (C )1 (D )2+答案:A解析:1OA =,1PO PA ===,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①, 且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析, 设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD 相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1, 如图1,4APD APO CPO πθ∠=∠−∠=−,代入①得cos()4PA PD PD πθ⋅=− ①,注意到PD 与θ有关,故将它也用θ表示,统一变量, 由图可知,cos PD PO DPC θ=∠=, 代入①得:2cos cos()4PA PDπθθ⋅=−2)cos sin cos θθθθθθ==+ 1)1cos 214sin 2222πθθθ+++=+=,故当8πθ=时,sin(2)14πθ+=,PA PD ⋅取得最大值12+.A PODB C A PODBC1图2图θθ(2023·全国乙卷·理·13·★)已知点A 在抛物线2:2C y px=上,则点A 到C 的准线的距离为_____. 答案:94解析:点A 在抛物线上25212p p ⇒=⋅⇒=, 所以抛物线的准线为54x =−, 故A 到该准线的距离591()44d =−−=.(2023·全国乙卷·理·14·★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z ,联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8(2023·全国乙卷·理·15·★★)已知{}n a 为等比数列,24536a a a a a =,9108a a =−,则7a =_____. 答案:2−解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q =⇒=,化简得:11a q = ①, 8921791011188a a a q a q a q =−⇒==− ②,由①可得11a q=,代入②得:158q =−,所以52q =− ③, 结合①③可得6557112a a q a q q q ==⋅==−.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案: 解析:直接分析()f x 的单调性不易,可求导来看, 由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a+++≥,故1ln (1)ln(1)0x a a a +++≥ ①, 想让式①恒成立,只需左侧最小值0≥,故分析其单调性, 因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a=+++在(0,)+∞上,故011ln (1)ln(1)ln (1)ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<1a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:记(1,2,,10)i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 解:(1)由题意,i z 的数据依次为9,6,8,8−,15,11,19,18,20,12, 所以10111()(9688151119182012)111010i i i z x y ==−=++−++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==−=−+−+−+−−+−+−+−+∑222(1811)(2011)(1211)]61−+−+−=.(2)由(1)可得z <,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =. (1)求sin ABC ∠;(2)若D为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+−⋅⋅∠=+−⨯⨯⨯=,所以BC =,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sinsin AC BAC ABC BC ⋅∠∠===(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos 2AB BC AC ABC AB BC +−∠===⋅,所以cos AB BD ABC ==∠,AD ==,故o 11sin 1sin 3022ADC S AC AD CAD ∆=⋅⋅∠=⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC −中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥. (1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ; (3)求二面角D AO C −−的大小.PDBAFCOE解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF . 注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了. 那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ) 设AF AC λ=,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+−=−+, 12AO AB BO BA BC =+=−+,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=−+⋅−+ 22(1)4(1)402BA BC λλλλ=−+=−+=,解得:12λ=,所以F 是AC 的中点, 又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF , 所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO . 证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 2190AOB AOB ∠+∠=∠+∠=,故12∠=∠①, 又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB∠==,tan 3AB BC ∠==所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =, 连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB , 结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度) 由题意,12DO PC ==,AD ==,AO ,所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF ) 由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线, 所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便. 我们先分析看是不是这样的. 假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系. 怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小. 事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等, (OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析) 因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==12BF AC ==,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠) 在ABD ∆中,222cos 2AB BD AD ABP AB BD +−∠==⋅,因为1()2BE BA BP =+,所以222113(2)[4622(442BE BA BP BA BP =++⋅=⨯++⨯=,故BE =,在BEF ∆中,222cos 2BF EF BE BFE BF EF +−∠==⋅,所以o 45BFE ∠=,故二面角D AO C −−的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1. 要计算此夹角,也可用向量法. 观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF 的夹角) 1113122()2()22222BF BC CF OB CA OB CB BA OB OB OA OB OB OA =+=−+=−++=−++−=−+,所以31313()cos 22222OD BF OD OB OA OD OB OD OA DOB BOD ⋅=⋅−+=−⋅+⋅=−∠=∠,又222cos 2OB OD BD BOD OB OD +−∠==⋅,所以3322OD BF ⋅=−=−,从而3cos ,6OD BF OD BF OD BF−⋅<>===⋅,故o ,135OD BF <>=,所以二面角D AO C −−为o 135. 解法3:(本题之所以不便建系,是因为点P 在面ABC 的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x yz z >,则(,,)222x y z D,由PB PC ⎧⎪⎨=⎪⎩2222226(6x y z x y z ⎧++=⎪⎨+−+=⎪⎩,解得:y =, 代回两方程中的任意一个可得224x z += ②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z −++=+−+,将y =代入整理得:22220xz x ++−= ③,联立②③结合0z >解得:1x =−,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以1(2D −,故1(2DO =−,(AO =−, 设平面AOD 的法向量为(,,)xy z =m ,则1022220DO x y z AO x ⎧⋅=+−=⎪⎨⎪⋅=−=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC的一个法向量,所以cos ,⋅<>==⋅m n m n m n , 由图可知二面角D AO C −−为钝角,故其大小为o 135.BAFC1图2图123O【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x+= (2)证明见详解解析:(1)由题意可得22223b a b c c ea ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++,因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++ ()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1()y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =−时,1()(1)ln(1)f x x x =−+,2111()ln(1)(1)1f x x x x x'=−++−⋅+,所以(1)0f =,(1)ln 2f '=−,故所求切线方程为0ln 2(1)y x −=−−,整理得:(ln 2)ln 20x y +−=. (2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, 函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,−∞−⋃+∞, 定义域关于直线12x =−对称,由题意可得12b =−,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫−+=−−> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =−, 即()()11ln 22ln 2a a +=−,则12a a +=−,解得12a =,经检验11,22a b ==−满足题意,故11,22a b ==−.即存在11,22a b ==−满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=−+'++ ⎪ ⎪+⎝⎭⎝⎭, 由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点; 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++=, 令()()()2=1ln 1g x ax x x x +−++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=−+−+ 当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意; 当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增, 所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=, 所以()g x 在区间()0,∞+上无零点,不符合题意; 当102a <<时,由()''1201g x a x =−=+可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()0g x ''<,()g x '单调递减, 当11,2x a ⎛⎫∈−+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫−=−+⎪⎝⎭', 令()()1ln 01m x x x x =−+<<,则()10x m x x−+'=>, 函数()m x 在定义域内单调递增,()()10m x m <=, 据此可得1ln 0x x −+<恒成立,则1112ln 202g a a a ⎛⎫−=−+<⎪'⎝⎭, 令()()2ln 0h x x x x x =−+>,则()221x x h x x−++'=,当()0,1x ∈时,()()0,h x h x '>单调递增, 当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤−(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=−+>−+−+=−+⎣⎦',()()()()22122121210g a a a a a ⎡⎤−>−−−+−=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x . 当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=−− ⎪⎝⎭,则()()22211111022x n x x x x−−⎛⎫=−+=≤ ⎪⎝⎭', 则()n x 单调递减,注意到()10n =, 故当()1,x ∈+∞时,11ln 02x x x ⎛⎫−−< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<− ⎪⎝⎭, 所以()()()2=1ln 1g x ax x x x +−++()()211>1121ax x x x x ⎡⎤+−+⨯+−⎢⎥+⎣⎦21122a x ⎛⎫=−+ ⎪⎝⎭,令211022a x ⎛⎫−+= ⎪⎝⎭得2x =0g >, 所以函数()g x 在区间()0,∞+上存在变号零点,符合题意. 综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =若直线y x m =+与12,C C均没有公共点,则m >0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x=+−(1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+−≤⎩所确定的平面区域的面积. 答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩, 解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<, 因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x y x y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =−+⎧⎨+=⎩,解得(2,8)A −,由26y x x y =+⎧⎨+=⎩, 解得(2,4)C ,又(0,2),(0,6)B D , 所以ABC 的面积11|||62||2(2)|822ABC C A SBD x x =⨯−=−⨯−−=.。
全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (C 3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34 【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C ) (D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C 【解析】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =结束【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面ABB 1A 1=n ,则m 、n 所成角的正弦值为 (A)32 (B )22 (C)33 (D)13【答案】A 【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm ,同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12).已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线x x = 对称,则()0f x A= 或()0f x A=-.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64 【解析】试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4时,12n a a a 取得最大值6264=.考点:等比数列及其应用高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域. 考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分为12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC =∆的面积为332,求ABC 的周长. 【答案】(I )C 3π=(II )57+【解析】 试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据133sin C 22ab =.及C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据7c =可得C ∆AB 的周长为57+.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=- ()tan tan A B C +=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”(18)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )21919- 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . CA BD EF又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =.从而可得()C 2,0,3-.所以()C 1,0,3E =,()0,4,0EB =,()C 3,4,3A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取()3,0,3n =-. 设m 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-. 故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =【解析】试题分析:(I )先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II )通过频率大小进行比较;(III )分别求出n =9,n =20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .所以X 的分布列为X 16 17 18 19 20 21 22P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20). (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.考点:导数及其应用【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.OD CBA【答案】(I)见解析(II)见解析试题解析:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.个人车位租赁合同范本出租方(甲方):xxx 身份证号:xxxxxxxxx承租方(乙方):xxx 身份证号:xxxxxxxxx甲、乙双方经充分协商,现将甲方位于xxxxxxxxx私家车位租给乙方作为车辆(车牌号:xxxxx)停放使用,并签订如下车位租赁合同条款,甲、乙双方共同遵守和执行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试理科数学(必修+选修I)一、选择题1.复数1z i =+,z 为z 的共轭复数,则1zz z --= (A) -2i (C) i (D) 2i2. 函数)20y x x =≥的反函数为(A)()24x y x R =∈ (B) ()204x y x =≥(C)()24y x x R =∈ (D) ()240y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是(A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k=(A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A)13(B) 3 (C) 6 (D) 9 6.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1AB AC BD ===,则D 到平面ABC 的距离等于 (A)2 (B)3 (C) 6(D) 1 7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种 8.曲线12+=-xe y 在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13(B) 12 (C) 23 (D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14- (C) 14 (D) 1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos AFB ∠=(A) 45 (B) 35 (C) 35- (D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,脱该球面的半径为4.圆M 的面积为4π,则圆N 的面积为(A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值对于(A) 2 (B) 3 (C) 2 (D) 1二、填空题 13. (201x的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin α=,则tan 2α= .15. 已知12F F 、分别为双曲线22:1927x y C -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABCD A B C D - 的棱11BB CC 、上,且12B E EB =, 12CF FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为,,a b c 。
已知90,2A C a c b -=+=,求C18.(本小题满分12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。
(Ⅰ)求该地1为车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100为车主中,甲、乙两种保险都不购买的车主数,求X 的期望。
19.(本小题满分12分)如图,四棱锥S-ABCD 中,//,AB CD BC CD ⊥,侧面SAB 为等边三角形,AB=BC=2,CD=SD=1.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成的角的大小。
20.(本小题满分12分)设数列{}n a 满足11110,111n na a a +=-=--(Ⅰ)求{}n a 的通项公式; (Ⅱ)设11n n a b n+-=,记1nn kk S b==∑,证明:1n S <。
21.(本小题满分12分)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交于A 、B 两点,点P 满足0.OA OB OP ++= (Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一个圆上。
22.(本小题满分12分)(Ⅰ)设函数()()2ln 12xf x x x =+-+,证明:当0x >时,()0f x > (Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p ,证明:1929110p e ⎛⎫<< ⎪⎝⎭2011年普通高等学校招生全国统一考试(全国卷)数学试题参考答案一、选择题: 1. B 2. B 3. A 4. D 5.C6. C 7. B8. A9. A10.D 11. D 12. A二、填空题: 13. 0 14. 43-15. 6 16.3三、解答题:本大题共6小题,共70分. 17.(本小题满分10分)解:由90A C -=,得22B AC C ππ=--=-故sin sin cos 2A C C π⎛⎫=+=⎪⎝⎭,sin sin 2cos 22B C C π⎛⎫=-= ⎪⎝⎭由sin sin a c A C B +=⇒+=,故cos sin 2C C C +=,)22cos sin cos sin C C C C +=-又显然2C π<,故cos sin 2C C -=,再由22cos sin 1C C +=,解得:cos C =12C π=18.(本小题满分12分)解:(Ⅰ)设购买乙种保险的概率为x ,因为购买乙种保险但不购买甲种保险的概率为0.3故()10.50.30.6x x -=⇒=,所以该地1为车主至少购买甲、乙两种保险中的1种的概率为 ()()110.510.60.8---= (Ⅱ)由(Ⅰ)易知,甲、乙两种保险都不购买的概率为10.80.2-= 所以有X 个车主甲、乙两种保险都不购买的概率为()()1001000.20.8XXXp C -=显然,X 服从二项分布,即()100,0.2XB ,所以1000.220EX =⨯= X 的期望为2019.(本小题满分12分)(Ⅰ)证明:在直角梯形ABCD 中,AB=BC=2,CD=1,//,AB CD BC CD ⊥ ,易算得:AD BD ==又因为侧面SAB 为等边三角形,SD=1,AB=2,所以2225SD SA AD +==,2225SD SB BD +== 于是SD SA ⊥,SD SB ⊥,所以SD SAB ⊥平面(Ⅱ)设点A 到平面SBC 的距离为d ,因为SD SAB ⊥平面,所以SD AB ⊥,从而SD CD ⊥,因而可以算得:SC =2SB BC ==,故SBC S ∆=又因为//CD SAB 平面,所以点C 到平面SAB 的距离为1SD =另外,显然224SBA S ∆==,所以111323A SBC C SAB V V --=⨯==四棱锥四棱锥得:7d =设AB 与平面SBC 所成的角为α,则7sin 27α==,即AB 与平面SBC所成的角为sin 7arc α是锐角)20.(本小题满分12分)解:(Ⅰ)由111111n na a +-=--得:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,首项为1111a =- 故()11111n n n a =+-⨯=-,从而11n a n=-(Ⅱ)n b ====所以11111nn k k S b n===+-=<∑21.(本小题满分12分)(Ⅰ)证明:易知:()0,1F ,故::1l y =+,代入椭圆方程得:2410x--=,设()()()1122,,,,,A x y B x y P x y ,则122x x +=,)121221y y x x +=++=, 因为0.OA OB OP ++=所以()()()()1122,,,0,0x y x y x y ++=()()1212,,,12x y x x y y ⎛⎫=----=-- ⎪ ⎪⎝⎭,将此坐标代入椭圆:221122⎛+=⎝⎭, 所以点P 在C 上。
(Ⅱ)由(Ⅰ):2410x--=及:1l y =+,得11,,4242A B ⎛⎫⎛⎫-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因为1p ⎛⎫-⎪⎪⎝⎭,所以Q ⎫⎪⎪⎝⎭于是可以算得:AP k =AQ k =,BP k =BQk =tan PBQ∠=-tan APB ∠=tan PAQ ∠=-tan AQB ∠=于是四边形APBQ 对角互补,从而A 、P 、B 、Q 四点在同一个圆上。
22 .(本小题满分12分)证明:(Ⅰ)0x >时,()()()()()222222101212x x x f x x x x x +-'=-=>++++, 于是()f x 在()0,+∞上单调增,所以()()00f x f >= (Ⅱ)2019100998281999881100100p ⨯⨯⨯⨯⨯⨯⨯==()()199981(9881)918990100⨯⨯⨯⨯⨯⨯⨯=(共有19192-=对数相乘) 1922219191990909090909010010010x ⨯⨯⨯⨯⎛⎫>≤== ⎪⎝⎭由(Ⅰ),10x -<<时,也有()()()22012x f x x x '=>++, 故()f x 在()1,0-上单调增,所以()10010f f ⎛⎫-<= ⎪⎝⎭即119925ln ln 0191010101910f ⎛⎫⎛⎫⎛⎫-=+=+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即919ln 210⎛⎫<- ⎪⎝⎭,两边同时取e 的对数得:19229110e e -⎛⎫<= ⎪⎝⎭综上所述:1929110p e ⎛⎫<< ⎪⎝⎭2010年普通高等学校招生全国统一考试理科数学一、选择题(1)复数3223ii+=- (A)i (B)i- (C)12-13i (D) 12+13i (2)记cos(80)k -︒=,那么tan100︒=(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a=(A)(5)35(1(1+的展开式中x 的系数是 (A) -4 (B) -2 (C) 2 (D) 4(6)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种(7)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为(A )3 (B )3 (C )23(D )3(8)设a =3log 2,b =ln2,c =125-,则(A ) a<b<c (B )b<c<a (C ) c<a<b (D ) c<b<a(9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为(10)已知函数f (x )=|lg x |.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是(A))+∞ (B))+∞ (C)(3,)+∞ (D)[3,)+∞(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 4-+3- (C) 4-+3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3 (B)3 (C) 3第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........)(13)1x ≤的解集是 .(14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分) 已知ABC 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .(18)(本小题满分12分) 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.(19)(本小题满分12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 .(20)(本小题满分12分)已知函数()(1)ln 1f x x x x =+-+. (Ⅰ)若2'()1xf x x ax ≤++,求a 的取值范围; (Ⅱ)证明:(1)()0x f x -≥ .(21)(本小题满分12分)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D.(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB =,求BDK ∆的内切圆M 的方程 .(22)(本小题满分12分)已知数列{}n a 中,1111,n na a c a +==-. (Ⅰ)设51,22n n c b a ==-,求数列{}n b 的通项公式; (Ⅱ)求使不等式13n n a a +<<成立的c 的取值范围 .2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)一、选择题 1.函数(1)y x x x =- )A .{|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c bC .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2 B .1 C .0 D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y x =的图像关于直线y x =对称,则()f x =( )A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,, 10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) s OA .s Os OsOB .C .D .A .221a b+≤B .221a b+≥C .22111a b +≤ D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13 BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =. (Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;CDE AB(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知; 3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()212121,1,y x x y x ef x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像.9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y a b +=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a b+=由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB =,棱柱的高1AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113AO AB =.另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅=== 则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=. 12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯=13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--15.答案:38.设1AB BC ==,7cos 18B =-则2AC53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO ==⋅∠=,结合等边三角形ABC与正方形ABDE 可知此四棱锥为正四棱锥,则3AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22ANEM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM ANEM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,(,22222M N ---,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===, 故EM AN ,所成角的余弦值16AN EMAN EM⋅=. 17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE , ∴AF CE ⊥. tan tan 2CED FDC ∠=∠=,∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE ⊥CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.233AC CD CG AD ==,DG =,EG ==CE =222cos 2CG GE CE CGE CG GE +-∠==,πarccos 10CGE ⎛⎫∴∠=- ⎪ ⎪⎝⎭,即二面角C AD E --的大小πarccos 10⎛⎫- ⎪ ⎪⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增 当23a >,()0f x '=求得两根为x =B D 16题图(即()f x在3a ⎛---∞ ⎪⎝⎭,递增,33a a ⎛--+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩,且23a >解得:74a ≥20.解:(Ⅰ)解:设1A 、2A 分别表示依方案甲需化验1次、2次。