7-1 薄膜的力学性质汇总
薄膜物理与技术-7薄膜的物理性质--(1)薄膜的力学性质

电镀膜的附着性能差(∵有一定数量的微孔)
第七章 薄膜的物理性质
7.1 薄膜的力学性质
7.1.1 薄膜的附着力
附着力的测试方法 机械方法数种如下:
扩散附着
通过中间层附着
宏观效应附着
第七章 薄膜的物理性质
7.1 薄膜的力学性质
简单附着
7.1.1 薄膜的附着力
(a)简单附着: 是在薄膜和基体之间存在一个很清楚的分界面。由两个接
触面相互吸引形成的。当两个不相似或不相容的表面相互接 触时就易形成这种附着。(如真空蒸镀)
附着能 : Wfs = Ef + Es - Efs
②静电力—薄膜和基体两种材料的功函数不同, 接触后发生电子转移→界面两边积累正负 电荷 → 静电吸引
物理吸附能:0.001eV~0.1eV
③化学键力(化学吸附能0.1-0.5eV)
共价键 离子键 金属键
价电子发生了转移, 短程力,不是普遍存在。
第七章 薄膜的物理性质
7.1 薄膜的力学性质
7.1.1 薄膜的附着力
须注意:T↑→薄膜晶粒大→热应力↑→其它性能变
第七章 薄膜的物理性质
7.1 薄膜的力学性质
7.1.1 薄膜的附着力
③引入中间过渡层 某种材料与一些物质间附着力大,与另一些物质的附
着力却可能很小。如:
(1)二氧化硅-玻璃→附着好;二氧化硅-KDP(磷酸二氢 钾)晶体→附着差 (2)金-玻璃→附着差;金-铂、镍、钛、铬等→附着好
方法:在基片Байду номын сангаас镀一层薄金属层(Ti、Mo、Ta、 Cr等).然后,在其上再镀需要的薄膜,薄 金属夺取基片中氧 中间层表面掺杂。
第七章 薄膜的物理性质
薄膜力学性能解析

19
二、残余应力的测量
1. Stoney公式
在薄膜残余应力的作用下,基底会发生挠曲,这
种变形尽管很微小,但通过激光干涉仪或者表面轮廓
仪,能够测量到挠曲的曲率半径。基底挠曲的程度反
映了薄膜残余应力的大小,Stoney给出了二者之间的
3
分类
脆性薄膜
按
脆性基底
力
学
性
质 分
脆性薄膜
类
韧性基底
韧性薄膜 脆性基底
韧性薄膜 韧性基底
4
4.1 薄膜的弹性性能
一、薄膜的弹性常数
弹性模量是材料最基本的力学性能参之一,由于 薄膜的某些本质的不同之处,其弹性模量可能完全不 同于同组分的大块材料。
5
三点弯曲
如图所示,加载和挠度的测量均在两支点中心位置,
2
y
2bdy
hs 2
hs 2h f
I f y2bdy
hs 2
(4.3)
实验中测出载荷增量与中心挠度增量的关系曲线(近似 线性),求出其斜率,用(4.1)式求出薄板的抗弯刚度,若基 体弹性模量已知,则利用(4.2)式可求得薄膜的弹性模量。
7
压痕法
纳米压痕技术可用以测定薄膜的硬度、弹性模量以
及薄膜的蠕变行为等,其理论基础是Sneddon关于轴
详细推导过程见流程图2。
15
表4.1 式(4.21)中对应于hg /R 的系数
16
17
图2 根据p-h 曲线确定应力-应变关系的流程图
4.2 薄膜的残余应力
一、残余应力的来源
通常认为,薄膜中的残余应力分为热应力和内应力两种 。
薄膜材料物理-薄膜的力学性质

塑性变形机制
屈服强度是描述材料抵抗塑性变形能力的物理量,当外力达到屈服强度时,材料开始发生不可逆的塑性变形。
应力-应变曲线是描述材料在受力过程中应力与应变关系的曲线,通过该曲线可以确定材料的弹性模量和屈服强度等力学性能参数。
屈服强度与应力-应变曲线
应力-应变曲线
屈服强度
塑性形变对薄膜物理性能的影响
断裂表面形貌与机理
温度对薄膜的力学性能产生影响,低温下材料脆性增大,高温下材料韧性增强。
温度
湿度
加载速率
湿度对薄膜材料的力学性能产生影响,湿度过高可能导致材料吸湿膨胀,降低力学性能。
加载速率越快,材料吸收的能量越少,断裂强度越低。
03
02
01
பைடு நூலகம்
环境因素对薄膜断裂性质的影响
05
薄膜的疲劳性质
薄膜在循环应力作用下,经过一段时间后发生断裂的现象。
屈服强度
断裂强度是描述材料在受到外力作用时发生断裂行为的应力值,对于薄膜材料,其断裂强度也是衡量其力学性能的重要参数之一。
断裂强度
薄膜的力学性能参数
02
薄膜的弹性性质
弹性模量
是指材料在受到外力作用时,单位面积上产生的正应力与应变之比,是衡量材料抵抗弹性变形能力的物理量。对于薄膜材料,其弹性模量决定了材料在受力时的刚度和变形程度。
疲劳现象
循环应力导致薄膜内部产生微裂纹,裂纹逐渐扩展导致薄膜断裂。
疲劳机理
循环应力的幅值、频率、温度、薄膜材料的性质等。
影响因素
疲劳现象与机理
疲劳寿命预测与实验验证
疲劳寿命预测
基于疲劳裂纹扩展速率和应力强度因子幅值,预测薄膜的疲劳寿命。
实验验证
通过实验测试薄膜的疲劳寿命,与预测结果进行对比,评估预测模型的准确性。
薄膜结构的动力学特性研究

薄膜结构的动力学特性研究薄膜结构是指其厚度相对于其它尺寸而言非常薄的结构,它具有独特的力学性质和动态响应特性。
对薄膜结构的动力学特性进行系统研究,不仅可以深入理解其力学行为,而且对于各种领域的应用有着重要的意义。
本文将重点讨论薄膜结构的动力学特性以及相关的研究进展。
一、薄膜结构的力学特性薄膜结构的力学特性主要包括弹性性质、塑性行为和断裂机理等方面。
由于薄膜结构的尺寸特别小,使得其受力行为呈现出与传统材料不同的特点。
例如,薄膜结构的弹性模量与厚度呈反比关系,而且由于表面固有应力等因素的影响,其弹性性质可能与材料的体相不同。
此外,薄膜结构在塑性变形过程中也有着独特的性质,尤其是当其尺寸降至纳米尺度时,其塑性行为和变形机制表现出与体相材料截然不同的行为。
二、薄膜结构的振动特性薄膜结构的振动特性是研究其动力学行为的重要方面。
由于尺寸的限制和表面效应的影响,薄膜结构的振动模式和频率常常与宏观尺寸材料不同。
通过研究薄膜结构的振动模态、频率响应和阻尼特性,可以揭示材料的力学性质和表面效应对其动力学行为的影响。
三、薄膜结构的变形行为薄膜结构的变形行为在微纳制造、应力传感器等领域具有广泛的应用。
其变形行为既受到加载方式的影响,也受到尺寸效应和材料参数等因素的制约。
通过研究薄膜结构的变形行为,可以了解其力学性能和微观结构的相互关系,从而为相关领域的设计和应用提供理论依据。
四、薄膜结构的动态响应薄膜结构在受到外界激励时,具有独特的动态响应特性。
例如,当薄膜结构受到热激励或电激励时,会出现热膨胀或压电效应导致的形状变化。
此外,薄膜结构还具有动态压电耦合效应、声子振动等特性,这些现象对于薄膜结构在能量转换、传感器等方面的应用具有重要意义。
总结:薄膜结构的动力学特性是一个复杂而富有挑战性的研究领域。
通过对其力学特性、振动特性、变形行为和动态响应的深入研究,可以为薄膜结构的设计和应用提供更加准确的理论基础。
未来的研究工作应当继续深入探索薄膜结构的动力学行为,并结合实际应用需求,不断拓展其在微纳器件、能源和传感器等领域的应用前景。
薄膜力学性能资料

th f TsTdT
(4.22)
根据Hooke’s定律,应力为
th
E
1 f
th
(4.23)
18
薄膜—基底体系中由于晶格常数失配在薄膜中产生的内 应力由Hoffman的晶界松弛模型得到
i
1
Ef
f
xa a
1
Ef
f
Lg
(4.24)
式中 a为薄膜材料为无残余应力时的晶格常数, x 为a由于
详细推导过程见流程图2。
15
表4.1 式(4.21)中对应于hg /R 的系数
16
17
图2 根据p-h 曲线确定应力-应变关系的流程图
4.2 薄膜的残余应力
一、残余应力的来源
通常认为,薄膜中的残余应力分为热应力和内应力两种 。
热应力是由于薄膜和基底材料热膨胀系数的差异引起的, 所以也称为热失配应力。热应力对应的弹性应变为
3
分类
脆性薄膜
按
脆性基底
力
学
性
质 分
脆性基底
韧性薄膜 韧性基底
4
4.1 薄膜的弹性性能
一、薄膜的弹性常数
弹性模量是材料最基本的力学性能参之一,由于 薄膜的某些本质的不同之处,其弹性模量可能完全不 同于同组分的大块材料。
5
三点弯曲
如图所示,加载和挠度的测量均在两支点中心位置,
对称压头载荷与压头深度之间的弹性解析分析,其结果
为
S dP dh
2
Er
A
(4.4)
这里,h为压头的纵向位移,S dP为d试h 验载荷曲线的薄
膜材料刚度, 是压A头的接触面积。
8
Er 为约化弹性模量
1
薄膜材料力学行为的解析与应用

薄膜材料力学行为的解析与应用薄膜材料是指厚度在纳米到微米级别的材料,由于其特殊的结构和性质,在科学研究和工程应用中具有广泛的应用前景。
薄膜材料的力学行为对其性能和应用起着决定性的作用。
本文将从理论分析和实际应用两个方面探讨薄膜材料力学行为的解析与应用。
一、薄膜材料力学行为的理论分析1.1 薄膜材料的力学模型薄膜材料的力学行为可以通过力学模型来描述。
常用的力学模型有弹性模型、塑性模型和粘弹性模型等。
弹性模型适用于小应变范围内的力学行为,可以通过胡克定律来描述薄膜材料的应力-应变关系。
塑性模型适用于大应变范围内的力学行为,可以通过流变学模型来描述薄膜材料的应力-应变关系。
粘弹性模型则适用于在长时间内受到持续应力作用下的力学行为,可以通过弛豫时间和粘滞阻尼来描述薄膜材料的应力-应变关系。
1.2 薄膜材料的应力分析薄膜材料的应力分析是研究其力学行为的重要手段。
应力分析可以通过数学方法和实验方法来进行。
数学方法主要包括有限元分析和解析解法。
有限元分析是一种基于数值计算的方法,可以模拟薄膜材料在外力作用下的应力分布和变形情况。
解析解法则是通过数学推导和解方程的方法,得到薄膜材料的应力分布和变形情况的解析解。
实验方法则是通过实验手段来测量薄膜材料在外力作用下的应力和变形情况,如拉伸试验、压缩试验和扭转试验等。
1.3 薄膜材料的断裂行为薄膜材料的断裂行为是研究其力学行为的重要内容。
薄膜材料的断裂可以通过断裂力学来描述。
断裂力学主要包括线弹性断裂力学和断裂韧性理论。
线弹性断裂力学适用于小应变范围内的断裂行为,可以通过应力强度因子来描述薄膜材料的断裂行为。
断裂韧性理论适用于大应变范围内的断裂行为,可以通过断裂韧性来描述薄膜材料的断裂行为。
二、薄膜材料力学行为的应用2.1 薄膜材料在微电子领域的应用薄膜材料在微电子领域具有广泛的应用。
薄膜材料可以用于制备微电子器件的传感器、电容器和电阻器等。
薄膜材料的力学行为对微电子器件的性能和可靠性起着重要的影响。
1-7 分振幅薄膜干涉(一)_投影稿

n1 n2 n3 不再产生光程差。
i1 C'
A D
1 C
2
i2
B
d0 平行薄膜
ห้องสมุดไป่ตู้n1 n2 n3
过C点作光线1的垂线CC',光束1、2通过CC'以后
next
i1 C' D A i2 B
C
d0
平行薄膜
next
2n 2d 0 cos i 2
11
二、等倾干涉 1.干涉原理 发散光束照射平行薄膜, 当膜表面反射率较低时, 只考虑两束光的干涉。 薄膜上下表面反射 光的光程差公式: 2nd 0 cos i 2 0 2 或 2nd 0 cos i 2 S
i 2 是小量时
条纹半径: r f tan i1 d0一定时, i1越小 , 则j越大 条纹的半径越小 即:条纹级次内高外低
i1
0 2d 0
i2为代数量
n2 sin i 2 i 2
i 2
0 2d0
0 2d0n2 sin i 2
d0一定时,若i2↓,则 |i2|↑ 。
next
条纹的角间隔 是内疏外密。
next
光程差: 2d0n2 cos i 2 0 2 低 外 高 内 次 级 明条纹满足: 1 2d 0n 2 cos i 2 ( j ) 0 2
21
O 5.实验装置
22
O
条纹角间隔:
i 2 0
内疏外密
会聚 透镜 激光 d0 L1 L2
半反半透膜
2d 0n 2 sin i 2
d0减小时, 条纹如何变化? d0减小时,条纹在中央消失,条纹密度减小。 d0增大时,中心有新的条纹冒出来,条纹密度增大。
薄膜的性质

• 静电力就是前面所说的双电层吸引力,由于薄膜和 基体材料的功函数不同,当两者相互接触时发生电 荷转移。电荷层起着把薄膜与基体拉紧的作用,其 吸引能为 2 d
ES 2 0
• 理论计算表明,静电力的吸引能与范德华力 基本相近。两者的差异表现在:范德华力是 一种短程力,当吸附原子间的距离有增大时, 它便迅速趋向于零。因此靠范德华力来实现 薄膜与基体的附着时,其附着性是较差的。 静电力则与此相反,它是一种长程力。即使 薄膜和基体之间有微笑位移,其吸引力也不 会又较大的变化。因此虽然静电力数值小一 些,但它对附着力的贡献却较大。
(b)化学吸附是薄膜与基体之间形成化学键 结合力产生的一种吸附。化学键的结合有三种:
共价键、离子键和金属键。产生化学键的原因是 有些价电子不再为原来的原子所独有,而是从一 个原子转移到另一个原子上。这样,化学键吸引 力也是一种短程力,但数值上却比范德华力大得 多。在薄膜与基体之间并不是普遍的存在化学吸 附,只有在它们之间的界面上产生化学键形成化 合物时才能形成化合键结合。由此看出,要使薄 膜在基体上有牢固的附着性必须在它们之间产生 化学键。 化学吸附的吸附能一般在0.5~10eV。
(c)通过中间层的附着:在薄膜和基体之间 形成一种化合物中间层,薄膜再通过这个中 间层与基体间形成牢固的附着。这种中间层 可能是一种化合物的薄膜,也可能是含有多 种化合物的薄层。其化合物可能是薄膜与基 体两种材料形成的化合物,也可能是与真空 室内环境气氛形成的化合物,或者两种情况 都有。由于薄膜和基体之间有这样一个中间 层,所以两者之间形成的附着就没有单纯的 界面。
• 当薄膜和基体集中地看做一个体系,在薄 膜形成过程中这个体系的温度大多数都是 上升的。在薄膜形成之后,若这个体系处 于室温下,由于薄膜和基体热膨胀系数的 不同,必然在薄膜的内部产生内应力。由 于这种内应里只是起因于热效应,所以称 为热应力作用并用σ T表示 σ =EF·(aF-as)·Δ T 式中aF和aS分别是薄膜和基体热膨胀系数, EF是薄膜的杨氏模量,Δ T是薄膜与基体体 系的温升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、薄膜的硬度
物质的硬度:一种物质相对于另一物质的抗摩擦性或抗 刻划性的能力。 硬度试验:维氏硬度、库氏硬度、布氏硬度。
在用黏结剂时,其黏结强度决定 了这一方法可测定的附着力的上限。
焊接可增加界面的结合强度,但 焊接过程可能会由于加热温度的影 响而改变界面的组织和附着力。
划痕法
将硬度较高的划针垂直置于薄膜表面,施加载荷对薄 膜进行划伤试验的方法来评价薄膜的附着力。 当划针前沿的剪切力超过薄膜的附着力时,薄膜将 发生破坏与剥落。在划针移动的同时,逐渐加大所施加 的载荷,并在显微镜下观察得出划开薄膜,露出衬底所 需的临界载荷,即可作为薄膜附着力的量度。 当载荷一定时,薄膜剥离痕迹 的完整程度也依赖于薄膜的附 着力,因而也可根据划痕边缘 的完整程度来比较薄膜附着力 的大小。
2、薄膜的内应力
内应力的定义及分类
定义:薄膜内部单位面积的一侧受到另一侧施加的力, 用表示,单位N/m2。 分类 按性质分类:张应力、压应力 按来源分类:热应力、本征力
2、薄膜的内应力
张应力(+):截面一侧受到来自另一侧的拉伸方向的 力。张应力过大会使薄膜开裂。 压应力(-):与张应力相反,受到推压方向的力。压 应力过大会使薄膜起皱或脱落。 热应力:当薄膜的形成温度和测量或使用温度不同时, 由于薄膜和基片的热胀系数不同而引起的内应力,是一种 可逆的应力。 本征应力:薄膜形成过程中由缺陷等原因而引起的内应 力,热应力之外的全部应力。
第七章 薄膜的物理性质
力学性质 电学性质 光学性质 磁学性质 热学性质
§7-1 薄膜的力学性质
薄膜的力学性质与其结构密切相关。
薄 膜 的 力 学 性 质 附着性质 应力性质 弹性性质 机械强度 — 取决于薄膜成长的初始阶段
取决于生长阶段及其结构类型
1、薄膜的附着力
附着:薄膜与基片保持接触,两者的原子相互受到对方 的吸附作用的状态。
2、薄膜的内应力
内应力的起因
热效应 相变 界面应力:晶格适配 杂质效应 此外薄膜的生长过程中由于小岛的合并、晶粒的合并、缺 陷、微孔的扩散等会引起表面张力的变化,也会引起的测量方法
机械法:测量基片受应力作用后弯曲的程度。
悬臂梁法、弯盘法 原理:
衍射法:测量薄膜晶格常数的畸变。
几点讨论: 1)从上式看出,要消除薄膜中的热应力,最根本的办法就是选用热胀系数相 同的薄膜和基片材料。其次是让成膜温度与薄膜的测量或使用温度相同。 2)通常情况,Td>T, 若薄膜的弹性常数与温度无关,薄膜和基片的热胀系数 不随温度发生变化、为常数时,薄膜的热应力随温度作线性变化。 3)当af>as 时,热应力为正,即是为张应力。反之,热应力为负,即为压应 力。因此,可通过选择基片或者改变成膜温度的办法来改变薄膜中热应力 的性质和大小。 4)对于高熔点的金属薄膜及其他薄膜,随着成膜温度的提高,热应力可能成 为它内应力中的一个主要部分。对于低熔点金属和结构高度有序的薄膜, 因为它们的本征应力很小,所以热应力能成为它们内应力中的绝大部分。
机械锁合 双电层吸引
两个接触面相互 扩散或溶解形成 渐变界面
1、薄膜的附着力
附着机理—吸附
物理吸附(吸附能0.001~0.1eV)
范德华力吸附:短程力,随原子间距离的增大,附着力减弱。 静电力吸附:数值虽小,但对附着力的贡献较大。
化学吸附
薄膜与基体间形成化学键结合(离子键、共价键、金属键), 是短程力,数值上比范德华力大,约为0.1~0.5eV.
1、薄膜的附着力
附着机理
附着能:
E s f sf
s:基底比表面积自由能; f:薄膜比表面积自由能; sf :薄膜与基底界面自由能,与两种材料的种类、原 子间距、键合特征等有关
1、薄膜的附着力
增加附着力的方法
清洗基片 提高基片温度 引入中间过渡层
采用溅射增加附着力
1、薄膜的附着力
附着力的测试方法
粘胶法:薄膜与基片间的附着力必须小于薄膜与粘胶间的 附着力 引拉法;剥离法 直接法 划痕法、摩擦法、离心法
难定量描述,结果只具定性意义!!
引拉法
利用黏结或焊接的方法将薄膜结 合与拉伸棒的端面上,测量将薄膜 从衬底上拉伸下来所需的载荷的大 小。薄膜的附着力等于拉伸时的临 界载荷与被拉伸的薄膜面积之比。
附着力、附着能
附着性能
控制着对其他性能的观察和研究。 理论上,关系到对结合界面的了解; 使用上,决定了薄膜元器件的稳定性和可靠性
1、薄膜的附着力
简单附着
扩散附着
简单附着
两个接触面相互 吸引形成,有清 楚的分界面
扩散附着
通过中间层附着
两个接触面间形 成化合物中间层, 无单纯界面
宏观效应附着