北京理工大学2018年《高等代数》考研大纲

合集下载

814--《高等代数》考研大纲

814--《高等代数》考研大纲

814--《高等代数》考研大纲一、基本要求要求考生全面系统地理解高等代数的基本概念和基本理论,熟练掌握高等代数的基本思想和基本方法。

要求考生具有较强的抽象思维能力、逻辑推理能力、数学运算能力以及综合运用所学知识分析问题和解决问题的能力。

二、考试范围(一)多项式1.多项式的带余除法及整除性、最大公因式、互素多项式;2.不可约多项式、因式分解唯一性定理、重因式、复系数与实系数多项式的因式分解、有理系数多项式不可约的判定;3.多项式函数与多项式的根、代数基本定理、有理系数多项式的有理根的求法、根与系数的关系。

(二)行列式1.行列式的定义及性质,行列式的子式、余子式及代数余子式;2.行列式按一行、列的展开定理、Cramer法则、Laplace定理和行列式乘法定理、Vandermonde行列式;3.运用行列式的性质及展开定理等计算行列式。

(三)线性方程组1.Gauss消元法与初等变换;2.向量组的线性相关性、向量组的秩与极大线性无关组、矩阵的秩;3.线性方程组有解的判别定理与解的结构。

(四)矩阵1.矩阵的基本运算、矩阵的分块及常用分块方法;2.矩阵的初等变换、初等矩阵、矩阵的等价、矩阵的迹、方阵的多项式;;3.逆矩阵、矩阵可逆的条件及与矩阵的秩和初等矩阵之间的关系,伴随矩阵及其性质;4.运用初等变换法求矩阵的秩及逆矩阵。

(五)二次型理论1.二次型及其矩阵表示、矩阵的合同、二次型的标准形与规范形、惯2.实二次型在合同变换下的规范形以及在正交变换下的特征值标准型的求法;3.实二次型或实对称矩阵的正定、半正定、负定、半负定的定义、判别法及其应用。

(六)线性空间1.线性空间、子空间的定义与性质,向量组的线性相关性,线性(子)空间的基、维数、向量关于基的坐标,基变换与坐标变换,线性空间的同构;2.子空间的基扩张定理,生成子空间,子空间的和与直和、维数公式;3.一些常见的子空间,如线性方程组的解空间、矩阵空间、多项式空间、函数空间。

北京科技大学2018年《高等代数I》考研大纲

北京科技大学2018年《高等代数I》考研大纲

北京科技大学2018年《高等代数I》考研大纲一、课程教学基本要求1.课程重点:高等代数主要分为以下部分:矩阵,线性空间,线性变换,多项式理论,线性方程组理论,行列式.矩阵理论的重点在矩阵的运算、分块矩阵.线性空间理论的重点在线性空间的概念、向量的线性关系、基、维数、坐标以及线性空间的直和分解.线性变换的重点是线性变换的像、核求法以及不变子空间的判定.多项式理论的重点在多项式的整除性,及多项式的因式分解理论.线性方程组理论的重点在线性方程组的解的结构和求解的算法.行列式的重点在行列式的计算.欧氏空间、二次型等内容上.矩阵与行列式是研究线性关系的重要工具,也是课程的重点内容之一,矩阵的方法贯穿课程的始终.2.课程难点:本课程的难点很多,从知识上讲,线性空间的概念、向量的线性相关性、线性映射,多项式在有理数域的分解、方程组解的判定、二次型正定的判定等等;从方法上讲,高等代数课程解决问题的方法比较灵活,技巧性比较强,是不易学习和掌握的.3.能力培养要求:要求学生熟练掌握线性空间和线性变换的基本理论,熟练掌握矩阵的初等变换、行列式这种重要的数学工具,掌握多项式的因式分解理论、向量组线性相关及线性无关理论.初步掌握线性代数的方法和技巧.二、课程教学内容与学时1.预备知识熟悉基本的概念:集合及运算,等价关系,映射、数域;2.多项式2.1多项式,带余除法,整除性掌握带余除法,多项式的整除性.2.2最大公因式了解公因式的概念,掌握最大公因式的定义、性质、算法.2.3因式分解了解多项式的唯一分解定理,了解重因式及其判断方法、掌握不可约多项式及性质.2.4多项式的根熟练掌握余式定理及其应用.2.5复系数、实系数多项式掌握代数学基本定理,了解复系数、实系数多项式在相应数域中的分解形式,掌握根与系数的关系定理.2.6整系数多项式了解本原多项式的概念及Gauss引理,掌握Eisenstein判别法.3.矩阵3.1矩阵的概念及运算了解矩阵的背景,熟练掌握矩阵的和、差、数乘、乘法、转置运算.3.2矩阵的初等变换熟练掌握矩阵的初等变换,掌握初等方阵与初等变换的关系.3.3矩阵的相抵了解掌握矩阵相抵的概念、相抵的标准形、矩阵的逆及其计算方法.3.4分块矩阵了解分块矩阵的概念及矩阵的分块运算.3.5矩阵的秩熟练掌握运用矩阵的秩的定义,以及秩的基本性质.4.线性空间4.1线性空间掌握线性空间的概念及重要的线性空间实例.4.2向量的线性相关性理解向量的线性相关、线性无关的概念,并能熟练掌握和使用线性相关性的重要结果.4.3基、维数、坐标、坐标变换理解和掌握基、维数的概念,掌握坐标变换及过渡矩阵的计算.4.4线性子空间了解构成线性子空间的条件.4.5子空间的和与交、直和掌握子空间的和与交的运算,掌握直和的概念及直和的等价条件.4.6线性空间的同构了解线性空间同构的概念,掌握线性空间由其维数决定的结论.5.线性变换5.1线性映射掌握线性映射的定义及矩阵表示,理解掌握线性映射的象与核的概念及相关结果.5.2线性映射的像与核掌握线性映射的像与核的概念,以及与基和维数的关系.5.3线性变换掌握线性变换的定义及矩阵表示,掌握线性变换的运算.5.4不变子空间掌握不变子空间的定义及相关结论.5.5特征值与特征向量掌握线性变换的特征值与特征向量的定义与性质,并可以根据线性变换的特点计算该变换的特征值与特征向量,掌握矩阵对角化的条件.6.欧氏空间6.1内积熟练掌握内积的定义及性质.6.2标准正交基掌握度量矩阵、标准正交基的定义,以及正交化方法.6.3正交子空间6.4正交变换了解正交变换的概念与意义.6.5对称变换掌握对称变换的定义及相关结论.7.二次型7.1二次型的定义7.2二次型的标准形掌握惯性定理,了解和掌握在实数域、复数域中二次型的规范型.7.3正定二次型掌握二次型的定性,及正定、半正定的充要条件.8.线性方程组8.1Gauss消元法熟练掌握Gauss消元法,了解线性方程组的解的形式.8.2线性方程组熟练掌握线性方程组的解的结构及求解方法.9.行列式9.1行列式的定义了解逆序的概念,掌握行列式的定义.9.2行列式的性质与计算熟练掌握行列式的性质,掌握行列式按行列展开的方法,能够熟练计算行列式的值.9.3行列式理论的应用掌握Crame法则,能够利用行列式解决以前各章出现的相关问题.10.相似标准形10.1特征值与特征向量的计算熟练掌握特征值与特征向量的计算.10.2对称矩阵的标准形的计算熟练计算对称矩阵的标准形10.3特征多项式与最小多项式了解特征多项式与最小多项式的概念及性质,矩阵对角化的条件.10.4Jordan标准形掌握Jordan标准形的定义、推导、计算.10.5Jordan标准形的又一推导了解λ-矩阵、初等因子、不变因子的概念,了解利用λ-矩阵计算矩阵Jordan标准形的方法.三、教材与参考书教材1.申亚男、李为东编著,《高等代数》,机械工业出版社,2015年9月第1版2.北京大学几何与代数教研室代数小组编,《高等代数》,高等教育出版社1991,第3版参考书1.许以超编,《线性代数与矩阵论》,高等教育出版社,1992年,第1版2.屠伯埙,徐诚浩,王芬编,《高等代数》,上海科技出版社,1987年,第1版3.丘维声编,《高等代数》,高等教育出版社,1996年,第1版文章来源:文彦考研。

最新北京理工大学考研数学大纲及内容

最新北京理工大学考研数学大纲及内容

北京理工大学考研数学大纲及内容北京理工大学招收单独考试硕士生考试说明及考试大纲数 学考试科目: 高等数学、线性代数、概率论与数理统计第一部分:考试内容及要求高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :e x x x xx x =⎪⎭⎫ ⎝⎛+=∞→→11lim ,1sin lim 0 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。

二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性。

2018年全国硕士研究生招生考试数学考试大纲(数学一)

2018年全国硕士研究生招生考试数学考试大纲(数学一)

2018年全国硕士研究生招生考试数学考试大纲(数学一)高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间()b a ,内,设函数()x f 具有二阶导数.当()0>''x f 时,()x f 的图形是凹的;当()0<''x f 时,()x f 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[]l l ,-上的傅里叶级数函数在[]l ,0上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握()()αx x x x e x ++1,1ln ,cos ,sin ,的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[]l l ,-上的函数展开为傅里叶级数,会将定义在[]l ,0上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()()()()y y f y y x f y x f y n '='''=''=,,,和5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数{}()()F x P x x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布()λE 的概率密度为()⎩⎨⎧≤>=-0,00,x x e f x 若若λλλ 5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(,,,;)N p μμσσ的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理 考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 ()21211∑=--=n i i X X n S 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计 考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。

北京理工大学2018版学术型研究生培养方案

北京理工大学2018版学术型研究生培养方案

课程 层次
硕士 硕士 博士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士 硕士 博士
学分 要求
硕士≥ 4
本博≥ 4
硕士 2 博士 2 硕士≥
3 普博≥
48 3 1/2 必修
32 2 1/2 必修
48 3 1/2 必修
16 1 1/2 必修
32 2 1/2 必修
48 3 1/2 选修
48 3 1/2 选修
48 3 1/2 选修
48 3 1/2 选修
48 3 1/2 选修
48 3 1/2 选修
32 2 1/2 选修
48 3 1/2 选修
32 2 1/2 选修

论文评阅送审前完成
论文答辩
距离开题至少 12 个月
博士研究生应掌握数学学科坚实宽广的基础理论和系统深入的专门知识,掌握本学科的现代研 究方法和技能,具有独立从事本学科研究工作的能力,较强的组织和管理能力,有良好的合作精神 和交流能力,良好的英语听说能力,能够熟练地阅读本专业英文文献资料、用英文撰写论文,能够 在科学研究或专门技术上做出创新性的成果。博士研究生毕业后能够胜任高等院校、科研院所及高 科技企业的教学、科学研究、技术开发和管理等工作。
前沿交 0000001
叉课
1700104 核 心 1700105 课
1700106
选 修 课
专 业 课
1700107 1700116 1700110 1700111
1701146
1700113
课程名称 硕士公共英语中级 硕士公共英语高级 博士公共英语中级 博士公共英语高级 学术道德与综合素质 泛函分析(模块 1) 泛函分析(模块 2) 代数学(模块 1) 代数学(模块 2) (英)拓扑学(模块 1) (英)拓扑学(模块 2) 学科前沿交叉课

北京理工大学数学考研大纲及参考书

北京理工大学数学考研大纲及参考书

六、多元函数积分学 考试内容 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲 线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积 分与路径无关的条件已知全微分求原函数两类曲面积分的概念、性质及计算两类 曲面积分的关系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及 计算?曲线积分和曲面积分的应用
八、常微分方程 考试内容 常微分方程的基本概念变量可分离的方程齐次微分方程一阶线性微分方程 伯努利(Bernoulli)方程全微分方程线性微分方程解的性质及解的结构定理二阶 常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程?微分方程简单 应用
考试要求 1.了解微分方程及其解、阶、通解、初始条件和特解等概念。 2.掌握变量可分离的方程及一阶线性方程的解法。 3.会解齐次方程、伯努利方程和全微分方程。 4.理解线性微分方程解的性质及解的结构定理。 5.掌握二队常系数齐次线性微分方程的解法。 6.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和 与积的二阶常系数非齐次线性微分方程。 7.会用微分方程解决一些简单的应用问题。
图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值弧微分曲率的 概念曲率半径。
考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义, 会求平面曲线的切线方程和法线方程,了解导数的物理意义,理解函数的可导性 与连续性之间的关系。 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的 导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3.了解高阶导数的概念,会求简单函数的高阶导数。 4.会求分段函数的一阶、二阶导数。 5.会求隐函数和由参数方程所确定的函数以及反函数的导数。 6.理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理。 7.?理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方 法,掌握函数最大值和最小值的求法及其简单应用。 8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直 和斜渐近线,会描绘函数的图形。 9.掌握用洛必达法则求未定式极限的方法。 10.了解曲率和曲率半径的概念,会计算曲率和曲率半径。

2018考研数一大纲完整版

2018考研数一大纲完整版

2018考研数一大纲完整版2018年考研数学一大纲完整版一、数理统计与概率论1. 集合论和事件(1)集合,包含比较基本的集合概念和运算,A,B,A∩B,A∪B,Ac,Bc,A-B。

(2)事件,事件以及事件运算,全集和空集,和事件的差与补,事件之间的包含关系和等价关系。

2. sigma域和随机事件(1)sigma域,虽然很多人对此并不是很熟悉,但是它却是和概率密切相关的,必须掌握。

(2)随机事件,随机事件是和概率密切相关的,必须掌握。

3. 条件概率和全概率公式(1)条件概率,条件概率是概率论研究的核心内容之一,其应用范围非常广。

(2)全概率公式,全概率公式是求解某些事件的概率时非常重要的方法。

4. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,应用范围十分广泛,所以必须掌握。

5. 随机变量和概率密度函数(1)随机变量,随机变量的概念、离散型和连续型变量。

(2)概率密度函数,概率密度函数是随机变量的重要概念,因为它可以用来计算随机变量取特定值的概率,所以必须掌握。

6. 分布函数和矩(1)分布函数,分布函数又称为累积分布函数,它是随机变量的重要概念之一,因为它可以用来计算随机变量取特定值的概率。

(2)矩,矩是随机变量的重要概念之一,它不仅可以用来计算随机变量的期望值,还可以计算随机变量的各种特征,比如方差和偏度等。

7. 常见分布(1)离散型分布,包括0-1分布、二项分布、泊松分布等。

(2)连续型分布,包括均匀分布、正态分布、指数分布等。

二、高等代数1. 线性代数初步(1)向量、线性方程组,以及它们的基本性质和运算法则。

(2)矩阵、行列式,它们的基本性质和运算法则。

2. 矩阵初等变换矩阵初等变换是将一个矩阵通过一系列基本变换变成标准型的过程,是线性代数中重要的概念,必须掌握。

3. 线性空间的基本概念和性质线性空间是线性代数研究的重要对象,其中包括向量空间、矩阵空间等多种空间,所以必须掌握其基本概念和性质。

考研《高等代数》(学术学位)考试大纲

考研《高等代数》(学术学位)考试大纲
掌握可逆矩阵、奇异矩阵、非退化矩阵等概念。会计算方阵的伴随矩阵,能计算可逆阵的逆矩阵。能利用分块方法进行矩阵运算。能证明有关结论。
(3)初等矩阵与初等变换
掌握矩阵的初等变换和初等矩阵的概念,明确二者关系。能熟练进行矩阵的初等变换,能利用初等变换求解线性方程组,并能进行有关证明。
(4) 相似矩阵与矩阵合同
三、主要参考书目
1、《高等代数》(第三版),北京大学数学系几何与代数教研室前代数小组著,高等教育出版社 2003 或之后版本
2、《高等代数(上下册)》(第二版),丘维声著,高等教育出版社,1999 或之后版本
硕士研究生入学考试自命题科目考试大纲
科目代码、名称:
专业类别:
■学术学位□专业学位
适用专业:
数学
一、基本内容
1、多项式
本部分要求掌握一元多项式及其整除问题、多项式函数、最大公因式、重因式和因式分解定理等有关概念和基本结论,能够进行多项式的有关计算和有关问题的证明。
2、行列式
(1)定义与性质
要求熟悉排列、逆序、对换等概念;理解行列式的定义;掌握行列式的性质。
9、欧几里得空间
掌握欧几里得空间的定义与性质,掌握内积、正交性、标准正交基的概念及有关计算方法,能证明有关性质和结论。
二、考试要求(包括考试时间、总分、考试方式、题型、分数比例等)
考试时间:180分钟
总分:150分
考试方式:笔试,闭卷
题型:填空题,计算与证明题
分数比例:填空题(60分)占40%,计算与证明题(90分)占60%。
(3)线性方程组解的结构
掌握线性方程组解的判定定理,会求有解的线性方程组的通解,熟练掌握线性方程组常用的解
法,并能证明有关结论。
4、矩阵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京理工大学2018年《高等代数》考研大纲1.考试内容
1.一元多项式理论:最大公因式与因式分解,重因式,不可约多项式,复数域上的不可约多项式,实数域上的不可约多项式,有理系域上的不可约多项式,多元多项式环。

2.行列式:行列式的定义,行列式的计算及性质,Laplace展开定理。

3.线性方程组理论:Cramer法则,Gauss消元法,维向量的线性相(无)关性,向量组的秩和矩阵的秩,线性方程组有解的判别,线性方程组解的结构。

4.矩阵:矩阵的混合运算,方阵的行列式,矩阵的逆,矩阵的分块,初等矩阵,正交矩阵,欧几里得空间。

5.矩阵的相抵与相似:矩阵的相抵,广义逆矩阵,矩阵的相似,矩阵的特征值和特征向量,矩阵可对角化的条件,实对称矩阵的对角化。

6.二次型:二次型及其标准形,实二次形的规范形,正定二次型与正定矩阵。

7.线性空间:线性空间的结构,子空间以及子空间的交与和,子空间的直和,线性空间的同构,商空间。

8.线性映射:线性映射及其运算,线性映射的核与象,线性映射的矩阵表示,线性变换的特征值与特征向量,线性变换的不变子空间,Hamilton-Cayle定理,线性变换的最小多项式,幂零变换的结构,线性变换的Jordan标准形,线性函数与对偶空间。

9.具有度量的线性空间:双线性函数,欧几里得空间,正交补和正交投影,正交变换与对称变换,酉空间。

2.考试要求
①了解:代数基本定理,复系数与实系数多项式的因式分解定理,高斯引理,广义逆矩阵,线性空间的同构,正交变换。

②理解:Laplace展开定理,n维向量的线性相(五)关性,矩阵的秩,矩阵的可逆性,实二次型的分类,线性空间的维数,线性变换的值域与核,线性变换的Jordan标准形。

③掌握:行列式的计算,线性方程组解的判别、求解及解的结构,求可逆矩阵的逆矩阵,利用分块方
法计算矩阵,求标准正交基,矩阵的对角化,实对称矩阵的对角化,化简二次型的方程,二次形的正(负)定性判别,求线性空间的维数与基底,基变换与坐标变换,子空间的交与和,子空间的直和,求线性变换的不变子空间,Hamilton-Cayle定理,线性变换的最小多项式,幂零变换的结构,线性变换的Jordan标准形,求线性映射的矩阵表示,线性映射的特征值与特征向量,双线性函数,正交变换与对称变换,3.参考书目
1.《高等代数》(第二版,上册),丘维声,高等教育出版社,2002年7月
2.《高等代数》(第二版,下册),丘维声,高等教育出版社,2003年8月
文章来源:文彦考研。

相关文档
最新文档