23极限的四则运算法则
极限的四则运算PPT教学课件

• 孔子并不像后来我国封建社会的统治者所吹捧、所神化的那 样,是什么不食人间烟火的“文宣王”“大成至圣先师”等 等,他也是一个有血有肉的现实社会中的人。
• 他赞美颜回安于贫困,又汲汲于追求富贵,甚至奔走于权贵 之门,国君召唤他,他等不及驾好车马,就赶快跑了去。
• 孔子对他的学生很严厉,批评起来不讲情面,他批评“宰予 昼寝”说:“朽木不可雕也,粪土之墙不可圬也”(《论 语·公冶长》);而有时对他的学生也很亲切
方法——因式分解法(再转化为代入法)
[注]:函数在某一点的极限,考察的是函 数值的变化趋势,与函数在这一点是否有定 义,是否等于在这一点处的函数值无关.故 本例可约去公因式x-1.
例2:(1)求lim x 1 1
x 0
x
(2)求 lim x( x 3 x
x 2)
——方法: 分子(分母)有理化法(与分子 分母同除x的最高次幂相结合)
x x 0
xx0
lim [f(x) g(x)] lim f(x) lim g(x) a b
x x 0
x x 0
x x 0
lim [f(x)• g(x)] lim f(x)• lim g(x) a • b
x x 0
x x 0
x x 0
lim
f(x)
lim f(x)
x x 0
a (b 0)
xx0 g(x) lim g(x) b
点评对“0 型” 或“ 0 ” 的极限,应通过 0 分 解 因 式 约 去 “ 零 因 子” 或 根 式 有 理 化
例3:(1)
求
lim
x
x
x2 2
x
1
1
(2)
求
lim
高等数学——极限的四则运算法则

极限的四则运算法则§1.3介绍了极限的概念,并用观察法求出了一些简单函数的极限。
但对于较复杂的函数的极限就很难用观察法求得,因此,还需研究极限的运算。
本节主要是建立极限的四则运算法则,并利用该法则求一些常见类型极限。
1.5.1极限的四则运算法则定理1.5.1 设A x f x =→)(lim ?,B x g x =→)(lim ?,则(1)B A x g x f x g x f x x x ±=±=±→→→)(lim )(lim )]()([lim ???(2)B A x g x f x g x f x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim ???(3)BA x g x f x g x f x x x ==→→→)(lim )(lim )()(lim ???(0≠B )证明略。
注:(1)定理中,记号“?lim →x ”表示该定理对于自变量各种变化趋势的极限均成立。
(2)法则(2)中,若C x g =)((C 为常数),则有)(lim )(lim ??x f C x Cf x x →→=(3)法则(1)、(2)均可推广到有限个函数的情形:设函数)()()(21x f x f x f n ,,, 当?→x 时的极限均存在,则有 )(lim )(lim )(lim )]()()([lim ?2?1?21?x f x f x f x f x f x f n x x x n x →→→→±±±=±±±)(lim )(lim )(lim )]()()([lim ?2?1?21?x f x f x f x f x f x f n x x x n x →→→→⋅⋅⋅=⋅⋅⋅特殊地,当)()()()(21x f x f x f x f n ==== 时,个个n x x x n x x f x f x f x f x f x f )(lim )(lim )(lim ])()()([lim ????→→→→⋅⋅⋅=⋅⋅⋅ 即n x n x x f x f )](lim [)]([lim ??→→=另注:(1)该定理给求极限带来了极大方便,但应注意,运用该定理的前提是被运算的各个变量的极限必须存在,并且,在除法运算中,还要求分母的极限不为零。
2.3 极限的运算法则

= lim =0 x→0 x( 1 + x + 1) x→0 ( 1+ x2 +1)
2
x2
x
7
2.3.2 无穷小量与无穷大量
一、无穷小量
在实际应用中,经常会遇到极限为 的变量 的变量。 在实际应用中,经常会遇到极限为0的变量。 对于这种变量不仅具有实际意义, 对于这种变量不仅具有实际意义,而且更具有理 论价值, 论价值,值得我们单独给出定义 的某一变化过程中,函数 极限为零,称 定义1: 的某一变化过程中 函数f(x)极限为零 定义 在x的某一变化过程中 函数 极限为零 称 f(x)为该过程的无穷小量(简称无穷小). 为该过程的无穷小量(简称无穷小) 为该过程的无穷小量 无穷小 例如 : ∵ lim x = 0, ∴ 函 数 x是 当 x → 0时 的 无 穷 小.
§2.3 极限运算法则
本节讨论极限的求法。利用极限的定义, 本节讨论极限的求法。利用极限的定义,从变 量的变化趋势来观察函数的极限, 量的变化趋势来观察函数的极限,对于比较复杂的 函数难于实现。为此需要介绍极限的运算法则。 函数难于实现。为此需要介绍极限的运算法则。首 先来介绍极限四则运算法则。 先来介绍极限四则运算法则。
10
三、无穷小与无穷大的关系
定理3 在自变量的同一变化过程中, 定理3 在自变量的同一变化过程中, 1 为无穷大, 为无穷大, 则 若 为无穷小 ; f (x) 1 为无穷大. 为无穷大. 为无穷小, 若 为无穷小, 且f (x) ≠ 0, 则 f (x) 据此定理,关于无穷大的讨论,都可归结为 意义 据此定理,关于无穷大的讨论 都可归结为 关于无穷小的讨论. 关于无穷小的讨论 C 2x + 4 型 . 例6 求 lim 0 x→−1 x + 1 x +1 lim = 0 再利用无穷小与无穷大 之间的关系, 解 ∵ x → −1 再利用无穷 与无穷大 之间的关系, 无穷小 2x + 4 2x + 4 =∞ 可得: 可得: lim 11 x → −1 x + 1
极限四则运算

函数极限的四则运算: 如果
lim
x x0
f ( x) a
lim g ( x ) b 那么
x x0
lim [ f ( x ) g ( x )] a b
x x0
lim [ f ( x ) g ( x )] a b
x x0
lim
x x0
x x0
f ( x) a ( b 0) g ( x) b
0 lk l l 1 a0n a1n al a0 l k lim k 1 b0 b n b n b n 0 k 1 k 不存在 l k
练习:P88 1,2
例3:求下列极限
P90
1, 2
1 2 3 n 1/2 lim n 4 7 3n 1 ] lim [ n ( n 1) n ( n 1) n ( n 1)
n 2
n
3/2
1/3
1 1 1 ] lim [ 1 4 4 7 ( 3n 2)( 3n 1)
n
x ax 3 例4: 已知 lim b, 求常数a , b的值 x 1
2 x 1
a=-2;b=-4
例5: 在半径为R的圆内接正n边形中,r 是边心距,
2 2 3 3 4
下去, 试求点P的极限位置。
作业:练习:P91
P4 P5
O
4a 2a , 5 5
P1 x
;/ 清货公司 ;
去?怎么才能去雨帝部落?" 夜妖娆虽然依旧静静の坐着,但是内心却是早已飞到数万里外の雨帝部落.这地方她是一刻也不想待下去了. "吱呀!" 石门打开了,走进来一些妖yaw女子,蛇一样の娇躯随着行走不断の扭
2.4 极限的运算法则

10
极限的运算法则
练习
x5 1 lim 7 x2 x 1 x3 x3 2 lim lim x3 x 2 9 x 3 x 3 x 3
高 等 数 直接代入法 学 经 1 济 6 消零因子法 类
8 x 3 8 x 3
x x
(2) lim[ f ( x ) g( x )] A B ;
f ( x) A (3) lim , 其中B 0. x g( x ) B
高 等 数 学 经 济 类
上一页 下一页 主页
2
极限的运算法则
推论1
如果 lim f ( x )存在, 而c为常数, 则 lim[cf ( x )] c lim f ( x ).
3 xlim 1
8 x 3 lim x 1 x 1
8 x 3
x 1
x 1
11
lim
x 1 8 x 3
x 1
1 6
上一页 下一页 主页
极限的运算法则
高 3x x 1 等 例6 求 lim 2 . ( 型) x 2 x 4 x 3 数 学 解 x 时, 分子, 分母的极限都是无穷大 .经 济 2 先用x 去除分子分母, 分出无穷小, 再求极限.类
则 lim( x 2 ax b ) 1 a b 0.
x 1
x +ax b ( x 1 a )( x 1) 于是 lim 2 lim x 1 x 2 x 3 x 1 ( x 3)( x 1)
2
Байду номын сангаас经 济 类
x 1 a 2 a lim 2. x 1 x3 4 故a 6, b 7.
极限四则运算法则

DOCS SMART CREATE
极限四则运算法则
DOCS
01
极限四则运算的基本概念
极限的定义与性质
极限的定义
• 数列极限:当自变量趋向某一值时,数列的项趋向另一值
• 函数极限:当自变量趋向某一值时,函数的值趋向另一值
极限的性质
• 极限存在唯一性:如果一个函数在某个点存在极限,那么这个极限是唯一的
DOCS
间接法求解极限的步骤
• 通过已知条件和极限的性质,间接求出极限的值
• 分析已知条件,找出与极限相关的表达式
• 根据极限的性质,将表达式变形
• 求出极限的值
无穷小量与无穷大量在极限运算中的应用
无穷小量的概念
• 当自变量趋向某一值时,函数值趋向于0,但永远无法等于0
无穷大量的概念
• 当自变量趋向某一值时,函数值趋向于无穷大,但永远无法等于无穷
• 将复杂的极限问题转化为导数问题
过求导数的方法求解极限
• 通过洛必达法则求解极限,简化运算过程
对数函数与指数函数在极限运算中的技巧
对数函数与指数函数在极限运算中的性质
• 对数函数的极限:当自变量趋向于无穷大时,对数函数的极限等于无穷小量
• 指数函数的极限:当自变量趋向于无穷大时,指数函数的极限等于无穷大量
对数函数与指数函数在极限运算中的应用
• 利用对数函数和指数函数的性质,简化极限运算
• 通过变换函数形式,将复杂的极限问题转化为简单的极限问题
04
极限四则运算的案例分析
连续函数与间断函数的极限分析
连续函数的极限分析
断续函数的极限分析
• 连续函数在一点的极限等于函数在该点的值
极限运算法则

x 1 u2 1 u 1 ∴ 原式 lim(u 1) 2 u 1 x 1 u 1
方法 2
( x 1)( x 1) lim( x 1) lim x 1 x 1 x 1
2
小结
1.无穷小运算法则;极限的四则运算法则;复合函数的极 限运算法则. 2.极限求法; a.多项式与分式函数代入法求极限;
n 1
a n f ( x0 ).
P( x) 2. 设 f ( x ) , 且Q( x0 ) 0, 则有 Q( x )
P ( x0 ) lim f ( x ) f ( x0 ). x x0 lim Q( x ) Q( x 0 )
x x0 x x0
lim P ( x )
3 (1);
5
备用题 设 求 解: 是多项式 , 且 利用前一极限式可令
f ( x) 2 x 3 2 x 2 a x b
再利用后一极限式 , 得
f ( x) b 3 lim lim (a ) x 0 x x 0 x
可见 故
思考及练习 1. 问
是否存在 ? 为什么 ?
答: 不存在 . 否则由
利用极限四则运算法则可知
矛盾. 2.
存在 , 与已知条件
n (n 1) 1 1 1 解: 原式 lim lim (1 ) 2 n 2n n 2 n 2
3. 求 解法 1 原式 = lim
x x2 1 x
x
lim
x
若Q( x0 ) 0, 则商的法则不能应用 .
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
2.3极限的四则运算

( )
4 3 9 2 3 x 0 原式 lim x x x 2 1 5 2 x x
例6: 求
解:
( )
一般有如下结果: a0 x m a1 x m 1 am lim n n 1 x b x b x bn 0 1
( 例4 )
(3) 型 (分式通分)
3) x 时 对 型 分子分母同除x的最高次幂
作业 P29:双数
0
第二章
§2-3 极限的四则运算
极限的四则运算法则
定理 1 、若 lim f ( x) A , lim g ( x) B , 则有
1、
2、 3、 定理中的1、2、可以推广到有限个函数的情况
推论1 lim[ Cf ( x )] C lim f ( x ) (c为常数) :
推论2 : f ( x )] [ lim f ( x ) ] (n为整数) lim[
x 1
2 . 3
因式分解
例3:求
解 原式
0 ( ) 0
lim Hale Waihona Puke x 5 3) 6x 4
有理化
练习
例4:求
解 原式
( )
lim
4 3 1 9 x12 x 5 2 1 x
1 x2
x
分子、分母同除 的 最高次幂
x
例5:求
解: 分子分母同除以 x , 则
1 2 n 和) 例8 : lim( 2 2 2 ) (无穷多个无穷小的代数 n n n n
内容小结
求函数极限的方法 (1)极限四则运算法则 (注意使用条件) (2) 分式函数极限求法
1) x x0 ( 分母不为 0 ) 时, 用代入法 2) x x0 时, 对 0 型 , 因式分解、有理化