第四章圆与方程测试题
2022年第四章 一元一次方程测试题及答案

一、选择题(每小题3分,共36分)1.下面是小红所写的式子:①5x-2;②3+5=-1+9;③5-12x=2x-8;④x=0;⑤x+2y=9.其中是一元一次方程的有( B )A.1个B.2个C.3个D.4个2.根据等式的性质,下列变形正确的是( C )A.若2a=3b,则a=23bB.若a=b,则a+1=b-1C.若a=b,则2-a 3=2-b 3D.若a 2=b 3,则2a=3b3.已知关于x 的方程3x+2a=2的解是x=a-1,则a 的值是( A )A.1B.35C.15D.-14.下列各式的变形正确的是( D )A.由2x -13=1+x -32,去分母,得2(2x -1)=1+3(x-3)B.方程3x 0.5-1.4-x 0.4=1可化为30x 5-14-x 4=1C.由2(2x -1)-3(x -3)=1,去括号,得4x-2-3x-9=1D.由2(x +1)=x+7,去括号、移项、合并同类项,得x=55.某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母.为使每天生产的螺栓和螺母刚好配套,设安排x 名工人生产螺栓,则下面所列方程正确的是( C )A.2×1 000(26-x)=800xB.1 000(13-x)=800xC.1 000(26-x)=2×800xD.1 000(26-x)=800x6.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( B )A.13x=12(x+10)+60B.12(x+10)=13x+60C.x 13-x+6012=10D.x+6012-x 13=107.若方程3(2x-2)=2-3x 的解与关于x 的方程6-2k=2(x+3)的解相同,则k 的值为( B )A.59B.-89C.53D.-538.某商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该商场以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为( C )A.不盈不亏B.盈利2元C.亏损2元D.亏损5元9.已知k 为非负整数,且关于x 的方程3(x-3)=kx 的解为正整数,则k 的所有可能取值为( C )A.4,6,12B.4,6C.2,0D.2,0,-610.某铁路桥长1 200 m,现有一列火车从桥上通过,测得该列火车从开始上桥到完全过桥共用1 min,整列火车完全在桥上的时间共40 s,则该列火车的长度为( C )A.180 mB.200 mC.240 mD.260 m11.如图所示,用十字形方框从月历表中框出5个数,已知这5个数的12.有一个不完整圆柱形玻璃密封容器如图①所示,测得其底面半径为a,高为h,其内装蓝色液体若干.若如图②所示放置时,测得液面高为12h;若如图③所示放置时,测得液面高为23h.该玻璃密封容器的容积(圆柱体容积=底面积×高)是( B )① ② ③A.5π24a 2hB.5π6a 2hC.56a 2h D.53ah 二、填空题(每小题3分,共18分)13.已知15x m+3+6=2是关于x 的一元一次方程,则m= -2 . 14.当x= 43 时,代数式3x-2的值与12互为倒数.15.若关于x 的方程x+2=2(m-x)的解满足方程|x -12|=1,则m 的值是 14或134 .16.如图所示,由3个相同的长方形A 和1个正方形B 组成的图形,其中长方形A 的长是宽的2倍,则正方形B 的周长为 84 .17.某地居民生活用电的基本价格为0.60元/度.规定每月的基本用电量为a 度,超过部分的电量每度电的价格比基本用电量每度电的价格增加20%收费.某用户在5月份用电200度,共交电费132元,则 a= 100 .18.幻方,又称为九宫格,最早起源于中国,是一种中国传统游戏.如图①所示,它是在3×3的9个格子中填入9个数,使得每行、每列及对角线上的3个数之和都相等.在图②所示幻方中,只填了5个用字母表示的数,根据每行、每列及对角线上的3个数之和都相等,则右上角“x ”所表示的数应是 3 .① ②三、解答题(共46分)19.(8分)解下列方程:(1)2(x-1)-5(2x-3)=0; (2)2x+12-1=x -13.解:(1)去括号,得2x-2-10x+15=0,移项、合并同类项,得-8x=-13,系数化为1,得x=138.(2)去分母,得3(2x+1)-6=2(x-1),去括号,得6x+3-6=2x-2,移项、合并同类项,得4x=1,系数化为1,得x=14. 20.(8分)当k 取何值时,代数式k+13的值比3k+12的值小1? 解:由题意,得k+13=3k+12-1.去分母,得2(k+1)=3(3k+1)-6,去括号,得2k+2=9k+3-6,移项,得2k-9k=3-6-2,合并同类项,得-7k=-5,系数化为1,得k=57.故当k=57时,代数式k+13的值比3k+12的值小1.21.(8分)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜 24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x 元,请你根据题意补全表格中的信息,并列方程解:表格由左至右,由上至下分别为12,12×0.9,12×0.9,x-24.由题意,知x -2412×0.9-x 12=1, 解得x=348,所以小明今天计划买纸杯蛋糕的数量为348÷12=29(个).答:小明今天计划买29个纸杯蛋糕.22.(10分)十一长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10 km,小张出发必过小李家.(1)若两人同时出发,小张车速为20 km/h,小李车速为15 km/h,则经过多少小时能相遇?(2)若小李的车速为10 km/h,小张提前20 min 出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?解:(1)设经过t h 能相遇,依题意,得20t=15t+10,解得t=2,所以两人经过2 h 能相遇.(2)设小张的车速为x km/h,则相遇时小张所行驶的路程为(12x+13x)km, 小李所行驶的路程为10×12=5(km),所以12x+13x=5+10,解得x=18.故小张的车速应为18 km/h.23.(12分)小明准备购买练习本,甲、乙两个商店都在搞促销优惠,两个商店的标价都是每本1元.甲商店的优惠条件是购买10本以上,从第11本开始按标价打七折;乙商店的优惠条件是购买10本以上,每本按标价打八折.(1)小明要买20本练习本时,到哪个商店买更省钱?(2)若小明要买10本以上练习本,则买多少本练习本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?解:(1)甲商店:10×1+10×1×70%=17(元),乙商店:20×1×80%=16(元).因为17>16,所以小明要买20本练习本时,到乙商店买更省钱.(2)设购买x 本练习本时,到两个商店付的钱一样多,由题意,得10×1+70%(x-10)=80%x,解得x=30,所以买30本练习本时到两个商店付的钱一样多.(3)设最多可买y 本练习本.在甲商店购买:10+70%(y-10)=32,解得y=4137;因为y 为整数,所以在甲商店最多可买41本练习本.在乙商店购买:80%y=32,解得y=40.因为41>40,所以小明最多可买41本练习本.。
人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.
圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。
人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc

与方程姓名:班级:一、选择题(共8小题;共40分)1Mx2 +尸一4x + 6y = 0的圆心坐标是()A (2,3)B (-2,3) C(-2,-3) D(2,-3)2OO的百径是3,百线1与OO相交,圆心0到百线1的距离是d,贝M应满足()Ad > 3 B 15 < d < 3 C 0 < d < 15 Dd < 0 3圆(x — 2)2 + (y- l)2 = 4与圆(x + l)2 + (y- 2)2 = 9的公切线有()条A1 B 2 C3 D4 4从原点向圆x2 + y2 一12y + 27 = 0作两条切线,则该圆夹在两条切线间的劣弧长为()A nB 2nC 4TTD 6TT5过点(1,1)的直线与圆(x - 2)2 + (y - 3)2 = 9相交于A, B两点,贝lj| AB |的最小值为() A2V3 B4 C2V5 D5 6已知圆C的半径为2, |员|心在x轴的正半轴上,直线3x + 4y + 4 = 0与圆C相切,贝I」圆C的方程为()Ax2 4-y2 - 2x - 3 = 0 B x2 4- y2 + 4x = 0Cx2 +y2 + 2x - 3 = 0 D x2 + y2 - 4x = 07耍在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范閘都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A6 B 5 C4 D38 已知圆:C1:(x-2)2 + (y-3)3 = 1,圆:C2:(x-3)2 + (y-4)2 = 9, M、N分别是圆C〔、C?上的动点,P为x轴上的动点,贝OIPMI + IPNI的最小值为()A5V2-4 B V17- 1 C6-2V2 D V17二、填空题(共7小题;共35分)9过点A(3,—4)与闘x2 +y2 = 25相切的直线方程是_______ .10如果单位圆X? +y2 = 1与圆C: (x — a)2 + (y - a)2 = 4相交,则实数a的取值范围为 ________ 11在空间直角坐标系,已知点A(l,0,2), B(l,-3,1),点M在y轴上,且M到A与到B的距离相等,则点M的坐标是 _____ ・12已知圆C: (x-2)2+y2 = l.若直线y二k(x+l)上存在点P,使得过P向圆C所作的州条切线所成的角为夕则实数k的取值范闌为 _______ .13如图,以棱长为a的止方体的三条棱所在的直线为坐标轴建立空间百角坐标系,若点P为对角线AB的点,点Q在棱CD上运动,则PQ的最小值为 .14在圆C:(x-2)2 + (y-2)2 = 8内,过点P(l,0)的最长的弦为AB,最短的弦为DE,贝9以边形ADBE的面积为____ •15据气象台预报:在A城正东方300km的海而B处有一台风心,正以每小时40km的速度向術北方向移动,在距台风心250km以内的地区将受其影响.从现在起经过约__________ h,台风将影响A城, 持续时间约为_______ h.(结果精确到Olh)三、解答题(共5小题;共65分)16若关于x, y的方程X? + y? - 4x + 4y + m = 0表示圆C.(1)求实数m的取值范围;(2)若圆C与圆M:x2 4-y2 = 2相离,求m的取值范囤.17已知圆C:x? + y? + 4x + 4y + m = 0,直线l:x + y 4- 2 = 0.(1)若I员IC与直线1相离,求m的取值范围;(2)若I员1D过点P(l,l), H.与恻C关丁•直线1对称,求I処D的方程.18如图,在平面直角坐标系xOy,点A(0,3),直线l:y = 2x-4.设圆C的半径为1,圆心在1上.(1)若圆心C也在直线y = x-l上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA = 2M0,求圆心C的横坐标a的取值范|节|・19已知直线啲方程为2x+(l + m)y+2m = 0, m€R,点P的坐标为(-1,0).(1)求证:直线1恒过定点,并求出定点坐标;(2)求点P到直线1的距离的最大值;(3)设点P在直线1上的射影为点M, N的坐标为(2,1),求线段MN长的取值范闱.20 在平面直角坐标系xOy,已知圆Ci: (x + 3)2 + (y - I)2 = 4和圆C?: (x 一4)2 + (y — 5)2 = 4.(1)若直线1过点A(4,0), £L被圆C]截得的弦长为2孙,求直线啲方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂肖的肖线h和12,它们分别与圆C1 和圆C2相交,且直线h被圆C]截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点p的坐标.答案第一部分I D 2 C 3 B 4 B 5 B 6 D 7 C 8 A第二部分9 3x-4y = 2510 -—< a < H J C —< a < —」 2 22 2 II (0,-1,0) 12 [一普,晋]13 yal4 4V615 20; 66第三部分 16 (1) |w|C 化简为(x- 2)2 4-(y + 2)2 = 8-m,所以8 — m > 0,即m V 8.(2)圆C 的圆心为(2,-2),半径为V8^ (m<8),圆M 的圆心为(0,0),半径为返,由题意,得圆心距大于两圆的半径和,则“22 + 22 + 解得6<m<8.17 (1)圆Ux?+y2+4x + 4y + m = 0即(x 4- 2)2 + (y + 2)2 = 8 - m.圆心C(-2,—2)到直线啲距离d =三|旦=V2,若圆C 与直线1相离,则d > r,所以 * = 8 — m < 2即 m > 6乂严=8 - m > 0即m V 8.故m 的取值范围是(6,8).(2)设圆D 的圆心D 的坐标为(xo ,y ()),由于圆C 的圆心C(_2,_2), 依题意知点D 和点C 关于直线1对称,解牡:0 所以圆D 的方程为x 2+y 2 = r 2,而r=|DP |=V2,因此,圆D 的方程为x 2+y 2 = 2.18 (1)由题设,I 员I 心C 是直线y = 2x- 4和y = x- 1的交点, 解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方稈为y = kx + 3由题意,得解得:k=0或—孑 4故所求切线方程为{Xo-2 Yo+2Xo+2 + 竽+2 = 0x (-1) = -1I 3k + 1 |Vk 2 + 1y = 3 或3x + 4y — 12 = 0(2)因为圆心在直线y = 2x —4上,所以圆C的方程为(x — a)2 3 + [y — 2 (a — 2)]2 = 1 设点M(x,y),因为MA = 2M0,所以Jx2 + (y — 3)2 = 2jx2 +y2, 化简得x? + y2 + 2y — 3 = 0,即x2 + (y + l)2 = 4, 所以点M在以D(0,-l)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆(:与圆D有公共点,贝I」12-11 < CD <2 + 1, 即l<Va2 + (2a-3)2<3 整理,得—8 S 5a2— 12a S 0由5a2-12a + 8>0,得a G R;S5a2 - 12a < 0,得12所以点C的横坐标a的取值范闌为[0,y .19(1)由2x + (l + m)y+2m = 0得2x + y + m(y + 2) = 0,所以直线1恒过直线2x + y= 0与直线y + 2 = 0交点Q.解方程组炸暮律得Q(l,-2),所以直线1恒过定点,且定点为Q(l,-2).2 设点P在直线1上的射影为点M,贝IJIPMI < |PQ|,当且仅当直线1与PQ垂直时,等号成立, 所以点P到直线1的距离的最大值即为线段PQ的长度为2逅.3因为直线1绕着点Q(l,-2)旋转,所以点M在以线段PQ为直径的I员1上,其I员I心为点C(O.-l),半径为说,因为N的坐标为(2,1),所以|CN| = 2V2,从而V2 < |MN| < 3V2.20(1)由于直线x = 4与圆C]不相交,所以直线1的斜率存在.设直线1的方程为y = k(x - 4),圆C]的I员I心到直线1的距离为d, 乂因为直线1被I员©截得的弦长为2箱,所以|l-k(-3-4)| d = ------- , ----Vl + k 2 y = 0 或 7x + 24y - 28 = 0 (2)设点P(a,b)满足条件,不妨设直线h 的方程为y — b = k(x — a), k H 0, 则直线】2的方程为山点到直线的距离公式得 d = J22 - (V3)2 = 1从而即所以直线1的方程k(24k + 7) = 0, 7 241因为圆Ci和C2的半径相等,及宜线I】被圆C]截得的弦长与直线-被【员丄2截得的弦长相等,所以I 员IC]的|员]心到直线1]的距离和圆C2的國心到直线】2的距离相等,即|1 一k(-3 - a) - b| |5 + £ (4 — a) — b|整理得|1 + 3k + ak — bl = |5k + 4 — a — bk|,从而1 + 3k + ak — b = 5k + 4 — a - bk,(a + b — 2)k — b — a + 3, 因为k的取值有无穷多个,所以(a + b — 2 = 0,戒(a — b + 8 = 0, (b - a + 3 = 0 严ia + b-5 = 0 解得这样点P只可能是点P] (I,-扌)或点卩2 (-!,¥)• 经检验点P]和P2满足题口条件.。
数学试题 人教a版必修2 同步练习第四章检测测试题(两套)

第四章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.圆心为(1,-7),半径为2的圆的方程是( )A.(x-1)2+(y+7)2=4B.(x+1)2+(y-7)2=4C.(x+1)2+(y-7)2=2D.(x-1)2+(y+7)2=2解析:由已知条件得圆的标准方程为(x-1)2+(y+7)2=4.答案:A2.已知空间两点P1(-1,3,5),P2(2,4,-3),则|P1P2|等于( )A解析:|P1P2|答案:A3.直线l:x-y=1与圆C:x2+y2-4x=0的位置关系是( )A.相离B.相切C.相交D.无法确定解析:圆C的圆心为C(2,0),半径为2,圆心C到直线l的距离d.答案:C4.圆x2+y2=1与圆x2+y2=4的位置关系是( )A.外离B.内含C.相交D.相切解析:圆x2+y2=1的圆心为(0,0),半径为1,圆x2+y2=4的圆心为(0,0),半径为2,则圆心距0<|2-1|=1,所以两圆内含.答案:B5.圆(x-1)2+(y-1)2=1上的点到直线x+2y+2=0的最短距离为( )A解析:由已知得圆心坐标为(1,1),半径r为1,圆心到直线的距离d.所以最短距离为d-r答案:C6.已知圆C:(x-a)2+(y-b)2=1过点A(1,0),则圆C的圆心的轨迹是( )A.点B.直线C.线段D.圆解析:∵圆C:(x-a)2+(y-b)2=1过点A(1,0),∴(1-a)2+(0-b)2=1,即(a-1)2+b2=1.故圆C的圆心的轨迹是以(1,0)为圆心,1为半径的圆.答案:D7.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=2D.(x+1)2+(y+1)2=2解析:由题意设圆心坐标为(a,-a),因为圆心到直线x-y-4=0与x-y=0的距离相等,所a=1.所以圆心坐标为(1,-1),半径r故所求圆的方程为(x-1)2+(y+1)2=2.答案:C8.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.-2B.-4C.-6D.-8解析:圆的方程可化为(x+1)2+(y-1)2=2-a,因此圆心为(-1,1),半径r圆心到直线x+y+2=0的距离d4,因此由勾股定理可a=-4.故选B.答案:B9.圆x2+y2+2x+4y-3=0上到直线x+y+2=0的距离A.1个B.2个C.3个D.4个解析:圆的标准方程为(x+1)2+(y+2)2=((-1,-2)到直线x+y+2=0的距离4个.答案:D10.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是( )A.0<kC.0<k解析:圆x2+4x+y2-5=0可变形为(x+2)2+y2=9,如图所示.当x=0时,y=A(0k AM∈(0答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.点P(3,4,5)关于原点的对称点的坐标是.解析:因为点P(3,4,5)与P'(x,y,z)的中点为坐标原点,所以点P'的坐标为(-3,-4,-5).答案:(-3,-4,-5)12.已知圆C1:(x+1)2+(y-1)2=1与圆C2:(x+5)2+(y+2)2=m2(m>0)外切,则m的值为.解析:由已知得C1(-1,1),半径r1=1;C2(-5,-2),半径r2=m,所以圆心距d=|C1C2|又因为两圆外切,所以d=r1+r2.所以5=1+m,即m=4.答案:413.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是.解析:由题意可知点P在以MN为直径的圆上,且除去M,N两点,所以圆心坐标为(0,0),半径为2.所以轨迹方程是x2+y2=4(x≠±2).答案:x2+y2=4(x≠±2)14.若圆x2+y2=4与圆x2+y2-2ax+a2-1=0内切,则a=.解析:两圆的圆心分别为O1(0,0),O2(a,0),半径分别为r1=2,r2=1.由两圆内切可得|O1O2|=r1-r2,即|a|=1,所以a=±1.答案:±115.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.解析:因为直线mx-y-2m-1=0(m∈R)恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r(x-1)2+y2=2.答案:(x-1)2+y2=2三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆M:(x-1)2+(y-1)2=4,直线l经过点P(2,3)且与圆M交于A,B两点,且|AB|=解:当直线l的斜率存在时,设直线l的方程为y-3=k(x-2),即kx-y+3-2k=0.如图,作MC⊥AB于点C,连接BM.在Rt△MBC中,|BC||MC|由点到直线的距离公式解得k l的方程为3x-4y+6=0.当直线l的斜率不存在时,其方程为x=2,且|AB|=.综上所述,直线l的方程为3x-4y+6=0或x=2.17.(8分)求与直线y=x相切,圆心在直线y=3x上且截y轴所得的弦长为解:设圆心坐标为O1(x0,3x0),半径为r,解得r y轴被圆截得的弦长∴即圆的方程为(x(x18.(9分)已知一个圆的圆心为A(2,1),且与圆x2+y2-3x=0相交于P1,P2两点.若|P1P2|=2,求这个圆的方程. 解:设圆的方程为(x-2)2+(y-1)2=r2,即x2+y2-4x-2y+5-r2=0.所以直线P1P2的方程为x+2y-5+r2=0.则点A(2,1)到直线P1P2的距离又因为|P1P2|=2,所以当r=1时,易知符合题意,此时所求圆的方程为(x-2)2+(y-1)2=1.当r≠1时,r2=6或r2=1(舍去).此时所求圆的方程为(x-2)2+(y-1)2=6.故所求圆的方程是(x-2)2+(y-1)2=6或(x-2)2+(y-1)2=1.19.(10分)在棱长为2的正方体OABC-O1A1B1C1中,P是对角线O1B上任意一点,Q为棱B1C1的中点.求|PQ|的最小值.解:分别以OA,OC,OO1所在的直线为x轴、y轴、z轴建立如图所示的空间直角坐标系.由于Q是B1C1的中点,所以Q(1,2,2).点P在xOy平面上的射影在OB上,在yOz平面上的射影在O1C上 ,所以点P的坐标(x,y,z)满则|PQ|当x=1时,即P(1,1,1)时,|PQ|取得最小20.(10分)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O 为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.解:(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),即(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以l的斜率l的方程为y=又易得|OM|=|OP|=O到l的距离△POM的面积第四章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点A(3,-2,4)关于点(0,1,-3)的对称点的坐标为( )A.(-3,4,-10)B.(-3,2,-4)C解析:由中点坐标公式得A(3,-2,4)关于点(0,1,-3)对称的点为(-3,4,-10).答案:A2.若方程x2+y2-4x+4y+10-k=0表示圆,则k的取值范围是( )A.k<2B.k>2C.k≥2D.k≤2解析:若方程表示圆,则(-4)2+42-4(10-k)>0,解得k>2.答案:B3.圆心为(1,1),且与直线x+y=4相切的圆的方程是( )A.(x-1)2+(y-1)2=4B.(x+1)2+(y+1)2=4C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:根据题意得r故圆的方程是(x-1)2+(y-1)2=2.答案:D4.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心解析:直线y=kx+1恒过定点(0,1),定点到圆心的距离d=1,所以直线y=kx+1与圆相交但直线不过圆心. 答案:C5.若圆C1:(x-a)2+y2=12与圆C2:x2+y2=4相切,则a的值为( )A.±3B.±1C.±1或±3D.1或3解析:圆C1的圆心坐标为(a,0),半径为1,圆C2的圆心坐标为(0,0),半径为2.当两圆外切时,|a|=3,则a=±3.当两圆内切时,|a|=1,则a=±1.答案:C6.已知半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是( )A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36解析:由题意可设圆的方程为(x-a)2+(y-6)2=36.由两圆内切,a2=16,所以a=±4,故所求圆的方程是(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36.答案:D7.已知一条光线从点(-2,-3)射出,经y轴反射后与圆C:(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )A.C.解析:圆(x+3)2+(y-2)2=1的圆心为C(-3,2),半径r=1.如图,作出点A(-2,-3)关于y轴的对称点B(2,-3).由题意可知,反射光线的反向延长线一定经过点 B.设反射光线的斜率为k,则反射光线所在直线的方程为y-(-3)=k(x-2),即kx-y-2k-3=0.由反射光线与圆相切可|5k+5|12k2+25k+12=0,即(3k+4)(4k+3)=0,解得k=k=答案:D8.过点A(3,1)和圆(x-2)2+y2=1相切的直线方程是( )A.y=1B.x=3C.x=3或y=1D.不确定解析:由题意知,点A在圆外,故过点A的切线应有两条.当所求直线的斜率存在时,设其为k,则直线方程为y-1=k(x-3),即kx-y+1-3k=0.因为直线与圆相切,所以d k=0,所以切线方程为y=1.当所求直线的斜率不存在时,x=3也符合条件.综上所述,所求切线方程为x=3或y=1.答案:C9.已知圆C1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为( )A.解析:圆C1:x2+y2+4x-4y-3=0,即(x+2)2+(y-2)2=11,圆心为C1(-2,2),半径圆C2:x2+y2-4x-12=0,即(x-2)2+y2=16,圆心为C2(2,0),半径为4,则|C1C2|故△PC1C2的面积最大值 B.答案:B10.若两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆圆心距|C1C2|等于( )A.4B.解析:由题意知两圆的圆心在直线y=x上.设C1(a,a),C2(b,b),可得(a-4)2+(a-1)2=a2,(b-4)2+(b-1)2=b2,即a,b是方程x2-10x+17=0的两根,a+b=10,ab=17,|C1C2|答案:C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11. 如图,在空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,若|B1E|A1B1答案:12.已知点M是圆x2+y2=1上的任意一点,点N是圆(x-3)2+(y-4)2=4上的任意一点,则|MN|的最小值为.解析:由已知可得两圆圆心分别为(0,0),(3,4),半径分别为1,2,所以圆心距为5>1+2.所以两圆外离,所以当M,N在圆心连线上时,|MN|取最小值,且最小值为5-3=2.答案:213.已知点A(1,2,-1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则|BC|的值为.解析:由已知可求得点C的坐标为(1,2,1),点B的坐标为(1,-2,1),所以|BC|答案:414.若直线y=kx+1与圆x2+y2=1相交于P,Q两点,且∠POQ=120°(其中O为原点),则k的值为.解析:由题意知点O到直线y=kx+1的距离答案:15.若☉O:x2+y2=5与☉O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB 的长度是.解析:由题意知点A处的切线分别过两圆的圆心,所以OA⊥O1A.所以m2=m=±5.由等面积法得|AB|=2答案:4三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)已知圆x2+y2+x-6y+3=0与直线x+2y-3=0的两个交点为P,Q,求以PQ为直径的圆的方程.解:设点P(x1,y1),Q(x2,y2),则点P,Q的坐标满足方程组,即点P(1,1),Q(-3,3),所以线段PQ的中点坐标为(-1,2),|PQ|故以PQ为直径的圆的方程是(x+1)2+(y-2)2=5.17.(8分)已知圆C:x2+y2-2x+4my+4m2=0,圆C1:x2+y2=25,直线l:3x-4y-15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l?解:(1)因为圆C1:x2+y2=25的圆心为O(0,0),半径r=5,所以圆心O到直线l:3x-4y-15=0的距离d由勾股定理可知,圆C1:x2+y2=25被直线l截得的弦长(2)圆C与圆C1的公共弦的方程为2x-4my-4m2-25=0.因为该公共弦平行于直线3x-4y-15=0,m18.(9分)已知实数x,y满足x2+y2+4x+3=0,求:(1(2)(x-3)2+(y-4)2的最大值与最小值.解:圆x2+y2+4x+3=0的标准方程为(x+2)2+y2=1,记为圆C,则圆心C(-2,0),半径r=1.(1)如图①,设点M(x,y)在圆C上,Q(1,2),k kx-y-k+2=0.由图可知,当直线QM与圆C相切时,k取得最大值或最小值.由C(-2,0)到直线kx-y-k+2=0的距离为1,k所图①图②(2)如图②,令A(3,4),则(x-3)2+(y-4)2表示圆上的点与点A距离的平方.设直线AC与圆交于P,Q两点,则(x-3)2+(y-4)2的最大值为|AQ|2,最小值为|AP|2.|AQ|=|AC|+r( x-3)2+(y-4)2的最大值最小值19.(10分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线l,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.解:把圆C的方程化成标准方程(x+1)2+(y-2)2=4,所以圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,点C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,则l的方程为y-3=k(x-1),即kx-y+3-k=0,k=所以l的方程为y-3=即3x+4y-15=0.综上,满足条件的切线l的方程为x=1或3x+4y-15=0.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,因为|PM|=|PO|,所以(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0.故点P的轨迹方程为2x-4y+1=0.20.(10分)已知圆C经过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.(1)求圆C的方程;(2)设直线ax-y+1=0与圆C相交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.解:(1)设圆C的方程为x2+y2+Dx+Ey+F=0,故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,由于l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2,k AB=a=所以a把直线ax-y+1=0,即y=ax+1代入圆C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.由于直线ax-y-1=0交圆C于A,B两点,故Δ=36(a-1)2-36(a2+1)>0,即-72a>0,解得a<0.则实数a的取值范围是(-∞,0).由∉(-∞,0),故不存在实数a,使得过点P(2,0)的直线l垂直平分弦AB.。
圆与方程测试题及答案

圆与方程测试题及答案一、选择题1. 已知圆心在原点的圆的方程为 \( x^2 + y^2 = r^2 \),其中\( r \) 为圆的半径。
若圆的半径为5,则圆的方程为:A. \( x^2 + y^2 = 25 \)B. \( x^2 + y^2 = 5 \)C. \( x^2 + y^2 = 10 \)D. \( x^2 + y^2 = 50 \)2. 若圆的方程为 \( (x-3)^2 + (y-4)^2 = 16 \),该圆的圆心坐标为:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)二、填空题3. 圆心在点 \( P(2, -3) \) 上,半径为4的圆的标准方程为:\( (x-2)^2 + (y+3)^2 = \) ________。
4. 若圆的一般方程为 \( x^2 + y^2 + 2gx + 2fy + c = 0 \),其中\( g \) 和 \( f \) 分别为圆心的 \( x \) 和 \( y \) 坐标,则圆心坐标为:\( (-g, -f) \)。
三、解答题5. 已知圆 \( C \) 的圆心为 \( (2, -1) \),半径为3,求圆 \( C \) 的方程。
6. 给定圆的一般方程 \( x^2 + y^2 + 6x - 8y + 16 = 0 \),求圆心坐标和半径。
四、证明题7. 证明:若点 \( P(x_0, y_0) \) 在圆 \( (x-a)^2 + (y-b)^2 =r^2 \) 上,则 \( (x_0-a)^2 + (y_0-b)^2 = r^2 \)。
五、应用题8. 一个圆与 \( x \) 轴相切,圆心在直线 \( y = x \) 上,且圆经过点 \( A(2, 3) \)。
求该圆的方程。
答案:一、选择题1. A2. A二、填空题3. \( 16 \)4. \( (-g, -f) \)三、解答题5. 圆 \( C \) 的方程为 \( (x-2)^2 + (y+1)^2 = 9 \)。
圆与方程测试题

圆与方程测试题一:选择题(本大题共10小题,每小题5分,共50分)1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-42.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )(A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) (A) 5 (B) 3 (C) 10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( D )(A) 222=+y x (B) 422=+y x(C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=49.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6πB 、4πC 、3πD 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共5小题,每小题5分,共25分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______.13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 .15.两圆221x y +=和22(4)()25x y a ++-=相切,则实数a 的值为三、解答题16.过原点O 作圆x 2+y 2-8x=0的弦OA 。
必修圆的方程测试题有答案

必修圆的方程测试题有答案Last updated on the afternoon of January 3, 2021圆的方程单元练习高二数学组一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知圆22:4C x y +=,若点()00,P x y 在圆外,则直线00:4l x x y y +=与圆C 的位置关系为() A.相离B.相切C.相交D.不能确定2.圆2220x y ax +-+=与直线l 相切于点()3,1A ,则直线l 的方程为().250x y --=210x y --=20x y --=40x y +-=若220x y x y m +-+-=,表示一个圆的方程,则m 的取值范围是().12m <-12m ≥-12m >-2m >-直线30x y -+=被圆()()22222x y ++-=截得的弦长等于()2已知点()2,1P -为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程为().30x y --=230x y +-=210x y +-=250x y --=圆2220x y x +-=与圆2240x y y ++=的位置关系是(A.相离B.外切C.相交D.内切7.若直线y x b =+与曲线3y =b 的取值范围是()1⎡-+⎣1⎡⎤-⎣⎦1,1⎡-+⎣1⎡⎤-⎣⎦若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( )x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为( ) +y 2-6x -2y +6=+y 2+6x -2y +6=0 +y 2+6x +2y +6=+y 2-2x -6y +6=011.若圆222660x y x y ++-+=有且仅有三个点到直线10x ay ++=的距离为1,则实数a 的值为()(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若a =M 的圆的两条弦AC BD 、互相垂直,求AC BD +的最大值.20.(12分)已知:如图,两同心圆:221x y +=和224x y +=.P 为大圆上一动点,连结OP (O 为坐标原点)交小圆于点M ,过点P 作x 轴垂线PH (垂足为H ),再过点M 作直线PH 的垂线MQ ,垂足为Q .(1)当点P 在大圆上运动时,求垂足Q 的轨迹方程;(2)过点,03⎛⎫⎪ ⎪⎝⎭的直线l 交垂足Q 的轨迹于A B 、两点,若以AB 为直径的圆与x 轴相切,求直线l 的方程.21.(12分)在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-与直线m :1y x =-的交点为圆C 的圆心,设圆C 的半径为1.(1)过点A 作圆C 的切线,求切线的方程;(2)过点A 作斜率为12-的直线l 交圆于A ,B 两点,求弦AB 的长.22.(12分)已知与曲线22:2210C x y x y +--+=相切的直线I ,与x 轴,y 轴交于,A B 两点,O 为原点,OA a =,OB b =,(2,2a b >>).(1)求证::I 与C 相切的条件是:()()222a b --=. (2)求线段AB 中点的轨迹方程; (3)求三角形AOB 面积的最小值.参考答案1.C2.D3.C4.D5.A6.C7.D8.B9.D10.A11.B12.B13.414.9415.)+∞ 16.[﹣]17.解:(1)由题意设圆C 的方程为()224,(0)x a y a -+=>, ∵圆与直线3440x y ++=相切, ∴圆心(),0a到直线的距离2d ==,解得2a =或143a =-(舍去), ∴圆C 的方程为()2224x y -+=.(2)圆心()2,0到直线:210L x y -+=距离1d =所以弦长为5= 18.解:(1)将曲线C 的方程化为22420x y ax y a+--=,整理得()222224x a y a a a ⎛⎫-+-=+ ⎪⎝⎭, 可知曲线C 是以点2,a a ⎛⎫⎪⎝⎭为半径的圆.(2)AOB ∆的面积S 为定值.证明如下:在曲线C 的方程中令0y =,得()20ax x a -=,得()2,0A a ,在曲线C 方程中令0x =,得()40y ay -=,得40,B a ⎛⎫⎪⎝⎭,所以1142422S OA OB a a=⋅=⋅=(定值).(3)直线l 与曲线C 方程联立得()225216816160ax a a x a -+-+-=, 设()11,M x y ,()22,N x y ,则21221685a a x x a +-+=,1216165a x x a-=,()12121212858165OM ON x x y y x x x x ⋅=+=-++=-,即28080161286480855a a a a a ---++=-,即22520a a -+=,解得2a =或12a =, 当2a =时,满足0∆>;当12a =时,满足0∆>. 故2a =或12a =.19.解:(1)由条件知点M 在圆O 上,所以214a +=,则a =当a =M 为(,OM k =,k =切,此时切线方程为)13y x =--,即40x +-=.当a =M 为(1,,OM k =,k =切.此时切线方程为)1y x +=-,即40x -=.所以所求的切线方程为40x +-=或40x -= (2)设O 到直线,AC BD 的距离分别为()1212,,0d d d d ≥,则222123d d OM +==.又有AC BD ==所以AC BD +=.则()(22212444AC BD d d +=⨯-+-+(45=⨯+.因为22121223d d d d ≤+=,所以221294d d ≤,当且仅当12d d ==52≤, 所以()25452402AC BD ⎛⎫+≤⨯+⨯= ⎪⎝⎭.所以AC BD +≤,即AC BD +的最大值为20.解:(1)设垂足(),Q x y ,则(),2P x y 因为(),2P x y 在224x y +=上,所以2244x y +=,所以2214x y +=故垂足Q 的轨迹方程为2214x y +=(2)设直线l的方程为()()1122,,,,3x my A x y B x y =+, 则有21AB y y ==-,又因为圆与x 轴相切,所以12212y y y +=-即()()()()22121222212121214y y y y m y y y y y y +++==-+-(*) 由22{14x my x y =+=消去x 整理得()2244039m y +++=,因为直线l 与椭圆交于A B、两点,所以()22241446444099m m ⎫-∆=-⨯+⨯=>⎪⎪⎝⎭,解得249m >。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《圆与方程》单元测试题
(时间:60分钟,满分:100分)
班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为
(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2
3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )
(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D) 1±=a 4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )
(A)
5 (B) 3 (C)
10 (D) 5
5.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )
(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x
6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为
A 、1,-1
B 、2,-2
C 、1
D 、-1
7.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是
A 、x y 3=
B 、x y 3-=
C 、x y 33=
D 、x y 3
3-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是
A 、(x-3)2+(y+1)2=4
B 、(x+3)2+(y-1)2=4
C 、(x-1)2+(y-1)2=4
D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是
A 、
6π B 、4π C 、3π D 、2
π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )
A 、相切
B 、相交
C 、相离
D 、相切或相交
选择题答题表
二、填空题(本大题共4小题,每小题5分,共20分)
11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .
12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程
为 .
15.过原点O 作圆x 2+y 2
-8x=0的弦OA 。
16.已知圆与y 轴相切,圆心在直线x-3y=0,
(1)求弦OA 中点M 的轨迹方程; 且这个圆经过点A (6,1),求该圆的方程. (2)延长OA 到N ,使|OA|=|AN|, 求N 点的轨迹方程.
17.圆8)1(22=++y x 内有一点P(-1,2),AB 过点P,
① 若弦长72||=AB ,求直线AB 的倾斜角α;
②若圆上恰有三点到直线AB 的距离等于2
,求直线AB 的方程.
参考答案:
1. B;
2.C;
3.A;
4.B;
5.D;
6.D;
7.C;
8.C;
9.C;10.C
11.(x-2)2+(y-1)2
=10;
12.
2
2
25+; 13.x=-1或3x-4y+27=0;
14.(x+1)2+(y-1)2
=13;
15.(1)x 2+y 2-4x=0;(2)x 2+y 2
-16x=0
16.(x-3)2+(y-1)2=9或(x-101)2+(y-37)2=1012
17.(1)3
π或32π;(2)x+y-1=0或x-y+3=0.。