电容器投切方式比较分析
电容投切原理

电容投切原理
电容投切原理是一种通过改变电容器的连接方式,来实现对电路的开关控制。
它是利用电容器的充电和放电过程中的特性来实现的。
在电容投切原理中,通常使用一个开关来控制电容器的连接和断开。
当开关打开时,电容器与电路相连,电路中的电流可以通过电容器流过;当开关关闭时,电容器与电路断开,电路中的电流无法通过电容器。
在电容器充电的过程中,通过与电路相连,电容器两端会有一个电压逐渐上升的过程。
而在电容器放电的过程中,断开与电路的连接,电容器两端的电压会逐渐下降。
这是因为当电容器与电路相连时,电流会经过电容器充电,导致电容器两端的电压上升;而断开与电路相连后,电容器会通过内部的导电介质放电,导致电容器两端的电压下降。
通过控制开关的打开和关闭,可以实现对电容器的充电和放电过程的控制。
当开关打开时,电容器开始充电,电流可以通过电容器;当开关关闭时,电容器断开与电路的连接,电容器开始放电,电流无法通过电容器。
电容投切原理在电路中有广泛应用,例如用于起动电动机、控制电器的工作、实现闪光灯的闪烁等。
它的特点是结构简单,控制灵活,可靠性较高。
晶闸管投、切并联电容器TSC的综述

3.2 3串联电抗器抑制谐波放大的原理
为了抑制谐波电流放大,通常在每相电容器电 路中串联一个适当大小的空心电抗器。这样,就 会使整个补偿电容器支路对谐波源基波仍呈电容 性质,保持其无功功率补偿作用不变,不影响系 统(或负载)正常工作。而对高次谐波补偿支路则 呈感性,避免了与系统(或负载)的电流谐振,消 除或减小了由补偿电容所引起的谐波电流放大现 象。
衷心感谢陈老师和师兄师姐的无私帮助!
2.2.1 电压、电流有效值的测量
根据电压、电流有效值的定义式:
因此得到由一周期内的采样值计算电压、电流有效值 的公式为:
式中N为每周期T的采样点数,且N=I+T/AT,AT为 采样时间间隔,电压单位为伏(V),电流单位为安(A)。
2.2.2 无功功率的控制
无功功率作为控制物理量控制电容器的投切, 是近年才出现的一种控制方式,它是根据所测得 的电压、电流、功率因数等参数,计算出应该投 入的电容容量,在电容器组合方式中选出一种最 接近但又不会过补偿的组合方式,电容器投切一 次到位。如果计算值小于最小一组电容器的容量 (下限值),则应保持补偿状态不变。只有当所需 容量大于或等于下限值时,才执行相应的投切。
2.1 主电路和装置框架
TSC无功补偿装置主电路通常由若干组电容器 组成,电容器组的常用的主接线方案如下图(以晶 闸管反并联方式的晶闸管阀为例)
图中的(a)—(c)方案为三角型接线,(d)和(e)方案 为星型接线。在复合开关的基础上,根据方案(b) 设计的无功补偿装置主接线图如下图
该装置主要特点是利用两对晶闸管阀可以实现 三组电容器组的投切,下面以C1电容器组投切为 例进行说明。当进行C1电容器组投切时首先合上 开关K4、K5,然后在适当的时机触发两对晶闸管 阀,接着合上开关K1,再使两晶闸管阀依次关断, 最后断开开关K4、K5,这样就完成了一次电容组 的投切。(这里的开关指的是交流接触器)
电力电容器投切方式

电力电容器投切方式
电力电容器的投切决定电容器组在不同负载运行的情况下投切补偿调节,以达到补偿无功、提升功率因数的一种控制手段,因此,合理、有效的电容器投切方式有着补偿优化的功能。
电容器组多数采取“顺序投切”方式,这种投切会减少电容器的使用寿命,合理的投切方式应为“循环投切”,这种方式可以使先投入运行的电容器组先退出,后投入的后切除,各电容器均匀投切,降低了电容器的运
行时间,减少投切次数,延长使用寿
命。
在选择了“循环投切”方式之后,针对不同的负载变化情形,合理选择投切补偿,遵循:对于负载较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显;对于负载相对平稳的线路采用静态补偿方式。
从静态补偿到动态补偿,加上我公司对低压无功补偿技术深入不断研究和不断实践操作,基于静态和动态相结合的混合投切方式成为我公司新型智能低压无功补偿柜的电容器的投切运行方式。
电容器自动投切的方式

电容器自动投切的方式
电容器常接的方式不能适应用电设备的功率因数或无功功率经常变化的情况,也容易出现过补偿的问题。
电容器自动投切的方式能克服上述缺点。
这种方法是把电容器分成若干组,根据用电设备的功率因数或无功功率变化情况,将各电容器组逐步投入或切除,从而达到将补偿后的功率因数或无功功率维持在某个范围之内的目的。
这里某个范围就是这种补偿方法的死区。
显然,若希望的死区越小,电容器组的分组数就要求越多。
考虑到投切设备的动作不能太频繁和补偿的稳定性,死区不能太小。
通常电容器的分组数在4~12之间。
电容器自动投切的方式多用在低压电网的就地无功补偿中。
电容器组的投切可用接触器,也可用晶闸管无触点开关。
用接触器投切电容器组时,由于无法精确控制接触器投切的瞬间,因而投切时有电流冲击,最好选用电容器专用的接触器。
若采用普通的接触器时,应降额使用。
用闸管无触点开关投切电容器组时,为了不产生投切时的电流冲击,应控制在电网电压的瞬时值为零时投切电容器组。
通常是按功率因数或无功功率为目标来控制电容器组的投切,以无功功率为目标的控制方式用得较多。
在某些情况下,也有按供电母线电压或负载的情况来决定电容器组的投切。
同样,静态无功补偿装置设计或选择装置中设备时应注意的问题,在电容器自动投切的控制方式中也应加以考虑。
电容自动过零投切

电容自动过零投切全文共四篇示例,供读者参考第一篇示例:电容自动过零投切技术是一种广泛应用于电力系统中的一种控制技术,通过使用电容器进行无功补偿,实现电力系统中电流、电压的稳定控制。
在电力系统中,无功功率是指电流和电压之间的相位差,当电压和电流的相位差不为零时,系统会产生无功功率,导致能量的浪费和系统的不稳定。
无功补偿技术的应用十分重要。
在实际的电力系统中,电容自动过零投切技术有着广泛的应用。
例如在变电站、电力配电系统、电力工厂等场所,都会采用这种技术来实现对系统的无功补偿。
通过合理配置电容器,可以有效减少系统中的无功功率,提高系统的功率因数,降低系统的能耗,从而提高系统的经济性和可靠性。
与传统的手动投切方式相比,电容自动过零投切技术具有很多优势。
自动过零投切可以实时监测系统中的电流和电压波形,准确计算无功功率在何时需要进行补偿,避免了手动操作时可能出现的误差。
自动化投切可以根据系统中的实际运行状况进行动态调整,提高了补偿的准确性和效率。
而且,自动过零投切还可以实现对系统的远程监控和管理,提高了系统运行的便利性。
电容自动过零投切技术是一种先进的电力系统控制技术,通过自动化补偿无功功率,提高了系统的稳定性和经济性。
在未来的电力系统中,这种技术将会得到更广泛的应用,为电力系统的改造和升级提供了重要的技术支持。
希望相关领域的工程技术人员能够深入研究和推广这项技术,为电力系统的发展贡献力量。
第二篇示例:电容自动过零投切是一种电力控制技术,广泛应用于各种电器设备中。
通过控制电容的连接和断开,可以实现对电器设备的电流和功率进行精确控制,提高电器设备的效率和性能。
在传统的电器设备中,电容往往被用来起到储能和滤波的作用。
随着技术的发展和需求的增加,电容的作用不再局限于简单的储能和滤波,而是被应用于更加复杂和精密的电力控制中。
电容自动过零投切就是一种典型的应用。
电容自动过零投切具有以下几个优点:二是提高电器设备的性能。
电容投切的原理

电容投切的原理
电容投切的原理
电容投切技术是一种常见的电气控制技术,广泛应用于各种电路中。
在电容投切技术中,电容器被用作电路的开关元件,通过对电容器的充放电来实现电路的切换。
电容投切技术基于电容器的电荷存储特性,当电容器上的电量达到一定程度时,电容器会发生放电,从而促使电路发生切换。
具体来说,电容器的充电过程中,电荷通过电容器的两个极板之间的电介质(通常是真空或空气)存储在极板上,当电荷达到一定程度时,电容器会产生放电,释放出存储的电荷,从而形成一股电流,通过电路,实现电路的切换。
电容投切技术的优点是简单、灵活、可靠,可以针对不同的电路需求进行不同的设计。
同时,电容投切技术的应用范围很广,可以应用于交流电源、固态继电器等各种电路中。
此外,与其他开关技术相比,电容投切技术具有较高的开关速度、较小的尺寸、较低的功率损耗等优点。
不过,电容投切技术也存在一些问题需要注意。
首先,电容器的电容量和电路的负载特性需匹配,否则会引起电路异常或者损坏。
其次,
电容器容易受到温度、湿度等环境因素的影响,特别是在高温、高湿的环境下,电容器容易老化和失效。
此外,电容投切技术还存在一些与开关频率、开关电流等相关的问题需要注意,需要针对具体的应用场景进行合理的设计和选型。
总的来说,电容投切技术作为一种基础的电气控制技术,在各种应用中都具有重要的作用。
了解电容投切技术的原理和相关注意事项,对于电气工程师和电路设计人员来说,都具有重要的意义。
只有在充分理解电容投切技术的基础上,才能更好地应用该技术,为电力系统和电子设备等领域的开发和应用提供更优质的解决方案。
分组投切电容器技术说明
高压无功补偿装置技术说明一、概述TBB型高压无功自动补偿装置,适用于大中型电力用户6KV(10KV)供电母线的无功自动跟踪补偿,通过对母线上电容器组的自动跟踪投切来实现对无功功率的控制。
功能特点:1、电容器组循环投切,先投先切,投切延时可设定。
2、故障时微机保护单元切除并闭锁该组电容器,其它电容器组正常运行。
3、根据系统的电压情况及功率因数和无功功率投切电容器组,使系统的功率因数稳定在0.95----0.99,不会过补。
4、每组电容器容量按系统无功的实际情况设计。
5、带有RS-232 、RS-485及红外通迅口。
6、具有温度检测功能,自动检测柜内温度,并能控制电容室排风扇,排气降温。
7、可本地和远程控制电容器组。
8、停电自动退出,上电自动运行。
二、技术参数:技术条件额定运行电压: 6KV/10KV最高运行电压: 7.2KV/12KV额定频率: 50HZ三、使用条件:1、安装位置:户内2、环境温度:-25℃~+45℃3、最高温度:85℃4、大气压力:0.084MPA5、海拔高度:不超过2000米6、安装地点:无有害气体、蒸汽、导电性或爆炸性尘埃7、地震基本烈度:Ⅷ度8、相对湿度:月平均不超过90%,日平均不超过95%9、爬电距离:≥2.5kV/cm四、结构组成(1)结构组成装置由柜体、隔离开关、避雷器、真空断路器、电抗器、电流互感器、电压互感器、喷逐式熔断器、并联电容器及控制箱组成。
控制箱内有控制器、微机保护单元、电流表(三相)、电压表、运行状态指示、本地控制按钮、内/外控选择开关,从而实现内/外控两种控制方式。
型高压无功补偿控制器高压无功补偿控制器适用于6KV(10KV)电力系统的无功自动控制装置,可根据母线电压及系统的无功功率的需求情况,通过对已配备的电抗器与电容器组的串联组合进行自动投切来实现对无功功率的控制,使电容器工作在最佳状态,有效的减少无功损耗并保持系统功率因数在较高范围内。
功能特点:1、液晶显示功能:控制器可实时显示日期时间、各相电压、电流、有功功率、无功功率、频率、功率因数、电度等模拟量及电容器投/切状态。
电容投切原理
电容投切原理电容投切是一种常见的电路现象,它在电子学和通信工程中有着重要的应用。
电容投切原理是指在交流电路中,通过改变电容器的电容值来实现对电路特性的调节。
在本文中,我们将详细介绍电容投切的原理及其在实际应用中的作用。
首先,我们来了解一下电容器的基本原理。
电容器是一种能够存储电荷的元件,它由两个导体之间的绝缘介质构成。
当电容器上加上电压时,正电荷会聚集在一个导体上,而负电荷则聚集在另一个导体上,从而形成电场。
电容器的电容值取决于导体之间的距离和介质的性质,通常用法拉(Farad)作为单位来表示。
在交流电路中,电容器的电容值可以通过改变介质的性质或者改变导体之间的距离来实现调节。
这种调节电容值的行为就是电容投切。
通过改变电容值,可以实现对电路的频率响应、相位延迟、滤波等特性的调节,从而使电路在不同的工作条件下能够达到最佳的性能。
电容投切的原理基于电容器的基本特性,通过改变电场的分布来实现对电路特性的调节。
在实际应用中,电容投切被广泛应用于滤波电路、频率调节电路、相位补偿电路等领域。
例如,在无线通信系统中,通过电容投切可以实现对信号的调节,从而提高系统的性能和稳定性。
除了在电子学和通信工程中的应用,电容投切还被广泛应用于各种精密仪器和设备中。
通过改变电容值,可以实现对仪器的灵敏度、稳定性和精度的调节,从而满足不同的测量和控制需求。
总之,电容投切是一种重要的电路调节原理,它基于电容器的基本特性,通过改变电容值来实现对电路特性的调节。
在实际应用中,电容投切被广泛应用于电子学、通信工程和精密仪器中,发挥着重要的作用。
通过深入理解电容投切的原理和应用,我们可以更好地设计和优化电路,从而提高系统的性能和稳定性。
谐波抑制和无功补偿
绪论电能质量的好坏,直接影响到工业产品的质量,评价电能质量有三方面标准。
首先是电压方面,它包含电压的波动、电压的偏移、电压的闪变等;其次是频率波动;最后是电压的波形质量,即三相电压波形的对称性和正弦波的畸变率,也就是谐波所占的比重。
我国对电能质量的三方面都有明确的标准和规范。
随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电网中大量投运,造成了电网的谐波分量占的比重越来越大。
它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。
举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。
但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。
这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。
因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。
第一章 基础概念1.1 电力系统的组成电力系统是由发电、输电、用电三部分组成。
其中过程为发电厂发电经升压变压器升压并网,再由输电网络输送的各个变电站,变电站进行降压后输送给各个用户,用户经过再一次降压后给用电设备供电。
主要设备为发电机、升压变压器、输电网络、降压变压器、用电设备及二次保护系等组成。
发电机的电压等级一般为6KV 、10KV ,输电网络为110KV 、220KV 、500KV ,配电网络为10KV 、35KV ,用电设备一般为380V 、220V 。
我国电力系统采用三相50HZ 交流供电。
1.2 功率的概念在供电系统中,通常总是希望交流电压和交流电流时正弦波形(不含有谐波的情况下),正如电压为:()ωt U t U sin 2=式中 U ------电压有效值ω--------角频率f πω2=f ---------频率 (50HZ) 正弦电压施加在线性无源负载上如电阻、电容、电感上时,其电流的表达式为:()()ϕ-=ωt I t I sin 2I --------电流有效值φ--------相位角 电压和电流的关系从相位图上看如:(绿色为电压,红色为电流)电流相位角φ>0时,为电流滞后电压,负载呈现为感性(如电动机)电流相位角φ<0时,为电流滞后电压,负载呈现为容性(如无功补偿器)视在功率为: UI S = (KV A )有功功率为:ϕcos UI P = (KW)无功功率为:ϕsin UI Q = (Kvar )在正弦交流电路中,有功功率P 是用来做功的,是负载消耗掉的真正的功率。
10kV电容器组选相投切技术的分析
10kV电容器组选相投切技术的分析发表时间:2015-09-21T13:27:13.763Z 来源:《电力设备》第02期供稿作者:莫孟斌[导读] 广东汇盈电力工程有限公司削弱电容器组投切引起的暂态过程的影响在供电质量要求越来越严格的背景下已经成为电力工作者迫切需要解决的问题。
莫孟斌(广东汇盈电力工程有限公司)背景分析问题描述近几年来,随着社会经济的不断发展,对电能质量也提出了更高的要求,大量的并联电容器组应用于配电系统中补偿系统无功功率,以提高电网电压和功率因数。
而且随着电网容量的不断增加,并联电容器总装容量及单组容量亦越来越大。
然而,10kV并联电容器组是一种操作频繁的电气设备,需要按电网系统电压和无功功率的变化进行频繁投切。
而目前主要采用的断路器投切电容器组,由于受投切方式和断路器开断性能的影响,投切电容器组时会产生涌流及过电压,从而可能给电容器造成危害,使其过早损坏,进而带来扩大性事故。
频繁的过电压会使电容器的自愈性提前失效,使电容器的局部放电加剧,促进绝缘老化和电容量的衰减,切断断路器重燃会导致断路器爆炸;同时,电容器组投入时还会产生很大的冲击涌流,涌流的频率在几百赫兹到几千赫兹之间,幅值比电容器正常工作电流大几倍甚至几十倍,持续时间数十毫秒,这些对电容器组安全运行和使用寿命都构成了严重威胁。
因而,并联电容器组是电力系统中最频繁,事故率最高的装置之一。
虽然电容器故障本身的影响并不大,但若其故障发展成扩大性事故则可能造成严重影响,如爆炸、起火等。
此外在电容器组投切过程中所引起的暂态过程还会造成电网设备绝缘恶化、电能质量下降、干扰灵敏度高的电气设备正常工作等问题。
因此,削弱电容器组投切引起的暂态过程的影响在供电质量要求越来越严格的背景下已经成为电力工作者迫切需要解决的问题。
传统解决方法的不足针对于断路器投切过程中产生的过电流与过电压,危害设备的安全,传统上一般采用预插电阻、预插固定电抗器、安装R-C阻容吸收设备、后备氧化锌避雷器(MOA)等方法来削弱电容器组投切的暂态过电流、过电压过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着对供电质量要求的不断提高和节能降耗的需要,无功补偿装置的使用量快速增长。
南德电气作为国内最早致力于先进投切控制技术的智能电力电容研发生产厂家之一,一直致力于为客户提供相关领域的优质解决方案。
本文仅对电容器的投切方式进行一些简单的比较分析,供参考:
1、机械式接触器投切电容装置
接触器投入过程中,电容器的初始电压为零,触点闭合瞬间,电压不为零、有时可能处在高峰值(极少为零),会产生合闸涌流。
虽然价格低,初期投入成本上升少,无漏电流,但涌流大,寿命短,故障多,维修费用高。
2、电子式无触点可控硅投切电容器装置
可控硅投切电容器,采用过零触发电路,检测当施加到可控硅两端电压为零时,发出触发信号,导通可控硅;此时电容器的电压与电网电压相等,没有合闸涌流,使用寿命长、维修少,投切速度快,但价格高、发热严重、耗能、有漏电流。
3、复合开关投切电容装置
复合开关投切电容器,先由可控硅在电压过零时投入电容器,然后再由磁保持继电器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,无涌流,不发热,节能;但价格高、寿命短、故障较多、有漏电流。