高考数学附加题归类复习

合集下载

高考数学二轮复习 专题十四 附加题22题 试题

高考数学二轮复习 专题十四 附加题22题  试题

2021届高考数学〔苏教版〕二轮复习专题14 附加题22题创 作人:历恰面 日 期: 2020年1月1日回忆2021~2021年的考题,离散型随机变量的概率分布与数学期望是考察的重点,但考察难度不大,考察的重点是根据题意分析写出随机变量的分布列.求解过程往往和排列、组合和概率相结合.数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在数学证明中有着广泛的应用.[典例1](2021·高考)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值是两条棱之间的间隔 ;当两条棱异面时,ξ=1.(1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ).[解] (1)假设两条棱相交,那么交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,所以一共有8C 23对相交棱. 因此P (ξ=0)=8C 23C 212=8×366=411.(2)假设两条棱平行,那么它们的间隔 为1或者2,其中间隔 为2的一共有6对, 故P (ξ=2)=6C 212=666=111,P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611.所以随机变量ξ的分布列为:ξ 0 1 2 P (ξ)411611111那么其数学期望E (ξ)=1×611+2×111=6+211.此题考察概率分布、数学期望等根底知识.解题的关键是确定ξ的取值. [演练1](2021·期末)口袋中有3个白球,4个红球,每次从口袋中任取一球,假如取到红球,那么继续取球,假如取到白球,就停顿取球,记取球的次数为X .(1)假设取到红球再放回,求X 不大于2的概率; (2)假设取出的红球不放回,求X 的概率分布与数学期望. 解:(1)∵P (X =1)=37,P (X =2)=3×472=1249,∴P =P (X =1)+P (X =2)=3349.(2)∵X 可能取值为1,2,3,4,5,P (X =1)=A 13A 17=37,P (X =2)=A 14A 13A 27=27,P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 13A 47=335,P (X =5)=A 44A 13A 57=135.∴X 的概率分布列为:X 1 2 3 4 5 P3727635335135∴E (X )=1×37+2×27+3×635+4×335+5×135=2.即X 的数学期望是2. [典例2]△ABC 的三边长为有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数. [证明] (1)由AB ,BC ,AC 为有理数及余弦定理知cos A =AB 2+AC 2-BC 22AB ·AC是有理数.(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数. ①当n =1时,由(1)知cos A 是有理数, 从而有sin A ·sin A =1-cos 2A 也是有理数.②假设当n =k (k ≥1)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由cos(k +1)A =cos A ·cos kA -sin A ·sin kA ,sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A ,由①及归纳假设,知cos(k +1)A 与sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.综合①②可知,对任意正整数n ,cos nA 是有理数.此题主要考察余弦定理、数学归纳法等根底知识,考察推理论证的才能与分析问题、解决问题的才能.[演练2](2021·)正项数列{a n}中,a1=1,a n+1=1+a n1+a n(n∈N*).用数学归纳法证明:a n<a n+1(n∈N*).证明:当n=1时,a2=1+a11+a1=32,a1<a2,所以n=1时,不等式成立;假设当n=k(k∈N*)时,a k<a k+1成立,显然a k>0. 那么当n=k+1时,a k+2-a k+1=1+a k+11+a k+1-a k+1=1+a k+11+a k+1-⎝⎛⎭⎪⎫1+a k1+a k=a k+1-a k1+a k1+a k+1>0,所以n=k+1时,不等式成立.综上所述,不等式a n<a n+1(n∈N*)成立.[典例3](2021·二模)某班级一共派出n+1个男生和n个女生参加运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,一共有E n种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台效劳,一共有F n种选法.(1)试求E n和F n;(2)判断ln E n和F n的大小(n∈N*),并用数学归纳法证明.[解] (1)由题意知E n=A n n·A n n=(n!)2,F n=C1n+1·C1n=n(n+1).(2)因为ln E n=2ln n!,F n=n(n+1),所以ln E1=0<F1=2,ln E2=ln 4<F2=6,ln E3=ln 36<F3=12,…,因此猜测;当n∈N*时都有ln E n<F n,即2ln n!<n(n+1).下面用数学归纳法证明2ln n !<n (n +1)(n ∈N *). ①当n =1时,该不等式显然成立.②假设当n =k (k ∈N *)时,不等式成立,即2ln k !<k (k +1),那么当n =k +1时,2ln(k +1)!=2ln(k +1)+2ln k !<2ln(k +1)+k (k +1),要证当n =k +1时不等式成立,只要证2ln(k +1)+k (k +1)≤(k +1)(k +2),即只要证ln(k +1)≤k +1.令f (x )=ln x -x ,x ∈(1,+∞),因为f ′(x )=1-x x<0,所以f (x )在(1,+∞)上单调递减,从而f (x )<f (1)=-1<0,而k +1∈(1,+∞), 所以ln(k +1)≤k +1成立, 所以当n =k +1时,不等式也成立. 综合①②,当n ∈N *时,都有ln E n <F n .此题考察排列组合等根底知识,考察数学归纳法的应用以及综合运用数学知识分析问题和解决问题的才能.这类问题以排列组合为主线,利用数学归纳法进展推理.利用导数研究函数的单调性证明ln(k +1)<k +1是关键.[演练3](2021·期末)p (p ≥2)是给定的某个正整数,数列{a n }满足:a 1=1,(k +1)a k +1=p (k -p )a k ,其中k =1,2,3,…,p -1.(1)设p =4,求a 2,a 3,a 4; (2)求a 1+a 2+a 3+…+a p . 解:(1)由(k +1)a k +1=p (k -p )a k , 得a k +1a k =p ×k -pk +1,k =1,2,3,…,p -1, 即a 2a 1=-4×4-12=-6,a 2=-6a 1=-6; a 3a 2=-4×4-23=-83,a 3=16;a 4a 3=-4×4-34=-1,a 4=-16. (2)由(k +1)a k +1=p (k -p )a k , 得a k +1a k =p ×k -pk +1,k =1,2,3,…,p -1, 即a 2a 1=-p ×p -12,a 3a 2=-p ×p -23,…, a k a k -1=-p ×p -k -1k, 以上各式相乘得a k a 1=(-p )k -1×p -1p -2p -3…p -k +1k !,∴a k =(-p )k -1×p -1p -2p -3…p -k +1k !=(-p )k -1×p -1!k !p -k !=-pk -1p×p !k !p -k !=-(-p )k -2×C k p =-1p2C k p (-p )k,k =1,2,3,…,p .∴a 1+a 2+a 3+…+a p=-1p2[C 1p (-p )1+C 2p (-p )2+C 3p (-p )3+…+C p p (-p )p]=-1p2[(1-p )p-1].[专题技法归纳]离散型随机变量的概率分布与数学期望是建立在传统的概率问题的根底之上的内容,高考新课程对这一内容的考察是B 级要求,常以实际应用题的形式出现,与数学建模才能的考察结合在一起,考察学生的数学应用意识以及运用数学知识分析和解决实际问题的才能.解决这一类问题,一定要注意认真审题,不仅要能在弄清题意的根底上,迅速地寻找出正确的解题思路,还要可以标准地表述解题的过程.这些,需要在复习中引起足够的重视,注意做好针对性的训练,力求做到求解这一类问题时可以得心应手、准确无误.1.有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规那么如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按一样的次序排成一排组成.第一排 明文字符 ABCD密码字符11121314第二排 明文字符 EFGH密码字符21222324第三排明文字符 MNPQ密码字符1234设随机变量ξ表示密码中不同数字的个数. (1)求P (ξ=2);(2)求随机变量ξ的分布列和它的数学期望.解:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.∴P (ξ=2)=2343=18.(2)由题意可知,ξ的取值为2,3,4三种情形.假设ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2那么密码中只可能取数字1,2,3或者1,2,4.∴P (ξ=3)=222A 132C 23+143=1932.P (ξ=4)=A 13+A 22+A 23A 2243=932. ∴ξ的分布列为:∴E (ξ)=2×18+3×1932+4×32=32.2.一种颜色鲜花,相邻区域使用不同颜色鲜花.(1)求恰有两个区域用红色鲜花的概率;(2)记花圃中红色鲜花区域的块数为ξ,求ξ的分布列及其数学期望E (ξ). 解:(1)设M 表示事件“恰有两个区域用红色鲜花〞, 如图,当区域A 、D 同色时,一共有5×4×3×1×3=180种; 当区域A 、D 不同色时,一共有5×4×3×2×2=240种; 因此,所有根本领件总数为:180+240=420种.又因为A 、D 为红色时,一共有4×3×3=36种;B 、E 为红色时,一共有4×3×3=36种;因此,事件M 包含的根本领件有:36+36=72种.所以P (M )=72420=635.(2)随机变量ξ的分布列为:所以E (ξ)=0×635+1×35+2×35=1.3.(2021·二模)某射击运发动向一目的射击,该目的分为3个不同局部,第一、二、三局部面积之比为1∶3∶6.击中目的时,击中任何一局部的概率与其面积成正比.(1)假设射击4次,每次击中目的的概率为13且互相HY .设ξ表示目的被击中的次数,求ξ的分布列和数学期望E (ξ);(2)假设射击2次均击中目的,A 表示事件“第一局部至少被击中1次或者第二局部被击中2次〞,求事件A 发生的概率.解:(1)依题意知ξ~B ⎝ ⎛⎭⎪⎫4,13,ξ的分布列:数学期望E (ξ)=0×1681+1×3281+2×2481+3×881+4×181=43.(2)法一:设A i 表示事件“第一次击中目的时,击中第i 局部〞,i =1,2,3.B i 表示事件“第二次击中目的时,击中第i 局部〞,i =1,2,3.依题意,知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,A =A 1B 1∪A 1B 1∪A 1B 1∪A 2B 2,所求的概率为 P (A )=P (A 1B 1)+P (A 1B 1)+P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 1)P (B 1)+P (A 2)P (B 2) =0.1×0.9+0.9×0.1+0.1×0.1+0.3×0.3=0.28. 即事件A 发生的概率为0.28.法二:记“第一局部至少击中一次〞为事件C ,“第二局部被击中二次〞为事件D , 那么P (C )=C 120.1×0.9+0.1×0.1=0.19,P (D )=0.3×0.3=0.09. P (A )=P (C )+P (D )=0.28.即事件A 发生的概率为0.28.4.(2021·二模)函数f (x )=(2x +1)ln(2x +1)-a (2x +1)2-x (a >0).(1)假设函数f (x )在x =0处取极值,求a 的值;(2)如图,设直线x =-12,y =-x 将坐标平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域(不含边界),假设函数y =f (x )的图象恰好位于其中一个区域内,判断其所在的区域并求对应的a 的取值范围;(3)比拟32×43×54×…×2 0122 011与23×34×45×…×2 0112 012的大小,并说明理由.解: (1)f (x )=(2x +1)ln(2x +1)-a (2x +1)2-x (a >0),f ′(x )=2ln(2x +1)-4a (2x +1)+1.∵f (x )在x =0处取极值, ∴f ′(0)=-4a +1=0. ∴a =14⎝ ⎛⎭⎪⎫经检验a =14符合题意. (2)因为函数的定义域为⎝ ⎛⎭⎪⎫-12,+∞,且当x =0时,f (0)=-a <0. 又直线y =-x 恰好通过原点,所以函数y =f (x )的图象应位于区域Ⅳ内, 于是可得f (x )<-x ,即(2x +1)ln(2x +1)-a (2x +1)2-x <-x . ∵2x +1>0,∴a >ln2x +12x +1.令h (x )=ln2x +12x +1,∴h ′(x )=2-2ln 2x +12x +12. 令h ′(x )=0,得x =e -12.∵x >-12,∴x ∈⎝ ⎛⎭⎪⎫-12,e -12时,h ′(x )>0,h (x )单调递增;x ∈⎝ ⎛⎭⎪⎫e -12,+∞时,h ′(x )<0,h (x )单调递减.∴h max (x )=h ⎝⎛⎭⎪⎫e -12=1e.∴a 的取值范围是⎝ ⎛⎭⎪⎫1e ,+∞. (3)由(2)知,函数h (x )=ln2x +12x +1在x ∈⎝⎛⎭⎪⎫e -12,+∞时单调递减,函数p (x )=ln x x在x ∈(e ,+∞)时单调递减. ∴ln x +1x +1<ln x x,∴x ln(x +1)<(x +1)ln x . ∴ln(x +1)x<ln x(x +1),即(x +1)x <x(x +1).∴令x =3,4,…,2021,那么43<34,54<45,…,2 0122 011<2 0112 012,又32×43<23×34,所以32×43×54…×2 0122 011<23×34×45…×2 0112 012.5.(2021·通州期末)求证:对于任意的正整数n ,(2+3)n必可表示成 s +s -1的形式,其中s ∈N *.证明:由二项式定理可知, (2+3)n=C 0n 2n(3)0+C 1n 2n -1(3)1+C 2n 2n -2(3)2+…+C n n 20(3)n,设(2+3)n =x +3y =x 2+3y 2, 而假设有(2+3)n =a +b ,a ,b ∈N *, 那么(2-3)n =a -b ,a ,b ∈N *,∵(a +b )·(a -b )=(2+3)n ·(2-3)n=1, ∴令a =s ,s ∈N *,那么必有b =s -1.∴(2+3)n必可表示成s+s-1的形式,其中s∈N*.6.假设(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a n(x-1)n,其中n∈N*.(1)求a0及S n=a1+a2+a3+…+a n;(2)试比拟S n与(n-2)2n+2n2的大小,并说明理由.解:(1)取x=1,那么a0=2n;取x=2,那么a0+a1+…+a n=3n,∴S n=a1+a2+a3+…+a n=3n-2n.(2)要比拟S n与(n-2)2n+2n2的大小,即比拟3n与(n-1)2n+2n2的大小,当n=1时,3n>(n-1)2n+2n2;当n=2,3时,3n<(n-1)2n+2n2;当n=4,5时,3n>(n-1)2n+2n2,猜测:当n≥4时,3n>(n-1)2n+2n2.下面用数学归纳法证明:①由上述过程可知,n=4时结论成立,②假设当n=k,(k≥4)时结论成立,即3k>(k-1)2k+2k2,两边同乘以3得3k+1>3[(k-1)2k+2k2]=k2k+1+2(k+1)2+[(k-3)2k+4k2-4k-2],而(k-3)2k+4k2-4k-2=(k-3)2k+4(k2-k-2)+6=(k-3)2k+4(k-2)(k+1)+6>0,k+1-12k+1+2(k+1)2,即n=k+1时结论也成立.所以3k+1>()由①②知当n≥4时,3n>(n-1)2n+2n2成立.综上所述,当n=1时,S n>(n-2)2n+2n2;当n=2,3时,S n<(n-2)2n+2n2;当n≥4时,S n>(n-2)2n+2n2.7.设二项展开式C n=(3+1)2n-1(n∈N*)的整数局部为A n,小数局部为B n.试用二项式定理推导A n和B n.解:因为C n=(3+1)2n-1=C02n-1(3)2n-1+C12n-1(3)2n-2+…+C2n-22n-13+C2n-12n-1,①而(3-1)2n-1=C02n-1(3)2n-1-C12n-1(3)2n-2+…+C2n-22n-13-C2n-12n-1,②①—②得:(3+1)2n-1-(3-1)2n-1=2(C12n-1·(3)2n-2+C32n-1(3)2n-4+…+C2n-12n-1)∈N*.而0<(3-1)2n-1<1,所以A n=(3+1)2n-1-(3-1)2n-1,B n=(3-1)2n-1.8.(2021·苏北四一模)a n=(1+2)n(n∈N*).(1)假设a n=a+b2(a,b∈Z),求证:a是奇数;(2)求证:对于任意n∈N*,都存在正整数k,使得a n=k-1+k.证明:(1)由二项式定理,得a n=C0n+C1n2+C2n(2)2+C3n(2)3+…+C n n(2)n,所以a=C0n+C2n(2)2+C4n(2)4+…=1+2C2n+22C4n+…,因为2C2n+22C4n+…为偶数,所以a是奇数.(2)由(1)设a n=(1+2)n=a+b2(a,b∈Z),那么(1-2)n=a-b2,所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n.当n为偶数时,a2=2b2+1,存在k=a2,使得a n=a+b2=a2+2b2=k+k-1,当n为奇数时,a2=2b2-1,存在k=2b2,使得a n=a+b2=a2+2b2=k-1+k,综上,对于任意n∈N*,都存在正整数k,使得a n=k-1+k.。

江苏高考附加题数学知识点

江苏高考附加题数学知识点

江苏高考附加题数学知识点作为中国国内各省份高考中的一颗明珠,江苏高考备受广大考生和家长的关注。

江苏省高考数学试卷中附加题是考察学生对于数学知识理解的一个重要环节。

本文将对江苏高考附加题中涉及的数学知识点进行分析和解读,以帮助广大考生更好地备考。

一、初等数论初等数论是江苏高考附加题中经常出现的考察点之一。

其中包括整数的性质、整数的因数分解、最大公约数和最小公倍数等。

考生首先需要掌握素数与合数、奇数与偶数的特点,并能够灵活运用整数的有序性和整除性进行解题。

此外,还需要熟悉最大公约数和最小公倍数的计算方法以及相关的性质,例如辗转相除法和质数分解法等。

对于初等数论的掌握,既可以通过多做题来提高技巧,也可以通过深入理解数学原理来应对更复杂的情况。

二、坐标系与函数附加题中经常涉及到的另一个数学知识点是坐标系与函数。

考生需要熟悉直角坐标系的构造和基本性质,能够根据给定函数的表达式绘制函数图像,并理解各类函数的特点。

在解题过程中,还需要掌握函数的平移、伸缩和反转等变换方式的特点,以便做出准确的判断。

此外,对于带参数的函数或隐函数的解析,考生需要学会通过图像直观地理解其特点,从而找到解答问题的关键。

三、概率与统计学概率与统计学是江苏高考附加题中的另一个重要知识点。

考生需要掌握随机事件的概念、样本空间的构建以及事件的概率计算等基本内容。

在统计学方面,需要熟悉常用的统计指标如均值、中位数和众数等,以及频率分布图和累积分布图的绘制方法。

在解题过程中,考生还需要灵活运用条件概率、排列组合和概率分布等概念,以解决实际问题。

同时,了解基本的抽样调查和假设检验方法,能够应对更复杂的统计学问题。

四、向量与几何附加题中还经常涉及到向量与几何的知识点。

考生需要理解向量的基本概念和运算规则,能够求解向量的模、夹角和坐标。

在几何学方面,需要熟练掌握平面几何和空间几何中的基本定理和性质,例如三点共线、平行线与垂直线的判定等。

此外,对于曲线的参数方程以及空间曲线的类型和特点,考生也需要进行积极的学习和思考。

人教版江苏高考数学理科附加题考前指导复习(含答案)及参考答案

人教版江苏高考数学理科附加题考前指导复习(含答案)及参考答案

江苏高考数学理科附加题考前指导复习(附参考答案)一、附加题的两点共识1.数学附加题的40分与I卷的160分对理科同学同等重要.2.数学附加题得很高的分数不容易,但要得到基本分还是不困难的.原因:(1)考试说明要求附加题部分易、中、难题的占分比例控制在5:4:1左右,即中低档题占总分的90%左右.(2)考试时间仅有30分钟,因此运算量与思维量都会控制.(3)准确定位,合理取舍.二、各模块归类分析及应对策略三、六年高考考查内容(一)矩阵与变换考点一:二阶矩阵与平面列向量的乘法、二阶矩阵的乘法.例1(2010年江苏高考)在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 00 1,N =⎣⎢⎡⎦⎥⎤011 0,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.(2011年江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤112 1,向量β=⎣⎢⎡⎦⎥⎤12,求向量α,使得A 2α=β.考点二:二阶矩阵与平面变换例2如果曲线x 2+4xy +3y 2=1在矩阵a ,b 1))的作用下变换得到曲线x 2-y 2=1,求a +b 的值.考点三: 逆矩阵例3(2009年江苏高考)求矩阵A =⎣⎢⎡⎦⎥⎤322 1的逆矩阵.说明:方法一,根据A A -1=E ,利用待定系数法求解;方法二:直接利用公式计算.应对策略:待定系数法,运算量比较大,直接利用公式计算简便,但公式不能出错,另外为了防止缺少解题过程之嫌,最好将公式书写一遍.已知矩阵A =⎣⎢⎡⎦⎥⎤ 2 -1-4 3,B =⎣⎢⎡⎦⎥⎤4 -1-3 1,求满足AX =B 的二阶矩阵X .。

高三数学复习附加题专项训练15套有答案

高三数学复习附加题专项训练15套有答案

ABC •••2013届高三数学复习附加题专项训练(一)烟雾满山飘 制作上传选修4-2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换为点(1,1)--与(0,2)-,设直线l 在变换M 作用下得到了直线:24m x y -=,求直线l 的方程答案:直线l 的方程为40x +=选修4-4:坐标系与参数方程在极坐标系中,已知圆sin a ρθ=(0a >)与直线()cos 1ρθπ+=4相切,求实数a 的值.答案:解得4a =+【必做题】22. 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求APB ∆的重心G 的轨迹方程.答案:重心G 的轨迹方程为:221(34)20,(42)3x y x y x x --+-==-+即.23. 如图所示,某城市有南北街道和东西街道各2n +条,一邮递员从该城市西北角的邮局A 出发,送信到东南角B 地,要求所走路程最短.求该邮递员途径C 地的概率()f n 答案: 概率[]2212222(1)!(2)!1()2(!)(22)!21n n n n C n n n f n C n n n ++++==⋅=++。

(第4题)BACA 1B 1C 12013届高三数学一轮复习附加题专项训练(二)1设A=1212⎤⎥⎢⎢⎢⎣,则6A的逆矩阵是 。

答案:逆矩阵为 1 00 -1-⎡⎤⎢⎥⎣⎦。

选修4-4:坐标系与参数方程已知点),(y x P 在椭圆1121622=+y x 上,试求y x z 32-=的最大值. 答案: 10z 的最大值是【必做题】22.如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面ABC 上的射影恰为点B ,且12AB AC A B ===.(1)求棱1AA 与BC 所成的角的大小;(2)在棱11B C 上确定一点P ,使AP =1P AB A --的平面角的余弦值.答案(1)1AA 与棱BC 所成的角是π3.(2)二面角1P ABA --.23. 已知抛物线24y x =的焦点为F ,直线l 过点(4,0)M .(1)若点F 到直线l l 的斜率;(4分)(2)设,A B 为抛物线上两点,且AB 不与x 轴垂直,若线段AB 的垂直平分线恰过点M ,求证:线段AB 中点的横坐标为定值.(6分)答案: (1)直线l 的斜率为(2)线段AB 中点的横坐标为定值2.2013届高三数学一轮复习附加题专项训练(三)选修4-2:矩阵与变换若点(2,2)A 在矩阵cos sin sin cos M αααα-⎡⎤=⎢⎥⎣⎦对应变换的作用下得到的点为(2,2)B -,求矩阵M 的逆矩阵答案: 10110-⎡⎤=⎢⎥-⎣⎦M . 选修4-4:坐标系与参数方程在极坐标系中,求经过三点O (0,0),A (2,2π),B (4π)的圆的极坐标方程.解答: )4ρθπ=-.【必做题】 第22题口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X . (I )若取到红球再放回,求X 不大于2的概率;(II )若取出的红球不放回,求X 的概率分布与数学期望.解答:(Ⅰ) ∴33(1)(2)49P P X P X ==+==;∴32631()12345277353535E X =⨯+⨯+⨯+⨯+⨯= 第23题已知1()ln(1)(1)nf x a x x =+--,其中*n N ∈,a 为常数, (1)当2n =时,求函数()f x 的极值;(2)当1a =时,证明:对任意的正整数n ,当2x ≥时,()1f x x ≤-.答案:(1) 2n =时,当0a >时,()f x 在1x =+处取得极小值2(1(1ln )2a f a+=+;当0a ≤时, ()f x 无极值. (2)略2013届高三数学一轮复习附加题专项训练(四)选修4-2:矩阵与变换.已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.答案:直线l '的方程为480x y +-=选修4-4:坐标系与参数方程求直线12,12x t y t =+⎧⎨=-⎩(t 为参数)被圆3cos ,3sin x y αα=⎧⎨=⎩(α为参数)截得的弦长.答案:弦长为【必做题】 第22题假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5,记此时教室里敞开的窗户个数为X . (Ⅰ)求X 的分布列;(Ⅱ)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y ,求Y 的分布列.答案:(Ⅰ)X 的分布列为(Ⅱ)Y 的分布列为第23题已知2()1f x x x =+-,()ln g x =若对任意12x >,都有()()f x g x ≤,试求a 的取值范围.答案: a 的取值范围是[,)e +∞.2013届高三数学一轮复习附加题专项训练(五)1选修4-2:矩阵与变换设A=,则A 6= 答案:66cos -sin 0 14466-1 0sin cos 44ππππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦选修4-4:坐标系与参数方程椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值. 答案:当 53πθ=时,min d =,此时所求点为(2,3)-【必做题】第22题 已知斜三棱柱111ABC A B C -,90BCA ∠=o,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥. (I )求证:1AC ⊥平面1A BC ; (II )求1CC 到平面1A AB 的距离; 答案:(I )略(II )1||||AC n d n ⋅==u u u u r rr 7. 第23题设数列{}n a 满足*1112,().n n na a a n N a +==+∈ (1)证明:n a 对*n N ∈恒成立; (2)令*)n b n N =∈,判断n b 与1n b +的大小,并说明理由.23题提供答案 证明: (1)111111(0)(0,1)12,22,{}(2,)12111k k n n kk kk k y x x x xa a a a a n a a nn k nk a a a ++=+>∈∈∞==+≥≥+∞===>>==>=+=+>=是减函数,x (1,+)为增函数。

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

2024年高考数学专项复习数列求和与递推综合归类 (解析版)

数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n 项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n 中,已知a 1=2,a n +1-a n =2n ,则a 50等于()A.2451B.2452C.2449D.24502.(等比累加法)已知数列a n 满足a 1=2,a n +1-a n =2n ,则a 9=()A.510B.512C.1022D.10242024年高考数学专项复习数列求和与递推综合归类 (解析版)【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +12.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【变式演练】1.数列{a n}中,a1=1,a2=3,a n+1=a n-a n-1(n≥2,n∈N*),那么a2019=()A.1B.2C.3D.-32.数列a n的首项a1=3,且a n=2-2a n-1n≥2,则a2021=()A.3B.43C.12D.-2题型四【二阶等比数列型递推【典例分析】1.已知数列a n满足a1=2,且a n=2a n-1-1(n≥2,n∈N+),则a n=______________【变式演练】1.已知数列a n中,a1=1,a n=3a n-1+4(n∈N∗且n≥2),则数列a n通项公式a n为() A.3n-1 B.3n+1-2 C.3n-2 D.3n2.已知数列{a n}满足:a n+1=2a n-n+1(n∈N*),a1=3.(1)证明数列b n=a n-n(n∈N*)是等比数列,并求数列{a n}的通项;(2)设c n=a n+1-a na n a n+1,数列{c n}的前n项和为{S n},求证:S n<1.【典例分析】1.在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N*),则22019是这个数列的第________________项.【变式演练】1.已知数列a n满足a1=1,a n+1=2a na n+2.记C n=2na n,则数列Cn的前n项和C1+C2+...+Cn=.2.数列a n满足:a1=13,且na n=2a n-1+n-1a n-1(n∈N*,n≥2),则数列a n的通项公式是a n=.题型六前n项积型递推【典例分析】1.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a7a8>1,a7-1a8-1<0.则下列结论正确的是(多选题)A.0<q<1B.a7a9<1C.T n的最大值为T7D.S n的最大值为S7【技法指引】类比前n项和求通项过程来求数列前n项积:1.n=1,得a12.n≥2时,a n=T n T n-1所以a n=T1,(n=1) T nT n-1,(n≥2)【变式演练】1.若数列a n满足a n+2=2⋅a n+1a n(n∈N*),且a1=1,a2=2,则数列a n的前2016项之积为()A.22014B.22015C.22016D.220172.设等比数列a n的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,且a2020a2021> 1,a2020-1a2021-1<0,下列结论正确的是(多选题)A.S2020<S2021B.a2020a2022-1<0C.数列T n无最大值 D.T2020是数列T n中的最大值题型七“和”定值型递推【典例分析】1.若数列a n满足a n+2a n+1+a n+1a n=k(k为常数),则称数列a n为等比和数列,k称为公比和,已知数列a n是以3为公比和的等比和数列,其中a1=1,a2=2,则a2019=______.【变式演练】1.已知数列{a n}满足a n+a n+1=12(n∈N*),a2=2,S n是数列{a n}的前n项和,则S21为()A.5B.72C.92D.1322.知数列{a n}满足:a n+1+a n=4n-3(n∈N*),且a1=2,则a n=.题型八分段型等差等比求和【典例分析】1.已知数列a n满足a1=2,a n+1=32a n,n为奇数2a n,n为偶数 .(1)记b n=a2n,写出b1,b2,并求数列b n的通项公式;(2)求a n的前12项和.【变式演练】1.已知数列a n满足a1=1,a n+1=a n+1,n=2k-1, a n,n=2k.(1)求a2,a5的值;(2)求a n的前50项和S50.题型九函数中心型倒序求和【典例分析】1.已知A x 1,y 1 ,B x 2,y 2 是函数f (x )=2x 1-2x,x ≠12-1,x =12的图象上的任意两点(可以重合),点M为AB 的中点,且M 在直线x =12上.(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n,求S n ;(3)若在(2)的条件下,存在n 使得对任意的x ,不等式S n >-x 2+2x +t 成立,求t 的范围.【变式演练】2.已知a n 为等比数列,且a 1a 2021=1,若f x =21+x2,求f a 1 +f a 2 +f a 3 +⋯+f a 2021 的值.题型十分组求和型【典例分析】1.已知等比数列a n 的公比大于1,a 2=6,a 1+a 3=20.(1)求a n 的通项公式;(2)若b n =a n +1log 3a n +12log 3a n +22,求b n 的前n 项和T n .【技法指引】对于a n +b n 结构,利用分组求和法【变式演练】1.设S n 为数列a n 的前n 项和,已知a n >0,a 2n +2a n =4S n +3n ∈N *,若数列b n 满足b 1=2,b 2=4,b 2n +1=b n b n +2n ∈N *(1)求数列a n 和b n 的通项公式;(2)设c n =1S n,n =2k -1,k ∈N * b n,n =2k ,k ∈N *求数列c n 的前n 项的和T n .【典例分析】1.已知数列a n 满足a 1=2,且a n +1-3 ⋅a n +1 +4=0,n ∈N *.(1)求证:数列1a n -1是等差数列;(2)若数列b n 满足b n =2n +1a n -1,求b n 的前n 项和.【技法指引】对于a n b n 结构,其中a n 是等差数列,b n 是等比数列,用错位相减法求和;思维结构结构图示如下【变式演练】1.已知等比数列a n 的首项a 1=1,公比为q ,b n 是公差为d d >0 的等差数列,b 1=a 1,b 3=a 3,b 2是b 1与b 7的等比中项.(1)求数列a n 的通项公式;(2)设b n 的前n 项和为S n ,数列c n 满足nc n =a 2n S n ,求数列c n 的前n 项和T n .【典例分析】1.已知数列a n各项均为正数,且a1=2,a n+12-2a n+1=a n2+2a n.(1)求a n的通项公式(2)设b n=-1n a n,求b1+b2+b1+⋯+b20.【变式演练】1.设等差数列a n的前n项和为S n,已知a3+a5=8,S3+S5=10. (1)求a n的通项公式;(2)令b n=(-1)n a n,求数列b n的前n项和T n.题型十三无理根式型裂项相消求和【典例分析】1.设数列a n的前n项和为S n,且满足2S n=3a n-3.(1)求数列a n的通项公式:(2)若b n=a n3,n为奇数1log3a n+log3a n+2,n为偶数,求数列和b n 的前10项的和.【变式演练】1.设数列a n的前n项和S n满足2S n=na n+n,n∈N+,a2=2,(1)证明:数列a n是等差数列,并求其通项公式﹔(2)设b n=1a n a n+1+a n+1a n,求证:T n=b1+b2+⋯+b n<1.题型十四指数型裂项相消【典例分析】1.已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n ;(2)设b n =a n a n +1-1 ⋅a n +2-1 ,求数列b n 的前n 项和T n .【变式演练】1.数列a n 满足:a 1+2a 2+3a 3+⋅⋅⋅+n -1 a n -1=2+n -2 ⋅2n n ≥2 .(1)求数列a n 的通项公式;(2)设b n =a n a n -1 a n +1-1,T n 为数列b n 的前n 项和,若T n <m 2-3m +3恒成立,求实数m 的取值范围.题型十五等差指数混合型裂项【典例分析】1.已知数列a n 满足S n =n a 1+a n 2,其中S n 是a n 的前n 项和.(1)求证:a n 是等差数列;(2)若a 1=1,a 2=2,求b n =2n 1-a n a n a n +1的前n 项和T n .【变式演练】2.已知等比数列a n 的各项均为正数,2a 5,a 4,4a 6成等差数列,且满足a 4=4a 23,数列S n 的前n 项之积为b n ,且1S n +2b n=1.(1)求数列a n 和b n 的通项公式;(2)设d n =b n +2⋅a n b n ⋅b n +1,若数列d n 的前n 项和M n ,证明:730≤M n <13.【典例分析】1.已知数列a n 的满足a 1=1,a m +n =a m +a n m ,n ∈N * .(1)求a n 的通项公式;(2)记b n =(-1)n ⋅2n +1a n a n +1,数列b n 的前2n 项和为T 2n ,证明:-1<T 2n ≤-23.【技法指引】正负相间型裂和,裂项公式思维供参考:-1 n ⋅pn +q kn +b k (n +1)+b=-1 n ⋅t 1kn +b +1k (n +1)+b【变式演练】1.记正项数列a n 的前n 项积为T n ,且1a n =1-2T n .(1)证明:数列T n 是等差数列;(2)记b n =-1 n ⋅4n +4T n T n +1,求数列b n 的前2n 项和S 2n .【典例分析】1.已知等差数列a n 的前n 项和为S n ,若S 8=4a 4+20,且a 5+a 6=11.(1)求a n 的通项公式;(2)设b n =n 2+n +1a n a n +1,求b n 的前n 项和T n .【变式演练】1.已知等差数列a n 的通项公式为a n =2n -c c <2 ,记数列a n 的前n 项和为S n n ∈N * ,且数列S n 为等差数列.(1)求数列a n 的通项公式;(2)设数列4S n a n a n +1的前n 项和为T n n ∈N * ,求T n 的通项公式.好题演练好题演练1.(山东省泰安市2023届高三二模数学试题)已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.2.(2023·全国·模拟预测)已知正项数列a n 满足a 1=1,a n +1a n =1+1n.(1)求证:数列a 2n 为等差数列;(2)设b n =1a 2n a n +1+a n a 2n +1,求数列b n 的前n 项和T n .3.(2023·全国·学军中学校联考二模)设数列a n 满足a n +1=3a n -2a n -1n ≥2 ,a 1=1,a 2=2.(1)求数列a n 的通项公式;(2)在数列a n 的任意a k 与a k +1项之间,都插入k k ∈N * 个相同的数(-1)k k ,组成数列b n ,记数列b n 的前n 项的和为T n ,求T 27的值.4.(2023·全国·长郡中学校联考二模)已知正项数列a n 的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ∈N *且n ≥2).(1)求数列a n 的通项公式;(2)设数列a n +22n a n a n +1 的前n 项和为T n ,求证:T n <1.5.(2023·四川攀枝花·统考三模)已知等差数列a n的公差为d d≠0,前n项和为S n,现给出下列三个条件:①S1,S2,S4成等比数列;②S4=32;③S6=3a6+2.请你从这三个条件中任选两个解答下列问题.(1)求数列a n的通项公式;(2)若b n-b n-1=2a n n≥2,且b1=3,设数列1b n的前n项和为Tn,求证:13≤T n<12.6.(2023春·江西抚州·高二金溪一中校联考期中)已知数列a n满足a1=2,a n+1= 2a n+2,n为奇数,1 2a n+1,n为偶数.(1)记b n=a2n,证明:数列b n为等差数列;(2)若把满足a m=a k的项a m,a k称为数列a n中的重复项,求数列a n的前100项中所有重复项的和.7.(河北省2023届高三下学期大数据应用调研联合测评(Ⅲ)数学试题)已知数列a n 满足:a 1=12,3a n +1a n =1+a n +11+a n.(1)求证:1a n +1 是等比数列,并求出数列a n 的通项公式;(2)设b n =3n ⋅a n a n +1,求数列b n 的前n 项和S n .8.(2023·全国·模拟预测)已知数列a n 的前n 项和S n 满足S n =n 2-1+a n .(1)求a 1及a n ;(2)令b n =4S n a n a n +1,求数列b n 的前n 项和T n .数列求和与递推综合归类目录重难点题型归纳 1【题型一】等差与等比型累加法 1【题型二】换元型累加、累积法 3【题型三】周期数列型递推 4【题型四】二阶等比数列型递推 6【题型五】分式型求递推 7【题型六】前n项积型递推 8【题型七】“和”定值型递推 9【题型八】分段型等差等比求和 11【题型九】函数中心型倒序求和 12【题型十】分组求和型 14【题型十一】错位相减型求和 16【题型十二】正负相间型求和 19【题型十三】无理根式型裂项相消求和 20【题型十四】指数型裂项相消 22【题型十五】等差指数混合型裂项 23【题型十六】裂和型裂项相消 26【题型十七】分离常数型裂项 27好题演练 29重难点题型归纳重难点题型归纳题型一等差与等比型累加法【典例分析】1.(等差累加法)已知数列a n中,已知a1=2,a n+1-a n=2n,则a50等于()A.2451B.2452C.2449D.2450【答案】B【详解】由a n+1-a n=2n得:a n-a n-1=2n-1,a n-1-a n-2=2n-2,⋯⋯,a3-a2=2×2,a2-a1=2×1,各式相加可得:a n-a1=2×1+2+⋅⋅⋅+n-1=2×n n-12=n n-1,又a1=2,∴a n=2+n n-1=n2-n+2,∴a50=2500-50+2=2452.故选:B.2.(等比累加法)已知数列a n满足a1=2,a n+1-a n=2n,则a9=()A.510B.512C.1022D.1024【答案】B【详解】由a1=2,a n+1-a n=2n得a2-a1=2,a3-a2=22,a4-a3=23,⋮a n -a n -1=2n -1,以上各式相加得,a n -a 1=2+22+⋯+2n -1=21-2n -11-2=2n -2,所以a n =2n -2+a 1=2n ,所以a 9=29=512.故选:B .【技法指引】对于递推公式为a n -a n -1=f n ,一般利用累加法求出数列的通项公式;累乘法:若在已知数列中相邻两项存在:a na n -1=g (n )(n ≥2)的关系,可用“累乘法”求通项.【变式演练】1.已知数列a n n ∈N * 是首项为1的正项等差数列,公差不为0,若a 1、数列a 2n 的第2项、数列a n 2 的第5项恰好构成等比数列,则数列a n 的通项公式为()A.a n =2n -1B.a n =2n +1C.a n =n -1D.a n =n +1【答案】A【分析】根据题意设a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,所以1,1+3d ,1+24d 构成等比数列,即1+3d 2=1×1+24d ,求出d 即可求解.【详解】设等差数列a n 的公差为d d >0 ,所以a n =1+n -1 d ,所以a 2n =1+2n -1 d ,a n 2=1+n 2-1 d ,又a 1、数列a 2n 的第2项、数列a n 2的第5项恰好构成等比数列,即1,1+3d ,1+24d 构成等比数列,所以1+3d 2=1×1+24d ,解得d =2,d =0(舍去),所以a n =2n -1.故选:A .2.已知数列a n 中,a 1=1,前n 项和S n =n +23a n ,则a n 的通项公式为.【答案】a n =n n +12【分析】由S n =n +23a n ,变形可得则S n -1=n +13a n -1,两式相减变形可得a n a n -1=n +1n -1,又由a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a2a 1×a 1,计算可得a n =n (n +1)2,验证a 1即可得答案.【详解】根据题意,数列{a n }中,a 1=1,S n =n +23a n (n ∈N *),S n =n +23a n ①,S n -1=n +13a n -1②,①-②可得:a n =(n +2)a n 3-(n +1)a n -13,变形可得:a n a n -1=n +1n -1,则a n =a n a n -1 ×a n -1a n -2 ×⋯⋯×a 2a 1×a 1=n +1n -1 ×n n -2 ×⋯⋯×31 ×1=n (n +1)2;n =1时,a 1=1符合a n =n (n +1)2;故答案为:a n =n (n +1)2.题型二换元型累加、累积法【典例分析】1.已知数列a n 满足:a 1=13,(n +1)a n +1-na n =2n +1,n ∈N *,则下列说法正确的是()A.a n +1≥a nB.a n +1≤a nC.数列a n 的最小项为a 3和a 4D.数列a n 的最大项为a 3和a 4【答案】C【详解】令b n =na n ,则b n +1-b n =2n +1,又a 1=13,所以b 1=13,b 2-b 1=3,b 3-b 2=5,⋯,b n -b n -1=2n -1,所以累加得b n =13+n -1 3+2n -1 2=n 2+12,所以a n =b n n =n 2+12n =n +12n,所以a n +1-a n =n +1 +12n +1-n +12n =n -3 n +4 n n +1,所以当n <3时,a n +1<a n ,当n =3时,a n +1=a n ,即a 3=a 4,当n >3时,a n +1>a n ,即a 1>a 2>a 3=a 4<a 5<⋯<a n ,所以数列a n 的最小项为a 3和a 4,故选:C .【变式演练】1.(换元对数累加法)在数列a n 中,a 1=2,a n +1n +1=a n n +ln 1+1n ,则a n =()A.a 8B.2+n -1 ln nC.1+n +ln nD.2n +n ln n【答案】D【详解】由题意得,a n +1n +1=a n n +ln n +1n ,则a n n =a n -1n -1+ln n n -1,a n -1n -1=a n -2n -2+lnn -1n -2⋯,a 22=a 11+ln 21,由累加法得,a n n =a 11+ln n n -1+ln n -1n -2⋯+ln 21,即a n n =a 1+ln n n -1⋅n -1n -2⋅⋯⋅21,则an n=2+ln n ,所以a n =2n +n ln n ,故选:D2.已知数列a n 满足a 1=32,a n =n n -1a n -1-n 2n .(1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求满足S n <12的所有正整数n 的取值集合.【答案】(1)a n =n +n2n ;(2)1,2,3,4 .【详解】(1)因为a n =n n -1a n -1-n 2n ,所以a n n -a n -1n -1=-12n .因为a 22-a 11=-122,a33-a 22=-123,⋯,a n n -a n -1n -1=-12n ,所以a n n -a 11=-122+123+⋯+12n=-1221-12 n -11-12=12n-12,于是a n=n+n 2n .当n=1时,a1=1+12=32,所以a n=n+n2n.(2)因为S n-S n-1=a n=n+n2n >0,所以S n是递增数列.因为a1=1+12=32,a2=2+24=52,a3=3+323=278,a4=4+424=174,a5=5+525=16532,所以S1=32,S2=4,S3=598,S4=938<12,S5=53732>12,于是所有正整数n的取值集合为1,2,3,4.题型三周期数列型递推【典例分析】1.已知数列a n满足a1=2,a n+1=1+a n1-a n,(n∈N*),则a1⋅a2⋅a3⋅⋯a2009⋅a2010=_________.【答案】-6【解析】由已知有a2=1+a11-a1=-3,a3=1-31+3=-12,a4=1-121+12=13,a5=1+131-13=2,所以a5=a1=2,所以数列a n是周期数列,且周期为4,a1a2a3a4=a5a6a7a8=⋯=a2005a2006a2007a2008=1,而a2009a2010= a1a2=2×(-3)=-6,所以a1a2a3⋯a2010=-6。

江苏高三数学附加题知识点

江苏高三数学附加题知识点

江苏高三数学附加题知识点高三数学附加题是高中数学竞赛中的一个重要组成部分,也是对学生数学思维和解题能力的一次全面检验。

在江苏高三数学附加题中,考察的知识点主要包括以下几个方面:1. 复数与数列江苏高三数学附加题中常常涉及到复数和数列的相关内容。

对于复数,需要掌握复数的定义、复数的四则运算、共轭复数、复数的模和辐角等基本概念。

对于数列,需要了解等差数列、等比数列及其前n项和的计算方法,以及数列极限的性质和计算方法等。

2. 函数与方程函数与方程是江苏高三数学附加题中的另一个重要部分。

对于函数,需要了解函数的定义、函数的性质和分类,掌握常见函数图像的性质与变换规律。

对于方程,需要掌握一元二次方程和一元二次不等式的解法,了解三角方程和指数方程的基本解法。

3. 几何与向量几何与向量是江苏高三数学附加题中的重点考察内容。

在几何方面,需要熟练掌握平面几何和立体几何的相关知识,包括坐标系、向量运算、几何图形的性质和计算等。

在向量方面,需要了解向量的定义、向量的四则运算、向量的数量积和向量的夹角等基本概念,掌握向量的共线性、垂直性及其相关性质。

4. 排列与组合江苏高三数学附加题中常常考察排列与组合的相关知识。

需要掌握排列与组合的基本定义、计数原理、二项式定理及其相关性质,熟练运用组合数学的知识解答相关问题。

5. 三角函数三角函数是江苏高三数学附加题中的基础内容。

需要掌握三角函数的定义、性质和图像等基本知识,熟练运用三角函数的基本公式和计算方法解答相关问题。

总之,江苏高三数学附加题知识点的复杂性和广度需要学生在复习备考过程中充分了解和掌握。

通过系统的学习和大量的练习,加深对相关知识点的理解和应用能力,提高解题的技巧和速度,才能在考试中取得良好的成绩。

希望广大考生能够认真对待高三数学附加题的学习,充分发挥自己的潜力,顺利应对考试的挑战。

高考数学二轮复习 3个附加题专项强化练(三)二项式定理、数学归纳法 理

高考数学二轮复习 3个附加题专项强化练(三)二项式定理、数学归纳法 理

3个附加题专项强化练(三) 二项式定理、数学归纳法(理科)1.已知函数f 0(x )=x (sin x +cos x ),设f n (x )为f n -1(x )的导数,n ∈N *. (1)求f 1(x ),f 2(x )的表达式;(2)写出f n (x )的表达式,并用数学归纳法证明. 解:(1)因为f n (x )为f n -1(x )的导数, 所以f 1(x )=f 0′(x )=(sin x +cos x )+x (cos x -sin x ) =(x +1)cos x +(x -1)(-sin x ), 同理,f 2(x )=-(x +2)sin x -(x -2)cos x .(2)由(1)得f 3(x )=f 2′(x )=-(x +3)cos x +(x -3)sin x , 把f 1(x ),f 2(x ),f 3(x )分别改写为f 1(x )=(x +1)sin ⎝ ⎛⎭⎪⎫x +π2+(x -1)cos ⎝⎛⎭⎪⎫x +π2,f 2(x )=(x +2)sin ⎝ ⎛⎭⎪⎫x +2π2+(x -2)cos ⎝ ⎛⎭⎪⎫x +2π2,f 3(x )=(x +3)sin ⎝⎛⎭⎪⎫x +3π2+(x -3)cos ⎝⎛⎭⎪⎫x +3π2, 猜测f n (x )=(x +n )sin ⎝⎛⎭⎪⎫x +n π2+(x -n )cos ⎝⎛⎭⎪⎫x +n π2.(*) 下面用数学归纳法证明上述等式. (ⅰ)当n =1时,由(1)知,等式(*)成立. (ⅱ)假设当n =k (k ∈N *,k ≥1)时,等式(*)成立, 即f k (x )=(x +k )sin ⎝⎛⎭⎪⎫x +k π2+(x -k )cos ⎝⎛⎭⎪⎫x +k π2. 则当n =k +1时,f k +1(x )=f k ′(x )=sin ⎝⎛⎭⎪⎫x +k π2+(x +k )cos ⎝ ⎛⎭⎪⎫x +k π2+cos ⎝ ⎛⎭⎪⎫x +k π2+(x -k )⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2 =(x +k +1)cos ⎝⎛⎭⎪⎫x +k π2+[x -(k +1)]·⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2 =[x +(k +1)]sin ⎝⎛⎭⎪⎫x +k +12π+[x -(k +1)]·cos ⎝ ⎛⎭⎪⎫x +k +12π, 即当n =k +1时,等式(*)成立.综上所述,当n ∈N *时,f n (x )=(x +n )·sin ⎝⎛⎭⎪⎫x +n π2+(x -n )cos ⎝⎛⎭⎪⎫x +n π2成立. 2.设1,2,3,…,n 的一个排列是a 1,a 2,…,a n ,若a i =i 称i 为不动点(1≤i ≤n ).(1)求1,2,3,4,5的排列中恰有两个不动点的排列个数;(2)记1,2,3,…,n 的排列中恰有k 个不动点的排列个数为P n (k ),①求∑k =0nP n (k );②∑k =1nkP n (k ).解:(1)1,2,3,4,5的排列中恰有两个数不动,即为有两个a i =i ,另三个a i ≠i ,而三个数没有不动点的排列有2个, 故1,2,3,4,5的排列中恰有两个不动点的排列个数为2C 25=20.(2)①在1,2,3,…,n 的排列中分成这样n +1类,有0个不动点,1个不动点,2个不动点,…,n 个不动点,故∑k =0nP n (k )=n !.②由题设可知P n (k )=C k n P n -k (0)及组合恒等式k C k n =n C k -1n -1得∑k =1nkP n (k )=∑k =1nk C kn Pn -k(0)=∑k =1nn Ck -1n -1P n -k(0)=n ∑k =1nC k -1n -1P n -k(0)=n ∑k =0n -1C k n -1P (n -1)-k (0)=n !.3.已知(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n (n ∈N *),令T n =∑i =12nia i .(1)求a 0和T n 关于n 的表达式;(2)试比较2T n n与(n -1)a 0+2n 2的大小,并证明你的结论.解:(1)在(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n中,令x =-1,可得a 0=3n.对(x 2+2x +4)n =a 0+a 1(x +1)+a 2(x +1)2+…+a 2n (x +1)2n, 两边同时求导得,n (2x +2)(x 2+2x +4)n -1=a 1+2a 2(x +1)+3a 3(x +1)2+…+2na 2n (x+1)2n -1,令x =0,则∑i =12nia i =2n ×4n -1,所以T n =2n ×4n -1.(2)要比较2T n n与(n -1)a 0+2n 2的大小,即比较4n 与(n -1)3n +2n 2的大小.当n =1时,4n =4>(n -1)3n +2n 2=2; 当n =2或3或4时,4n <(n -1)3n +2n 2; 当n =5时,4n >(n -1)3n +2n 2. 猜想:当n ≥5时,4n>(n -1)3n+2n 2. 下面用数学归纳法证明.①由上述过程可知,当n =5时,结论成立.②假设当n =k (k ≥5,k ∈N *)时结论成立,即4k >(k -1)3k +2k 2, 两边同乘以4,得4k +1>4[(k -1)3k +2k 2]=k ·3k +1+2(k +1)2+[(k -4)3k +6k 2-4k -2],而(k -4)3k+6k 2-4k -2=(k -4)3k +6(k 2-k -2)+2k +10=(k -4)3k+6(k -2)(k +1)+2k +10>0,所以4k +1>[(k +1)-1]3k +1+2(k +1)2,即n =k +1时结论也成立.由①②可知,当n ≥5时,4n>(n -1)3n+2n 2成立.综上所述,当n =1时,2T n n >(n -1)a 0+2n 2;当n =2或3或4时,2T n n<(n -1)a 0+2n 2;当n ≥5时,2T n n>(n -1)a 0+2n 2.4.在集合A ={1,2,3,4,…,2n }中,任取m (m ≤2n ,m ,n ∈N *)个元素构成集合A m .若A m 的所有元素之和为偶数,则称A m 为A 的偶子集,其个数记为f (m );若A m 的所有元素之和为奇数,则称A m 为A 的奇子集,其个数记为g (m ).令F (m )=f (m )-g (m ).(1)当n =2时,求F (1),F (2),F (3)的值; (2)求F (m ).解:(1)当n =2时,集合A ={1,2,3,4},当m =1时,偶子集有{2},{4},奇子集有{1},{3},f (1)=2,g (1)=2,F (1)=0;当m =2时,偶子集有{2,4},{1,3},奇子集有{1,2},{1,4},{2,3},{3,4},f (2)=2,g (2)=4,F (2)=-2;当m =3时,偶子集有{1,2,3},{1,3,4},奇子集有{1,2,4},{2,3,4},f (3)=2,g (3)=2,F (3)=0.(2)当m 为奇数时,偶子集的个数f (m )=C 0n C mn +C 2n C m -2n +C 4n C m -4n +…+C m -1n C 1n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m n C 0n , 所以f (m )=g (m ),F (m )=f (m )-g (m )=0. 当m 为偶数时,偶子集的个数f (m )=C 0n C mn +C 2n C m -2n +C 4n C m -4n +…+C m n C 0n , 奇子集的个数g (m )=C 1n C m -1n +C 3n C m -3n +…+C m -1n C 1n ,所以F (m )=f (m )-g (m )=C 0n C mn -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n .一方面,(1+x )n (1-x )n =(C 0n +C 1n x +C 2n x 2+…+C n n x n )·[C 0n -C 1n x +C 2n x 2-…+(-1)n C n n x n], 所以(1+x )n(1-x )n中x m的系数为C 0n C mn -C 1n C m -1n +C 2n C m -2n -C 3n C m -3n +…-C m -1n C 1n +C m n C 0n ;另一方面,(1+x )n (1-x )n =(1-x 2)n ,(1-x 2)n 中x m的系数为(-1)m 2C m2n ,故F (m )=(-1)m 2C m2n . 综上,F (m )=⎩⎪⎨⎪⎧-1m 2C m 2n ,m 为偶数,0,m 为奇数.5.设可导函数y =f (x )经过n (n ∈N)次求导后所得结果为y =f (n )(x ).如函数g (x )=x 3经过1次求导后所得结果为g (1)(x )=3x 2,经过2次求导后所得结果为g (2)(x )=6x ,….(1)若f (x )=ln(2x +1),求f (2)(x );(2)已知f (x )=p (x )·q (x ),其中p (x ),q (x )为R 上的可导函数.求证:f (n )(x )=∑i =0nC i n p(n -i )(x )·q (i )(x ).解:(1)依题意,f (1)(x )=12x +1×2=2(2x +1)-1, f (2)(x )=-2(2x +1)-2×2=-4(2x +1)-2.(2)证明:①当n =1时,f (1)(x )=p (1)(x )·q (x )+p (x )·q (1)(x )=∑i =01C i n p(n -i )(x )·q (i )(x );②假设n =k 时,f (k )(x )=∑i =0kC i k p(k -i )(x )·q (i )(x )成立, 则n =k +1时,f(k +1)(x )=(f (k )(x ))′=∑i =0kC i k [p(k -i +1)(x )·q (i )(x )+p(k -i )(x )·q(i +1)(x )]=C 0k p(k +1)(x )·q (x )+C 1k p (k )(x )·q (1)(x )+C 2k p(k -1)(x )·q (2)(x )+…+C k k p (1)(x )·q (k )(x )+C 0k p (k )(x )·q (1)(x )+C 1k p(k -1)(x )·q (2)(x )+…+C k -1k p (1)(x )·q (k )(x )+C k k p (x )·q(k +1)(x )=C 0k p(k +1)(x )·q (x )+(C 0k +C 1k )p (k )(x )·q (1)(x )+()C 1k +C 2k p(k -1)(x )·q (2)(x )+…+(C k -1k+C kk )·p (1)(x )·q (k )(x )+C k k p (x )·q(k +1)(x )=C 0k +1p(k +1)(x )·q (x )+C 1k +1p (k )(x )·q (1)(x )+C 2k +1p(k -1)(x )·q (2)(x )+…+C kk +1p (1)(x )·q (k )(x )+C k +1k +1p (x )·q(k +1)(x ) =∑i =0k +1C i k +1p(k +1-i )(x )·q (i )(x ),所以,结论对n =k +1也成立.由①②得,f (n )(x )= i =0nC i n p(n -i )(x )·q (i )(x ).6.设整数n ≥9,在集合{1,2,3,…,n }中任取三个不同元素a ,b ,c (a >b >c ),记f (n )为满足a +b +c 能被3整除的取法种数.(1)直接写出f (9)的值; (2)求f (n )表达式. 解:(1)f (9)=12.(2)①当n =3k (k ≥3,k ∈N *)时,记k =n3,集合为{1,2,3,…,3k -1,3k }.将其分成三个集合:A ={1,4,…,3k -2},B ={2,5,…,3k -1},C ={3,6,…,3k }. 要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从A 中取一个,从B 中取一个(此数与A 中取的那个数之和能被3整除).故有3C 3k +C 1k C 1k C 1k =k k -1k -22+k 3=n 3-3n 2+6n18种取法;②当n =3k +1(k ≥3,k ∈N *)时,记k =n -13,集合为{1,2,3…,3k,3k +1}.将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有2C 3k +C 3k +1+C 1k C 1k C 1k +1=k k -1k -23+k +1k k -16+k 2(k +1)=k k -122+k 2(k +1)=n 3-3n 2+6n -418种取法;③当n =3k +2(k ≥3,k ∈N *)时,记k =n -23,集合为{1,2,3,…,3k +1,3k +2}.将其分成三个集合:A ={1,4,…,3k -2,3k +1},B ={2,5,…,3k -1,3k +2},C ={3,6,…,3k }.要使得a +b +c 能被3整除,a ,b ,c 可以从A 中取三个或从B 中取三个或从C 中取三个或从C 中取一个,从B 中取一个,从A 中取一个(此数与B 中取的那个数之和能被3整除).故有C 3k +2C 3k +1+C 1k C 1k +1C 1k +1=k k -1k -26+k +1k k -13+k (k +1)2=k 2k -12+k (k +1)2=n 3-3n 2+6n -818种取法.综上所述,f (n )=⎩⎪⎨⎪⎧n 3-3n 2+6n18,n =3kk ≥3,k ∈N *,n 3-3n 2+6n -418,n =3k +1k ≥3,k ∈N *,n 3-3n 2+6n -818,n =3k +2k ≥3,k ∈N*.。

高考数学总复习 考前三个月 附加题高分练6 计数原理、二项式定理和数学归纳法 理

高考数学总复习 考前三个月 附加题高分练6 计数原理、二项式定理和数学归纳法 理

6.计数原理、二项式定理和数学归纳法1.已知等式(1+x )2n -1=(1+x )n -1(1+x )n.(1)求(1+x )2n -1的展开式中含x n 的项的系数,并化简:C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n ;(2)证明:(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n2n -1. (1)解 (1+x )2n -1的展开式中含x n 的项的系数为C n2n -1,由(1+x )n -1(1+x )n=(C 0n -1+C 1n -1x +…+C n -1n -1xn -1)(C 0n +C 1n x +…+C n n x n )可知,(1+x )n -1(1+x )n的展开式中含x n的项的系数为C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n . 所以C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1. (2)证明 当k ∈N *时,k C kn =k ·n !k !(n -k )!=n !(k -1)!(n -k )!=n ·(n -1)!(k -1)!(n -k )!=n C k -1n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n)2=∑k =1n[k (C k n )2]=k =1n (k C k n C k n )=k =1n (n C k -1n -1C k n )=n k =1n (C k -1n -1C kn )=n k =1n (C n -k n -1C kn ).由(1)知C 0n -1C n n +C 1n -1C n -1n +…+C n -1n -1C 1n =C n2n -1, 即k =1n (C n -k n -1C k n )=C n2n -1,所以(C 1n )2+2(C 2n )2+…+n (C n n )2=n C n2n -1.2.(2017·江苏泰州中学调研)在平面直角坐标系xOy 中,点P (x 0,y 0)在曲线y =x 2(x >0)上.已知点A (0,-1),P n (x n0,y n0),n ∈N *.记直线AP n 的斜率为k n . (1)若k 1=2,求P 1的坐标; (2)若k 1为偶数,求证:k n 为偶数.(1)解 因为k 1=2,所以y 0+1x 0=x 20+1x 0=2,解得x 0=1,y 0=1,所以P 1的坐标为(1,1).(2)证明 方法一 设k 1=2p (p ∈N *),即y 0+1x 0=x 20+1x 0=2p .所以x 20-2px 0+1=0,所以x 0=p ±p 2-1.因为y 0=x 2,所以k n =y n 0+1x n 0=x 2n0+1x n 0=x n0+1x n 0,所以当x 0=p +p 2-1时,k n =(p +p 2-1)n+⎝ ⎛⎭⎪⎫1p +p 2-1n =(p +p 2-1)n +(p -p 2-1)n.同理,当x 0=p -p 2-1时,k n =(p +p 2-1)n +(p -p 2-1)n.①当n =2m (m ∈N *)时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.②当n =2m +1(m ∈N )时,k n =2∑k =0mC 2k n pn -2k(p 2-1)k,所以k n 为偶数.综上,k n 为偶数.方法二 因为⎝⎛⎭⎪⎫x 0+1x 0⎝⎛⎭⎪⎫x n +10+1xn +10=x n +20+1x n +20+x n0+1x n 0,所以k n +2=k 1k n +1-k n .k 2=x 20+1x 20=⎝⎛⎭⎪⎫x 0+1x 02-2=k 21-2. 设命题p (n ):k n ,k n +1均为偶数.以下用数学归纳法证明“命题p (n )是真命题”.①因为k 1是偶数,所以k 2=k 21-2也是偶数.当n =1时,p (n )是真命题;②假设当n =m (m ∈N *)时,p (n )是真命题,即k m ,k m +1均为偶数,则k m +2=k 1k m +1-k m 也是偶数,即当n =m +1时,p (n )也是真命题.由①②可知,对n ∈N *,p (n )均是真命题,从而k n 是偶数.3.(2017·江苏扬州中学模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *)(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝⎛⎭⎪⎫cosπ3×2n -12-1, ∴a n =2a 2n +1-1, ∴a n +1=±a n +12,又n ∈N *,n +1≥2,a n +1>0, ∴a n +1=a n +12.(2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2, 当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3, 猜想:当n ≥3时,a n <b n ,下面用数学归纳法证明. ①当n =3时,由上知,a 3<b 3,结论成立. ②假设当n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k ·k !, 则当n =k +1时,a k +1=a k +12<2-2k ·k !2=1-1k ·k !, b k +1=1-2(k +1)·(k +1)!,要证a k +1<b k +1,即证明⎝⎛⎭⎪⎫ 1-1k ·k !2<⎝ ⎛⎭⎪⎫1-2(k +1)·(k +1)!2, 即证明1-1k ·k !<1-4(k +1)·(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)·(k +1)!2,即证明1k ·k !-4(k +1)·(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)·(k +1)!2>0, 即证明(k -1)2k (k +1)·(k +1)!+⎝ ⎛⎭⎪⎫2(k +1)·(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得:当n =1时,a 1>b 1;当n =2时,a 2=b 2, 当n ≥3,n ∈N *时,a n <b n .4.已知f n (x )=C 0n x n-C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论. 解 (1)f 1(x )=C 01x -C 11(x -1)=1,f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6.(2)猜测f n (x )=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x )=1,等式成立. ②假设当n =m 时,等式成立,即f m (x )=k =0m (-1)k C k m (x -k )m =m !.当n =m +1时,则f m +1(x )=k =0m +1(-1)k C k m +1·(x -k )m +1.因为C k m +1=C k m +C k -1m ,k C k m +1=(m +1)·C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C mm ,所以f m +1(x )=k =0m +1(-1)k C k m +1(x -k )m +1=x k =0m +1(-1)k C k m +1(x -k )m -k =0m +1(-1)k k C km +1(x -k )m=x k =0m(-1)k C k m(x -k )m+x ∑k =1m +1·(-1)k Ck -1m(x -k )m-(m +1)∑k =1m +1·(-1)k C k -1m (x -k )m=x ·m !+(-x +m +1)k =0m (-1)k C km ·[(x -1)-k ]m=x ·m !+(-x +m +1)·m! =(m +1)·m !=(m +1)!. 即n =m +1时,等式也成立.由①②可知,对n ∈N *,均有f n (x )=n !.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学附加题归类复习一、附加题的两点共识1.数学附加题的40分与I卷的160分对理科同学同等重要.2.数学附加题得很高的分数不容易,但要得到基本分还是不困难的.原因:(1)考试说明要求附加题部分易、中、难题的占分比例控制在5:4:1左右,即中低档题占总分的90%左右.(2)考试时间仅有30分钟,因此运算量与思维量都会控制.(3)准确定位,合理取舍.二、各模块归类分析及应对策略1.附加题的知识内容比较多,根据江苏高考说明,考查选修系列2中的内容,主要有:曲线方程与抛物线,空间向量与立体几何,复合函数的导数,数学归纳法,排列组合与二项式定理,离散型随机变量的分布列、期望与方差,以及选修4系列中的《4-1几何证明选讲》,《4-2矩阵与变换》,《4-4坐标系与参数方程》,《4-5不等式选讲》.2.二轮专题和课时建议:专题内容说明(核心)第1课时矩阵与变换矩阵的运算;矩阵与变换;逆矩阵;特征值与特征向量.采取专题与考试、讲评相结合的方法,最终形成完整的知识结构,突出重点专题,控制难度,提高解题速度和运算的准确性第2课时参数方程与坐标系极坐标与直角坐标互化、参数方程与普通方程的互化;圆、椭圆的参数方程应用.第3课时排列组合两个计数原理、排列组合第4~5课时概率及概率分布互斥事件、独立事件、独立重复试验,概率分布及期望、方差第6课时二项式定理二项式展开,系数与二项式系数第7课时空间向量与立体几何空间向量的坐标运算,三种角的计算第8课时圆锥曲线与方程轨迹方程;抛物线的标准方程及几何性质;直线与抛物线第9课时数学归纳法数学归纳法原理及简单应用3.四年高考考查内容2008年2009年2010年2011年矩阵与变换曲线与变换逆矩阵矩阵与矩阵、矩阵与列向量的乘法矩阵与矩阵、矩阵与列向量的乘法坐标系与参数方程椭圆的参数方程的应用参数方程化普通方程极坐标方程化直角坐标方程参数方程化普通方程考点一:二阶矩阵与平面列向量的乘法、二阶矩阵的乘法.例1(南京市2008-2009学年度第一学期期末调研)在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (-1,2),C (0,3).求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的图形的面积.变化1:(2010年江苏高考)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C(-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 00 1,N =⎣⎢⎡⎦⎥⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.变化2:(2011年江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12,求向量α,使得A 2α=β.考点二:二阶矩阵与平面变换 例2在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.变化1:(南京市2009-2010学年度第一学期期末调研测)求直线2x +y -1=0在矩阵⎣⎢⎡⎦⎥⎤1 2 0 2作用下变换得到的直线的方程.说明:直线变换为直线,直接用两点变换相对简单.变化2:(南京市2010届第三次模拟)如果曲线x 2+4xy +3y 2=1在矩阵⎣⎢⎡⎦⎥⎤1 a b 1的作用下变换得到曲线x 2-y 2=1,求a +b 的值.变化3:已知△ABC ,A (-1,0),B (3,0),C (2,1),对它先作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M 1,M 2;(2)求点C 在两次连续的变换作用下所得到的点的坐标.说明:可以依次计算两次变换下的对应点,也可以利用矩阵乘法将连续两次变换等效为一次变换,应注意该变换对应的矩阵应该是第二次变换对应的矩阵左乘第一次变换对应的矩阵,在本题中即M 2 M 1,矩阵乘法是不满足交换律的. 考点三: 逆矩阵例3(2009年江苏高考)求矩阵A =⎣⎢⎡⎦⎥⎤3 22 1的逆矩阵..说明:方法一,根据A A -1=E ,利用待定系数法求解;方法二:直接利用公式计算.应对策略:待定系数法,运算量比较大,直接利用公式计算简便,但公式不能出错,另外为了防止缺少解题过程之嫌,最好将公式书写一遍.变化1:已知 ⎣⎢⎡⎦⎥⎤1 01 2 B =⎣⎢⎡⎦⎥⎤-4 34 -1 ,求二阶矩阵B .变化2:已知在一个二阶矩阵M 对应变换的作用下,点A (1,2)变成了点A ′(7,10),点B (2,0)变成了点B ′(2,4),求矩阵M 的逆矩阵M -1.说明:可以先求矩阵M ,再求M -1,也可以直接利用逆变换直接求M -1.变化3:(2011年3月苏、锡、常、镇四市教学情况调查)已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45°,再作关于x 轴反射变换,求这个变换的逆变换的矩阵. 说明: (M 2M 1)-1=M 1-1 M 2-1.考点4:特征值与特征向量例4已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,向量α=⎣⎢⎡⎦⎥⎤74.(1)求A 的特征值λ1、λ2和特征向量α1、α2; (2)计算A 5α的值.应对策略:一、记忆特征多项式,和这类问题的求解步骤;二、理解特征值与特征向量理论.理论: ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎩⎨⎧(λ-a)x -by =0,-cx +(λ-b)y =0.方程组有不全为0的解,即⎪⎪⎪⎪⎪⎪λ-a b -c λ-d =0.变化1:(盐城市2011届第二次模拟)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 x 的一个特征值为3,求其另一个特征值.变化2:(南通市2011届第二次模拟)已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .教材中的几种常见变换矩阵一般不要求记忆,但如果能识别一下矩阵,可以简化一些运算,上述选题中有不少这样的问题.以下内容最好能记忆:1.旋转变换矩阵错误!.记忆三部分特征:第一列平方和是1,且类似单位圆的参数方程;主对角线上两数相等,副对角线上两数互为相反数.2.二阶矩阵M =⎣⎢⎡⎦⎥⎤a b c d 的逆矩阵为M -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc -c ad -bca ad -bc =1|M|⎣⎢⎡⎦⎥⎤ d -b -c a .其中⎣⎢⎡⎦⎥⎤d -b -c a 是矩阵M 主对角线上两数交换,副对角线上两数变为相反数得到. 3.矩阵⎣⎢⎡⎦⎥⎤a b c d 特征多项式f (λ)=错误!.(二)坐标系与参数方程 考点1:极坐标化为与直角坐标例1(2010年高考题)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.例2(盐城市2011届第二次模拟)若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+π3),它们相交于A 、B 两点,求线段AB 的长.应对策略:1.熟练掌握极坐标方程化为与直角坐标方程的公式错误!不能出现类似于ρcos θ=y 的错误,应注意一些不能套用公式转化的特殊情形.变化1:(南京市、盐城市2010-2011学年度第三次调研)极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=错误!(ρ∈R )相交于A 、B 两点,求线段AB 的长.2.应了解点的极坐标的形式和意义.变化2:在极坐标系中,O 为极点,已知两点M 、N 的极坐标分别为(4,23π),(2,14π).求△OMN 的面积.变化3:(南通市2011届高三第三次调研测试)在极坐标系中,求经过三点O (0,0),A (2,π2),B (22,π4)的圆的极坐标方程.说明:方法一:先求出圆的直角坐标方程,再转化为极坐标方程; 方法二:直接利用图形得极坐标方程.3.极坐标转化为直角坐标后,往往就是研究直线与圆以及圆与圆的问题,我们应熟悉相关的位置关系的判别,以及一些距离或长度的计算.考点2:参数方程转化普通方程例3(2009年高考题)已知曲线C 的参数方程为⎩⎨⎧x =t -1t,y =3(t +1t)(t 为参数,t >0).求曲线C 的普通方程.应对策略:掌握一些消元的常见方法,一般有以下几种①代入消元法;②加减消元法;③利用代数恒等式或三角xB A O P恒等式.消元后要注意字母的取值范围是否发生变化. 考点3:参数方程的应用例4(2008年江苏高考)在平面直角坐标系xOy 中,点P (x ,y )是椭圆x23+y 2=1上的一个动点,求S =x +y 的最大值.变化1:(南京市2010届第二次模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+2t ,y =1-t (t 为参数),椭圆C 的参数方程为⎩⎨⎧x =2cosθ,y =sinθ(θ为参数),试在椭圆C 上求一点P ,使得点P 到直线l 的距离最小.应对策略:掌握用角参数表示椭圆上动点的方法,并掌握三角函数y =a sin x +b cos x 求最值的方法.(三)概率基本题型:附加题概率考查两个方面问题:(1)随机事件的概率的计算,考查互斥事件、对立事件、相互独立事件的概率; (2)离散型随机变量分布列及其数学期望、方差计算. 基本策略:1.解好概率问题的关键是理解题意,审题务必仔细.把复杂事件说明确是解题第一步;例1(2010年江苏高考)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立. (1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率.2.复杂问题简单化的方法有两种:一是将复杂事件分拆为几个简单的互斥事件,二是转化为其对立事件.分拆事件时一定要做到“不重不漏”.特别应注意“至多”、“至少”、“恰有”等词语.例2将甲、乙两所大学共6名大学生志愿者随机平均分配到某地从事A ,B ,C 三个岗位服务,且A 岗位至少有一名甲大学志愿者的概率是35.(1)求6名志愿者中来自甲大学的是几人;(2)求A岗位恰好甲、乙两所大学各一人的概率;(3)设随机变量ζ为在B岗位服务的甲大学志愿者的人数,求ζ分布列及期望.例3(南京市2008届高三摸底考试)甲投篮命中的概率为0.5,每次投篮之间没有影响.甲连续投篮若干次,直到投中2次时停止,且最多投5次.(1)记甲投篮的次数为X,求随机变量X的概率分布;(2)求随机变量X的数学期望E(X)和方差V(X).(本题结果用最简分数表示).说明:求P(X=5)是该题的难点,回避难点的方法是求其对立事件P(X≤4)的概率,但这样做必须保证前几个概率都正确.3.概率中常犯的错误不仅表现为复杂事件分拆过程中“重”或“漏”(表现为基本事件的不互斥或不对立),独立事件与独立重复事件混同(表现为漏乘相应的组合数),也表现为对古典概型模型本质理解不透彻.例4盒子中装着有标数字1,2,3,4,5的上卡片各2张,从盒子中任取3张卡片,按3张卡片上最大数字的8倍计分,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量ξ的概率分布和数学期望;(3)计分不小于20分的概率.说明:解答(1)时的一种典型错误是认为“取得两张1和一张2”及“取得一张1一张2一张3”是等可能的基本事件.解答(2)中P(ξ=2)时的一种典型错误是认为事件“取出的3张卡片中最大数字为2”仅含两个基本事件:“取得两张1和一张2”和“取得两张2和一张1”.例5(2011届高三学情调研)袋中装着标有数字1,2,3,4的卡片各1张,甲从袋中任取2张卡片(每张卡片被取出的可能性都相等),并记下卡面数字和为X,然后把卡片放回,叫做一次操作.(1)求在一次操作中随机变量X 的概率分布和数学期望E (X ); (2)甲进行四次操作,求至少有两次X 不大于E (X )的概率.4.特别要注意的:(1)答题的基本规范:①交待一些基本事件;②写出基本事件发生的概率;③求其它事件发生的概率、写出概率分布列等;④答.(2)养成利用i=1∑nP i =1检验计算是否正确的习惯.(四)空间向量与立体几何 考点1:空间向量的坐标运算例1(2008年江苏高考)如图,设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D1PD1B =λ,当∠APC 为钝角时,求λ的取值范围.考点2:空间向量的应用 1.判别线面位置关系;2.计算异面直线所成角,直线与平面所成角,二面角.例2(2011年江苏高考) 如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,点N 是BC 的中点,点M 在CC 1上,设二面角A 1-DN -M 的大小为θ. (1)当θ=90°时,求AM 的长; (2)当cos θ=66时,求CM 的长.AB CDA 1B 1C 1D 1P例3如图,已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直, AA 1=AB =AC =1,AB ⊥AC ,M 是CC 1的中点,N 是BC 的中点,点P 在直线A 1B 1上,且满足A1P→=λA1B1→. (1)当λ取何值时,直线PN 与平面ABC 所成的角θ最大? (2)若平面PMN 与平面ABC 所成的二面角为45°,试确 定点P 的位置.2.要掌握以下关系:异面直线所成角的余弦等于两条异面直线方向向量夹角余弦的绝对值;线面所成角的正弦等于平面的法向量与直线方向向量夹角余弦的绝对值;二面角平面角余弦与二面角两平面法向量夹角的余弦绝对值相等,其正负可以通过观察二面角是锐角还是钝角进行确定.(五)圆锥曲线与方程考点1:曲线方程. 考点2:直线与抛物线.例1(2009年江苏高考)在平面直接坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上. (1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线方程;(3)设过点M (m ,0)(m >0)的直线交抛物线C 于D ,E 两点,ME =2DM ,记D 和E 两点间的距离为f (m ),求f (m )关于m 的表达式.PMCBAN例2在平面直角坐标系xOy中,动点P到直线x=-2的距离比它到点F(1,0)的距离大1.(1)求动点P的轨迹C;(2)直线l过点(1,0)且与曲线C交于A,B两点,若△AOB的面积为43,求直线l的斜率.三、。

相关文档
最新文档