高三数学一轮复习函数知识点总结

合集下载

幂函数、指数与指数函数课件-2025届高三数学一轮复习

幂函数、指数与指数函数课件-2025届高三数学一轮复习
标轴没有公共点,则 f ( 2 )=(
A.
1
2
B. 2
A )
C. 2
D. 2 2
[解析] 因为 f ( x )为幂函数,所以 m 2+ m -1=1,解得 m =-2或 m =1,又 f ( x )的
图象与坐标轴无公共点,故 m <0,所以 m =-2,故 f ( x )= x -2,所以 f ( 2 )=

3

2
.

三、知识点例题讲解及方法技巧总结
命题点1
幂函数的图象与性质
例1 (1)[2023山西省运城市景胜中学模拟]如图所示的曲线是幂函数 y = xn 在第一象限
1
2
内的图象.已知 n 分别取±2,± 四个值,与曲线 C 1, C 2, C 3, C 4对应的 n 依次为
(
A )
1
2
1
2
A. 2, ,- ,-2
图象恒过定点 M ( m , n ),则函数 g ( x )= m + xn 的图象不经过(
A. 第第四象限
D )
[解析] ∵ a 0=1,∴ f ( x )= ax -1-2的图象恒过定点(1,-1),∴ m =1, n =-1,
1
∴ g ( x )=1+ ,其图象不经过第四象限,故选D.
5−1
5−1
≤ m <2,所以实数 m 的取值范围为[
,2).
2
2
命题点2 指数幂的运算
例2 计算:
2

3
3
(1)(-3 )
8
1
−2
+(0.002 )

[解析] 原式=(-1 )
4
9
2
3

函数概念知识点总结 高三数学一轮复习

函数概念知识点总结 高三数学一轮复习

知识点总结 3-1函数概念一.函数的概念1.定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 注:函数的实质是从一个非空集合到另一个非空集合的映射.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(函数问题定义域优先)(2)相同函数:如果两个函数的定义域相同,并且对应关系完全一致,那么这两个函数是同一个函数.3.函数的表示法:解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.5.复合函数如果函数y=f(t)的定义域为A, 函数t=g(x) 的定义域为B, 值域为C, 则当C ⊆A 时,称函数y=f(g(x))为f(t)与g(x)在B 的复合函数,其中t 叫做中间变量,t=g(x)叫做内层函数,y=f(t)叫做外层函数.提示:①内层函数的值域是外层函数的定义域或定义域的子集.②函数f(g(x))的定义域是指x 的取值范围,而不是g(x)的取值范围.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空实数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.二.求函数定义域时常用限制条件:函数的定义域是使解析式有意义的自变量的取值集合;(1)分式的分母不为零;(2)偶次方根的被开方数大于或等于零:(3)对数的真数大于零,底数大于零且不等于1;(4)零次幂或负指数次幂的底数不为零;(5)三角函数中的正切tan y x =的定义域是{,x x R ∈且x ≠kπ+π2,k ∈Z};(6)①若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域为不等式a ≤g (x )≤b 的解集;②已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a,b ])的值域.(7)对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域.三.函数的值域1.求函数的值域(最值)的常用方法(1)配方法:主要用于和一元二次函数有关的函数求值域问题.(2)单调性法:利用函数的单调性,再根据所给定义域来确定函数的值域.(3)数形结合法.(4)换元法:引进一个(几个)新的量来代替原来的量,实行这种“变量代换”.(5)分离常数法:分子、分母同次的分式形式采用配凑分子的方法,把函数分离成一个常数和一个分式和的形式.2.基本初等函数的值域(1))0(≠+=k b kx y 的值域是R .(2))0(2≠++=a c bx axy 的值域是:当0>a 时,值域为[4ac−b 24a ,+∞);当0<a 时,值域为(−∞,4ac−b 24a ]. (3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)0(>=a a y x 且)1≠a 的值域是)0(∞+,. (5)0(log >=a x y a 且)1≠a 的值域是R .3.区间:设a,b ∈R ,且a <b ,我们规定: 集合区间名称 符号表示 数轴表示{x |a ≤x ≤b }闭区间 [a ,b ]{x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 左闭右开区间 [a ,b ){x |a <x ≤b } 左开右闭区间 (a ,b ]{x |x ≥a } [a ,+∞){x |x >a } (a ,+∞){x |x ≤a } (-∞,a ]{x |x <a }(-∞,a )R(-∞,+∞) 若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.(1)分段函数虽由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交,写分段函数的定义域时,区间端点应不重不漏.。

2024年高考数学第一轮复习知识点总结

2024年高考数学第一轮复习知识点总结

2024年高考数学第一轮复习知识点总结一、函数与方程(约占25%)1. 函数的概念与性质:定义域、值域、单调性、奇偶性、周期性等。

2. 一次函数与二次函数:斜率、截距、图像特征、解析式、三要素表示法。

3. 指数函数与对数函数:性质、特征、解析式。

4. 三角函数:正弦函数、余弦函数、正切函数的性质、图像、周期与频率等。

5. 幂函数与反比例函数:性质、图像、变化规律。

6. 组合与复合函数:定义、性质、计算方法。

7. 方程与不等式:一元一次方程、一元二次方程、一元高次方程的解法、根的判别、关系式、二次函数与方程。

二、空间与向量(约占15%)1. 点、直线与平面:空间几何图形的基本概念、关系与性质。

2. 空间向量:向量的表示、运算、模与单位向量、数量积与向量积的意义与计算。

3. 空间直线与平面的方程:点线面关系、夹角与距离、平面投影问题。

4. 空间几何证明:基本证明方法与技巧。

三、导数与微分(约占15%)1. 函数的导数:导数的定义与性质、基本导数公式、导数的几何意义、高阶导数。

2. 导数的计算:四则运算法则、链式法则、乘法法则、常见函数的导数。

3. 函数的微分:微分的定义与计算、微分与导数的关系、微分中值定理。

4. 导数应用:切线、法线、函数的极值与最值、函数的单调性、函数的凹凸性与拐点、不定积分、定积分等。

四、概率与统计(约占15%)1. 随机事件与概率:事件的概念、样本空间、事件的运算、概率的定义与性质、基本事件、条件概率与乘法定理。

2. 随机变量:离散型与连续型随机变量、分布函数、概率分布列、概率密度函数、期望与方差。

3. 概率分布:离散型随机变量的分布、二项分布、泊松分布、连续型随机变量的分布、均匀分布、正态分布。

4. 统计与抽样:参数与统计量、抽样方法与数据处理、样本均值与总体均值的关系、抽样分布与中心极限定理。

五、数列与数列极限(约占13%)1. 数列与数列极限:数列的概念与性质、数列极限的定义与性质、等差数列、等比数列、收敛性判定、数列极限的性质。

数学一轮复习函数知识点汇总

数学一轮复习函数知识点汇总

面对高三数学大量的知识点,好多的同学都不知道应该从哪里复习。

下面就为大家分享高三数学第一轮复习函数知识点汇总,供参考。

一次函数一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b 则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k。

即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y 轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高考数学一轮复习基本初等函数知识点

高考数学一轮复习基本初等函数知识点

高考数学一轮复习基本初等函数知识点每一章知识点把握对复习是专门有利的,查字典数学网为您提供的是差不多初等函数知识点,期望能够关心到你。

一、指数函数(一)指数与指数幂的运算1.根式的概念:一样地,假如,那么叫做的次方根(nthroot),其中1,且*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.现在,的次方根用符号表示.式子叫做根式(radical),那个地点叫做根指数(radi calexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.现在,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根能够合并成(0).由此可得:负数没有偶次方根;0的任何次方根差不多上0,记作。

注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样能够推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一样地,函数叫做指数函数(exponential),其中x 是自变量,函数的定义域为R.注意:指数函数的底数的取值范畴,底数不能是负数、零和1.2、指数函数的图象和性质a1图象特点函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)自左向右看,图象逐步上升自左向右看,图象逐步下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;注意:利用函数的单调性,结合图象还能够看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)关于指数函数,总有;(4)当时,若,则;二、对数函数(一)对数1.对数的概念:一样地,假如,那么数叫做以为底的对数,记作:(底数,真数,对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式.两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.对数式与指数式的互化对数式指数式对数底数幂底数对数指数真数幂(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).注意:1对数函数的定义与指数函数类似,差不多上形式定义,注意辨别。

高考数学一轮复习知识点大全-函数

高考数学一轮复习知识点大全-函数

第二部分 函数1. 了解映射:f A B →的概念注意:(1)映射可以是多对一,也可以是一对一的对应,但不能是一对多的对应;(2)A 中元素在B 中必须都有象且唯一;(3)B 中元素在A 中不一定都有原象,若有原象也不一定唯一.2. 函数:f A B →是特殊的映射.特殊在定义域A 和值域C 都是非空数集!注意值域C B ⊆.函数的三要素:定义域、对应法则、值域,其中值域由定义域和对应法则确定, 也就是说,确定一个函数,只需确定函数的定义域和对应法则.3. 求函数定义域的常用方法:(1)偶次根式的被开方数非负;分式的分母不能为零;对数log a x 中0x >,0a >且1a ≠;三角形中0A π<<, 最大角3π≥,最小角3π≤等等.(2)根据实际问题的要求确定自变量的范围.注意单位.[注]:定义域要用集合或区间表示,不能用不等式表示.4. 求函数值域(最值)的方法:基本初等函数直接利用单调性;导数;均值定理;三角代换;数形结合;几何意义等.5. 指数函数()x f x a =()0,1a a >≠且的反函数是()1log a f x x -=()0,1a a >≠且, 反之亦然.它们的定义域与值域互换,图象关于直线y =x 对称.6. 函数的奇偶性:(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称.(2)确定函数奇偶性的常用方法(若函数的解析式较为复杂,应先化简,再判断其奇偶性,但要注意定义域的变化,如2()1x x f x x -=-): ①直接利用奇偶性定义判断:②利用奇偶性定义的等价形式:()()0f x f x ±-=或()()()()10f x f x f x -=±≠.如:奇函数(lg y x =±,11x x a y a +=-()0,1a a >≠且的判断. (3)函数奇偶性的性质:① 奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.② 若()f x 为偶函数,则()()f x f x =,此性质常用于根据单调性解不等式. ③ 若()f x 为奇函数,且0在函数的定义域中,则必有()00f =,常用此性质解题,但要注意:()00f =是()f x 为奇函数的既不充分也不必要条件.7. 函数的单调性:(1)确定函数的单调性或单调区间的常用方法:①在解答题中常用:定义法:(取值――作差――变形――定号);导数法:(在区间(),a b 内,若总有()'0f x >,则()f x 为增函数;反之,若()f x 在区间(),a b 内为增函数,则()'0f x ≥.请注意两者的区别:前者不含等号,后者含等号.②选择填空题还可用数形结合法、特殊值法等等, 特别要注意b y ax x=+型函数的图象和单调性在解题中的运用 (,a b 同号时,对勾函数;,a b 异号时,在()()0,,0+∞-∞上分别单调)③复合函数法:复合函数单调性的特点是同增异减.如:函数()20.5log 2y x x =-+的单调递增区间是?(答:(1,2)).关注定义域. 函数sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间是?(应首先将x 的系数化为正数) 答:511(,),1212k k k ππππ++∈Z . (2)特别提醒:求单调区间时要注意,一是勿忘定义域;二是不能用不等式表示;三是单调区间尽可能包括端点,但由导数求得的单调区间一律为开区间.(3)注意函数单调性与奇偶性的应用:①比较大小;②解不等式;③求参数范围.8. 常见的图象变换:(1)平移变换:()f x →()f x a ±或 ()f x a ±;函数()y f x a =±)0(>a 的图象是把函数()x f y =的图象沿x 轴左(右)平移a 个单位得到的;函数()x f y =±a )0(>a 的图象是把函数()x f y =的图象沿y 轴向上(下)平移a 个单位得到的;(2)伸缩变换:()f x →()f ax 或 ()af x ;函数()ax f y =)0(>a 的图象是把函数()x f y =的图象沿x 轴伸缩为原来的a1倍得到的;函数()x af y =)0(>a 的图象是把函数()x f y =的图象沿y 轴 伸缩为原来的a 倍得到的.*9. 函数的对称性:(1)一个函数本身的性质:若()()f a x f b x +=-对任意x 恒成立,则函数()f x 的图象关于直线2a b x +=轴对称;若()()0f a x f b x ++-=对任意x 恒成立,,则()f x 的图象关于点,02a b +⎛⎫ ⎪⎝⎭中心对称. (2)两个函数的关系:若()f x 与()g x 关于直线x a =对称,则()()2g x f a x =-;若()f x 与()g x 关于点(),0a 中心对称,则()()0f a x g a x ++-=.(3)特别关注形如ax b y cx d+=+的函数,其图象是双曲线,其两渐近线分别是直线d x c=-(由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c- (4)如何画出|()|f x 的图象?如何画出(||)f x 的图象?*10. 函数的周期性:对于函数()f x ,如果存在一个非零常数T ,使得定义域内的每一个x值,都满足()()f x T f x +=,那么这个函数()f x 就叫作周期函数.注意:①周期函数的定义域一定是无界的;②定义在R 上的常数函数也是周期函数,因而周期函数不一定有最小正周期;(1) 若()f x 图象有两条对称轴,()x a x b a b ==≠,则()f x 是周期函数,且2||a b -为一个周期;(2) 若()f x 图象有两个对称中心(,0),(,0)()A a B b a b ≠,则()f x 是周期函数,且2||a b -为一个周期;(3) 如果函数()y f x =的图象有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且4||a b -为一个周期;(4)若0a ≠,且()f x 满足()()x a f x f +=-,或1()()f x a f x +=; 或1()()f x a f x +=-;则均可得出2a 是()f x 的一个周期.11. 指数式、对数式:log a N a N =,log log log c a c b b a=, log log m n a a n b b m =,()n m mn a a =. 12. 指、对、幂函数:①指数函数x y a =的图象分两类(0a >、0a <);②对数函数log a y x =的图象也分两类(1a >、01a <<);③幂函数y x α=的图象首先关注第一象限,再根据定义域及奇偶性作出其它象限的图象.在同一坐标系中作出不同类型的幂函数.13. 指数、对数值的大小比较主要方法为:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);14. 函数的应用:求解数学应用题,要特别注意:设(解答中涉及到的字母),定义域(实际问题,注意单位),答(将所得的数学结果,回归到实际问题中去).*15. 抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如:函数的定义域、单调性、奇偶性、解析递推式等)的函数问题.求解抽象函数问题的常用方法是:(1)利用赋值法探究性质(如令x =0或1,求出(0)f 或(1)f ;令y x =或y x =-或将x 换成-x ,将y 换成-y 等);(2)利用函数的性质进行演绎探究(如奇偶性、单调性、周期性、对称性等);(3)借鉴函数模型进行类比探究.几类常见的抽象函数为 :①正比例函数型:()(0)f x kx k =≠ -----()()()f x y f x f y ±=±;②幂函数型:2()f x x = -----()()()f xy f x f y =,()()()x f x f y f y =; ③指数函数型:()x f x a = -----()()()f x y f x f y +=,()()()f x f x y f y -=; ④对数函数型:()log a f x x = -----()()()f xy f x f y =+,()()()x f f x f y y =-; ⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-. 需要注意的是:函数模型只是满足所对应的抽象函数的一种函数类型,它只能帮助我们思考问题,但不能作为推理、论证的依据.16. 高考试题中关于基本初等函数性质考查的基本类型:函数是北京高考考查能力的重要素材,以函数为基础与其它章节在知识交汇点命制的考查能力的试题在历年的高考试卷中占有较大的比重.以选择题、填空题形式主要考查函数的基本概念、函数图象、函数性质(单调性、奇偶性、周期性)等重要知识;同时关注函数知识的应用,突出函数与方程的思想、数形结合的思想. 例1:对于函数: ①1()45f x x x=+-,②21()log ()2x f x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是( D )(A )① (B )② (C )①③ (D )①② 例2:如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.(1)设BP x =,MN y =,则函数()y f x =的图象大致是( B )(2)设BP x =,四边形面积1D MBN S y =,则函数()y f x =的图象大致是( B )例3:已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立, 则实数a 的取值范围是( A )(A )2a(B )2a (C )22a (D )2a 或2a第三部分 导数1. 导数的背景:瞬时速度与瞬时变化率(平均变化率的极限).AB CDM N P A 1B 1C 1D 1。

三角函数概念及三角恒等变换知识点总结-高三数学一轮复习

知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。

3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。

高三高考数学第一轮复习课件三角函数复习


]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2

(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+

高三数学一轮知识点总结归纳

高三数学一轮知识点总结归纳高三数学是学生们备战高考的关键时期,对于数学知识点的总结归纳是非常重要的。

本文将对高三数学一轮知识点进行全面梳理,帮助同学们更好地复习与巩固学习内容。

一、函数与方程1. 函数的性质与图像a. 定义域、值域与奇偶性b. 函数的增减性与最值c. 函数的周期性与对称性d. 常见函数的图像与性质总结2. 一次函数与二次函数a. 一次函数的定义与性质b. 一次函数的图像与常见问题c. 二次函数的定义与性质d. 二次函数的图像与常见问题3. 指数与对数函数a. 指数函数的定义与性质b. 指数函数的图像与常见问题c. 对数函数的定义与性质d. 对数函数的图像与常见问题4. 幂函数与反比例函数a. 幂函数的定义与性质b. 幂函数的图像与常见问题c. 反比例函数的定义与性质d. 反比例函数的图像与常见问题二、三角函数1. 基本概念与性质a. 弧度制与角度制的转换b. 正弦、余弦、正切函数的定义与性质c. 正弦、余弦、正切函数的图像与常见问题2. 三角函数的基本关系a. 三角函数的周期性与对称性b. 三角函数的和差化积与积化和差c. 三角函数的倍角与半角公式3. 解三角函数方程a. 解简单的三角方程b. 解复杂的三角方程c. 解三角方程组与实际问题应用三、数列与数列的表示方法1. 基本概念与通项公式a. 数列的定义与性质b. 等差数列的通项公式与性质c. 等比数列的通项公式与性质2. 数列求和问题a. 等差数列求和与常见问题b. 等比数列求和与常见问题c. 常用数列求和公式总结3. 递推数列与特殊数列a. 递推数列的定义与常见问题b. 斐波那契数列与常见问题c. 等差数列与等比数列的特殊性质四、空间几何与向量1. 点、直线与平面a. 点的定义与性质b. 直线的定义与性质c. 平面的定义与性质2. 空间图形的方程a. 点、直线的位置关系与方程b. 直线与平面的位置关系与方程c. 平面与平面的位置关系与方程3. 向量的基本概念与运算a. 向量的定义与性质b. 向量的加减法与数量积c. 向量的数量积与向量积4. 空间几何的应用a. 点到直线的距离与投影b. 直线与平面之间的夹角与距离c. 空间图形的体积与表面积计算通过以上的知识点总结归纳,我们可以更好地复习数学知识,加深对各个知识点的理解,并且在解题过程中能够迅速找到思路,提高解题效率。

正弦函数、余弦函数的图象、5.4.2-正弦函数、余弦函数的性质课件-2025届高三数学一轮复习




π
由周期函数的定义可知,原函数的最小正周期为 .
2
方法2 (公式法)T =

4
π
2
= .
方法3 (图象法) 画出函数y = 3cos 4x +
π
.
2
π
3
的图象(图略),由图象知其周期为
例2-3 (2024·北京四十四中期中)若函数y = sin x和y = cos x在区间D上都是增函数,
则区间D可以是( D )
π
2
y = sin(x + φ)的图象的对称轴方程应满足x + φ = + kπ ,k ∈ .又y = sin x + φ
π
2
是偶函数,所以直线x = 0是函数图象的一条对称轴,所以φ = + kπ ,k ∈ ,又
0 ≤ φ ≤ π ,所以φ =
π
.
2
方法2 若函数f x 为偶函数,则f 0 = 1或f 0 = −1,即sin φ = 1或sin φ = −1,又
对称
D.f x 的图象关于直线x = −
π
对称
12
BD )
【解析】由f x = 3sin 2x
T
2
π

3
+ 1 = 1得sin 2x −
π
3
= 0,又函数的周期T = π ,
π
2
则x1 − x2 是 = 的整数倍,故A错误.
f x = 3sin 2x
π

3

− ቁ
6
+ 1,故B正确.
当x =

2
2
2kπ +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习——函数知识点总结
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x)= ;
(2)若f(x)是奇函数,0在其定义域内,则(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或
(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]
的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a ︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为
2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+); (2) l og a N=
( a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );
8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题: (或(或);
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;。

相关文档
最新文档