极限四则运算法则

合集下载

极限的运算

极限的运算

极限的运算一 极限的四则运算法则定理:若()A x f =lim ,()B x g =lim ,则有 (1)()()[]()()x g x f B A x g x f lim lim lim ±=±=± (2)()()[]()()x g x f AB x g x f lim lim lim ⋅==⋅ (3)()()()()x g x f B A x g x f lim lim lim==,(0≠B ) 注意:法则(1)和法则(2)可以推广到有限个函数的情况。

另外,法则(2)还有三个推论。

推论:(1)()()x f k x kf lim lim =, (k 为常数)(2)()[]()[]n x f nx f lim lim =,(n 为正整数) (3)()[]()[]nnx f x f 11lim lim =,(n 为正整数)例1()235lim 22+-→x x x -=→225lim x x +→x x 3lim 22lim 2→x=-→22lim 5x x +→x x 2lim 32=-→22)lim (5x x +⨯232=26252+-⨯=16观察这个例子可以发现函数2352+-x x 在2→x 时的极限正好等于它在2=x 这一点的函数值,因此,我们可以得到这样一条规律:若()x f 是多项式,则()()00lim x f x f x x =→。

例23512222lim +--+→x x x x x =()()35122222lim lim +--+→→x x x x x x =3252122222+⨯--+⨯=39-=3- 例3222123lim x x x x -+-→=()()2222123lim lim x x xx x -+-→→=0从以上三个例子可以看出极限四则运算法则的运用是比较简单的,但是如果我们拿到的极限不满足极限四则运算法则的条件,就不能用极限的四则运算法则来求极限了。

极限的运算法则

极限的运算法则

lim(
n
1 n2
2 n2
n n2
)
lim
n
1
2
n2
n
1 n(n 1)
lim 2 n
n2
1 2
lim(1
n
n1 )
1. 2
目录
小结
------极限求法;
1.多项式与分母不为零的分式函数代入法求极限;
2.利用无穷小与无穷大的关系求 A型极限;
0
0
3.消去零因子法求 0极限;
4.分子分母同除以x的最高次方法求 (x 型) 极限; 5.通分法求 极限;
0
则来计算的极限
目录
*求未定式极限方法举例、练习 1. 0 型有理式 0
约零因子法(因 式分解)
方法:分子分母分解因式,消去使他们趋于
零的公因子
( 0型) 0

目录
x2 9 lim x3 x 3
解 分析:因为 lim(x2 9) 0,lim(x 3) 0.
x3
x3
lim x2 9 lim ( x 3)( x 3) lim( x 3) 6
lim[c f (x)] c lim f (x) (c为常数)
特例2:推广到有限个函数的积
3、除法法则: 商的极限等于极限的商
lim
f (x) g( x)
lim f (x)
lim g(x)
A B
(B 0)
小 结: 函数的和、差、积、商的极限等于函数极限
的和、差、积、商
目录
(1)和函数的极限等于极限的和. (2)积函数的极限等于极限的乘积. (3)商函数的极限等于极限的商(分母不为零).
lim
x
2 3

1-5极限运算法则

1-5极限运算法则

x + ax + b 例5. 已知 lim 2 = 2 , 求 a,b x →1 x + x − 2
2
解: Q lim ( x 2 + x − 2) = 0
x →1
∴ lim( x + ax + b) = 1 + a + b = 0 x →1
2
x2 + ax − 1 − a 原式 = lim x→1 ( x + 2)( x − 1)
定理7. 定理 设
且 x 满足 则有
时,
φ(x) ≠ a, 又
x→x0
lim f [φ(x) ] =
说明: 1.若定理中 limφ(x) =∞, 则类似可得 说明 若定理中
x→x0
lim f [φ(x) ] = lim f (u) = A
u→∞
x→x0
2.此定理是用变量替换求极限的理论基础, 此定理是用变量替换求极限的理论基础, 此定理是用变量替换求极限的理论基础 是不能省去的。 其中条件 φ( x) ≠ a 是不能省去的。
0
0 型 , 约去公因子 0 4) x →∞ 时 , 分子分母同除最高次幂
5)利用无穷小运算性质求极限; 利用无穷小运算性质求极限; 利用无穷小运算性质求极限 6)利用左右极限求分段函数极限. 利用左右极限求分段函数极限. 利用左右极限求分段函数极限 (2) 复合函数极限求法 设中间变量
x +1+ a ( x − 1)( x + 1 + a) = lim = lim x →1 x →1 ( x + 2)( x − 1) x+2
2+a = 2 ∴ a = 4 , b = −5 = 3

2.4 极限的运算法则

2.4 极限的运算法则
上一页 下一页 主页
10
极限的运算法则
练习
x5 1 lim 7 x2 x 1 x3 x3 2 lim lim x3 x 2 9 x 3 x 3 x 3
高 等 数 直接代入法 学 经 1 济 6 消零因子法 类
8 x 3 8 x 3
x x
(2) lim[ f ( x ) g( x )] A B ;
f ( x) A (3) lim , 其中B 0. x g( x ) B
高 等 数 学 经 济 类
上一页 下一页 主页
2
极限的运算法则
推论1
如果 lim f ( x )存在, 而c为常数, 则 lim[cf ( x )] c lim f ( x ).
3 xlim 1
8 x 3 lim x 1 x 1

8 x 3
x 1
x 1


11

lim
x 1 8 x 3
x 1

1 6
上一页 下一页 主页
极限的运算法则
高 3x x 1 等 例6 求 lim 2 . ( 型) x 2 x 4 x 3 数 学 解 x 时, 分子, 分母的极限都是无穷大 .经 济 2 先用x 去除分子分母, 分出无穷小, 再求极限.类
则 lim( x 2 ax b ) 1 a b 0.
x 1
x +ax b ( x 1 a )( x 1) 于是 lim 2 lim x 1 x 2 x 3 x 1 ( x 3)( x 1)
2
Байду номын сангаас经 济 类
x 1 a 2 a lim 2. x 1 x3 4 故a 6, b 7.

_极限的性质与四则运算法则

_极限的性质与四则运算法则

二、四则运算法则
根据极限的定义, 只能验证某个常数 A是否为某个函数 ƒ(x)的极限, 而不能求出函数ƒ(x)的极限. 为了解决极限的计 算问题, 下面介绍极限的运算法则; 并利用这些法则和一些 已知结果来求函数极限。 定理 设 lim f ( x ) A , lim g( x ) B, 则
备忘 a0b0 0时,
an x n an 1 x n 1 a0 lim x b x m b x m 1 b0 m m 1
0 an bm
nm nm nm
消极大公因子法对分子、分母含指数形式也适用。


(2) n 3 n 求极限 lim 。 n 1 n 1 n ( 2) 3

当x→-∞时结果为-(a+b),故x→∞ 时极限不存在
x 2 2x 例7 求 lim . x 2 x2

x 2 2x x 2 2x 原式 lim x 2 x 2 2x
x 2
lim
x 2 2x
x 2
x 2
1 x
1 x
x 0

提 示
答案 不存在。
取t满足xt=1,则 x→0-时t→-∞; x→0+时t→+∞。
7、其他
必要时会用到以前所学的公式或其他计算技巧。

答案 练习 答案
1 1 1 求极限 lim 1 2 2 3 n(n 1) 。 n
推论3 如果 lim f i ( x)存在(i 1,2,, n), 则 lim[ f1 ( x) f 2 ( x) f n ( x)]
lim f1 ( x) lim f 2 ( x) lim f n ( x)

极限四则运算法则

极限四则运算法则
CREATE TOGETHER
DOCS SMART CREATE
极限四则运算法则
DOCS
01
极限四则运算的基本概念
极限的定义与性质
极限的定义
• 数列极限:当自变量趋向某一值时,数列的项趋向另一值
• 函数极限:当自变量趋向某一值时,函数的值趋向另一值
极限的性质
• 极限存在唯一性:如果一个函数在某个点存在极限,那么这个极限是唯一的
DOCS
间接法求解极限的步骤
• 通过已知条件和极限的性质,间接求出极限的值
• 分析已知条件,找出与极限相关的表达式
• 根据极限的性质,将表达式变形
• 求出极限的值
无穷小量与无穷大量在极限运算中的应用


无穷小量的概念
• 当自变量趋向某一值时,函数值趋向于0,但永远无法等于0
无穷大量的概念
• 当自变量趋向某一值时,函数值趋向于无穷大,但永远无法等于无穷
• 将复杂的极限问题转化为导数问题
过求导数的方法求解极限
• 通过洛必达法则求解极限,简化运算过程
对数函数与指数函数在极限运算中的技巧
对数函数与指数函数在极限运算中的性质
• 对数函数的极限:当自变量趋向于无穷大时,对数函数的极限等于无穷小量
• 指数函数的极限:当自变量趋向于无穷大时,指数函数的极限等于无穷大量
对数函数与指数函数在极限运算中的应用
• 利用对数函数和指数函数的性质,简化极限运算
• 通过变换函数形式,将复杂的极限问题转化为简单的极限问题
04
极限四则运算的案例分析
连续函数与间断函数的极限分析
连续函数的极限分析
断续函数的极限分析
• 连续函数在一点的极限等于函数在该点的值

1.5 极限的运算法则

1.5 极限的运算法则
x 0
o
x
例11
当a0 0, b0 0, m和n为非负整数时求 , a0 x m a1 x m 1 am lim 。 n n 1 x b x b x bn 0 1
x m a0 a1 x 1 am x m ) 解 原 式 l i m( n 1 n x x b0 b1 x bn x
单侧极限为 解 x 0是函数的分段点,两个
x 0
lim f ( x ) lim (1 x ) 1,
x 0
x 0
lim f ( x ) lim ( x 1) 1,
2 x 0
y 1 x
y x2 1
y
左右极限存在且相等,
1
故 lim f ( x ) 1.
n n
(1) lim ( xn yn ) A B
n
(2) lim xn yn AB
n
xn A (3) 当 yn 0 且 B 0时, lim n y n B
提示: 因为数列是一种特殊的函数 , 故此定理 可由 定理2.1/2.2 直接得出结论 .
第五节 极限的运算法则
一、极限的四则运算法则 二 、极限的复合运算法则 三、数列极限与函数极限的关系
第一章
一、 极限的四则运算法则
定理 1 . 若 lim f ( x) A , lim g ( x) B , 则有 证: 因 lim f ( x) A , lim g ( x) B , 则有
例2. 设有分式函数
其中
都是
多项式 , 若
证:
试证:
x x0 x x0
x x0
lim R( x)

2.3极限的四则运算

2.3极限的四则运算
3
( )
4 3 9 2 3 x 0 原式 lim x x x 2 1 5 2 x x
例6: 求
解:
( )
一般有如下结果: a0 x m a1 x m 1 am lim n n 1 x b x b x bn 0 1
( 例4 )
(3) 型 (分式通分)
3) x 时 对 型 分子分母同除x的最高次幂
作业 P29:双数
0
第二章
§2-3 极限的四则运算
极限的四则运算法则
定理 1 、若 lim f ( x) A , lim g ( x) B , 则有
1、
2、 3、 定理中的1、2、可以推广到有限个函数的情况
推论1 lim[ Cf ( x )] C lim f ( x ) (c为常数) :
推论2 : f ( x )] [ lim f ( x ) ] (n为整数) lim[
x 1
2 . 3
因式分解
例3:求
解 原式
0 ( ) 0
lim Hale Waihona Puke x 5 3) 6x 4
有理化
练习
例4:求
解 原式
( )
lim
4 3 1 9 x12 x 5 2 1 x
1 x2
x
分子、分母同除 的 最高次幂
x
例5:求
解: 分子分母同除以 x , 则
1 2 n 和) 例8 : lim( 2 2 2 ) (无穷多个无穷小的代数 n n n n
内容小结
求函数极限的方法 (1)极限四则运算法则 (注意使用条件) (2) 分式函数极限求法
1) x x0 ( 分母不为 0 ) 时, 用代入法 2) x x0 时, 对 0 型 , 因式分解、有理化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限四则运算法则
由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。

定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且
)(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。

证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>∃>∀δε,当
100δ<-<x x 时,有2
)(ε
<-A x f ,对此ε,02>∃δ,当2
00δ<-<x x 时,有2
)(ε
<
-B x g ,取},m in{21δδδ=,当δ<-<00x x 时,有
ε
ε
ε
=+
<
-+-≤-+-=+-+2
2
)()())(())(()())()((B x g A x f B x g A x f B A x g x f
所以B A x g x f x x +=+→))()((lim 0。

其它情况类似可证。

注:本定理可推广到有限个函数的情形。

定理2:若B x g A x f ==)(lim ,)(lim ,则)()(lim x g x f ⋅存在,且
)(lim )(lim )()(lim x g x f AB x g x f ⋅==。

证明:因为B x g A x f ==)(lim ,)(lim ,⇒,)(,)(βα+=+=B x g A x f (βα,均为无穷小))())(()()(αβαββα+++=++=⇒B A AB B A x g x f ,记
αβαβγ++=B A , γ⇒为无穷小, AB x g x f =⇒)()(lim 。

推论1:)(lim )](lim[x f c x cf =(c 为常数)。

推论2:n n x f x f )]([lim )](lim [=(n 为正整数)。

定理3:设0)(lim ,)(lim ≠==B x g A x f ,则)
(lim )
(lim )()(lim
x g x f B A x g x f ==。

证明:设βα+=+=B x g A x f )(,)((βα,为无穷小),考虑差:
)
()()(ββ
αβα+-=-++=-B B A B B A B A B A x g x f 其分子βαA B -为无穷小,分母0)(2≠→+B B B β,我们不难证明
)
(1β+B B 有界(详细过程见书上))(ββα+-⇒
B B A B 为无穷小,记为γ,所以γ+=B
A
x g x f )()(,
B
A
x g x f =⇒)()(lim。

注:以上定理对数列亦成立。

定理4:如果)()(x x ψϕ≥,且b x a x ==)(lim ,)(lim ψϕ,则b a ≥。

【例1】b ax b x a b ax b ax x x x x x x x x +=+=+=+→→→→00
lim lim lim )(lim 。

【例2】n
n x x n x x x x x 0]lim [lim 0
==→→。

推论1:设n n n n a x a x a x a x f ++++=--1110)(ΛΛ为一多项式,当
)()(lim 0011
1000
x f a x a x a x a x f n n n n x x =++++=--→ΛΛ。

推论2:设)(),(x Q x P 均为多项式,且0)(0≠x Q ,则)
()
()()(lim 000x Q x P x Q x P x x =→。

【例3】31151105(lim 221
-=+⨯-=+-→x x x 。

【例4】33
009070397lim 53530-=+--⨯+=+--+→x x x x x (因为03005
≠+-)。

注:若0)(0=x Q ,则不能用推论2来求极限,需采用其它手段。

【例5】求3
22
lim 221-+-+→x x x x x 。

解:当1→x 时,分子、分母均趋于0,因为1≠x ,约去公因子)1(-x ,
所以 5
3
322lim 322lim 12
21=++=-+-+→→x x x x x x x x 。

【例6】求)1
3
11(
lim 31+-+-→x x x 。

解:当1
3
,11,13
++-→x x x 全没有极限,故不能直接用定理3,但当1-≠x 时, 12)1)(1()2)(1(13112
23+--=+-+-+=+-+x x x x x x x x x x ,所以 11
)1()1(2112lim )1311(
lim 22131
-=+-----=+--=+-+-→-→x x x x x x x 。

【例7】求2
lim 2
2-→x x x 。

解:当2→x 时,02→-x ,故不能直接用定理5,又42→x ,考虑:
042
22lim
2
2
=-=-→x x x ,
∞=-⇒→2
lim
2
2x x x 。

【例8】若3)
1sin(lim 221=-++→x b
ax x x ,求a ,b 的值。

当1→x 时,1~)1sin(2
2
--x x ,且0)(lim 2
1
=++→b ax x x
10, =(1)a b b a ++=-+
222
(1)(1)(1)
1(1)(1)(1)(1)
x ax b x ax a x x a x x x x x +++-+-++==--+-+ 2212
lim 3124, 5
x x ax b a x a b ->+++==-==- 【例9】设n m b a ,,0,000≠≠为自然数,则
⎪⎪⎪⎩

⎪⎪⎨⎧>∞
<==++++++--∞→时
当时当时当m n m n m n b a b x b x b a x a x a m m m n n n x 0
lim 001101
10ΛΛΛΛ。

证明:当∞→x 时,分子、分母极限均不存在,故不能用§1.6定理5,先变形:
m
m
n n m n x m m m n n n x x b x b b x a x a
a x
b x b x b a x a x a ++++++⋅=++++++-∞→--∞→ΛΛΛΛΛΛΛΛ1010110110lim lim
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>++++++⋅∞<++++++⋅=++++++⋅
=时
当时当时当m n b a m n b a m n b a 0
000000
00000
010000
00ΛΛΛΛΛΛΛΛΛΛΛΛ 【例10】求)21(
lim 222n
n n n n +++∞→ΛΛ。

解:当∞→n 时,这是无穷多项相加,故不能用定理1,先变形:
原式2
1
21lim 2)1(1lim )21(1lim 22=+=+⋅
=+++=∞→∞→∞→n n n n n n n n n n ΛΛ。

【例11】证明[][]x x
x x ,1lim
=∞→为x 的整数部分。

证明:先考虑[][]x
x x x x -=-
1,因为[]x x -是有界函数,且当∞→x 时,01→x
,所
以由有界量与无穷小量的乘积是无穷小,得
[][][]1lim
0)1(lim 0lim =⇒=-⇒=-∞→∞→∞→x x x
x x x x x x x 。

相关文档
最新文档