Chp.5 Torsion

合集下载

NMR Solvent

NMR Solvent

show their degree of variability.Occasionally,in order to distinguish between peaks whose assignment was ambiguous,a further1-2μL of a specific substrate were added and the spectra run again.Table1.1H NMR Dataproton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92OH c s 5.01 6.65 4.79 5.20ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.451,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65OH s c,d 1.32 3.39 4.63 2.47ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88CH2br s 1.26 1.29 1.36 1.27 1.29n-hexane CH3t0.880.880.860.890.890.90CH2m 1.26 1.28 1.25 1.24 1.28 1.29HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90CH2m 1.27 1.27 1.27 1.23 1.29 1.292-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32CH(o/p)m7.177.1-7.27.187.027.1-7.37.16CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at2.81and3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks.Notes .Chem.,Vol.62,No.21,19977513.Chem.,Vol.62,No.21,1997NotesTable2.13C NMR Data aCDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent signals77.16(0.0629.84(0.0139.52(0.06128.06(0.02 1.32(0.0249.00(0.01206.26(0.13118.26(0.02acetic acid CO175.99172.31171.93175.82173.21175.11177.21 CH320.8120.5120.9520.3720.7320.5621.03 acetone CO207.07205.87206.31204.43207.43209.67215.94 CH330.9230.6030.5630.1430.9130.6730.89 acetonitrile CN116.43117.60117.91116.02118.26118.06119.68 CH3 1.89 1.12 1.030.20 1.790.85 1.47 benzene CH128.37129.15128.30128.62129.32129.34tert-butyl alcohol C69.1568.1366.8868.1968.7469.4070.36 CH331.2530.7230.3830.4730.6830.9130.29 tert-butyl methyl ether OCH349.4549.3548.7049.1949.5249.6649.37 C72.8772.8172.0472.4073.1774.3275.62C C H326.9927.2426.7927.0927.2827.2226.60 BHT C(1)151.55152.51151.47152.05152.42152.85C(2)135.87138.19139.12136.08138.13139.09CH(3)125.55129.05127.97128.52129.61129.49C(4)128.27126.03124.85125.83126.38126.11CH3Ar21.2021.3120.9721.4021.2321.38C H3C30.3331.6131.2531.3431.5031.15C34.2535.0034.3334.3535.0535.36chloroform CH77.3679.1979.1677.7979.1779.44cyclohexane CH226.9427.5126.3327.2327.6327.961,2-dichloroethane CH243.5045.2545.0243.5945.5445.11 dichloromethane CH253.5254.9554.8453.4655.3254.78diethyl ether CH315.2015.7815.1215.4615.6315.4614.77 CH265.9166.1262.0565.9466.3266.8866.42 diglyme CH359.0158.7757.9858.6658.9059.0658.67 CH270.5171.0369.5470.8770.9971.3370.05CH271.9072.6371.2572.3572.6372.9271.63 1,2-dimethoxyethane CH359.0858.4558.0158.6858.8959.0658.67 CH271.8472.4717.0772.2172.4772.7271.49 dimethylacetamide CH321.5321.5121.2921.1621.7621.3221.09 CO171.07170.61169.54169.95171.31173.32174.57NCH335.2834.8937.3834.6735.1735.5035.03NCH338.1337.9234.4237.0338.2638.4338.76 dimethylformamide CH162.62162.79162.29162.13163.31164.73165.53 CH336.5036.1535.7335.2536.5736.8937.54CH331.4531.0330.7330.7231.3231.6132.03 dimethyl sulfoxide CH340.7641.2340.4540.0341.3140.4539.39 dioxane CH267.1467.6066.3667.1667.7268.1167.19 ethanol CH318.4118.8918.5118.7218.8018.4017.47 CH258.2857.7256.0757.8657.9658.2658.05 ethyl acetate C H3CO21.0420.8320.6820.5621.1620.8821.15 CO171.36170.96170.31170.44171.68172.89175.26CH260.4960.5659.7460.2160.9861.5062.32CH314.1914.5014.4014.1914.5414.4913.92 ethyl methyl ketone C H3CO29.4929.3029.2628.5629.6029.3929.49 CO209.56208.30208.72206.55209.88212.16218.43C H2CH336.8936.7535.8336.3637.0937.3437.27CH2C H37.868.037.617.918.148.097.87 ethylene glycol CH263.7964.2662.7664.3464.2264.3063.17“grease”CH229.7630.7329.2030.2130.8631.29n-hexane CH314.1414.3413.8814.3214.4314.45CH2(2)22.7023.2822.0523.0423.4023.68CH2(3)31.6432.3030.9531.9632.3632.73HMPA b CH336.8737.0436.4236.8837.1037.0036.46 methanol CH350.4149.7748.5949.9749.9049.8649.50c nitromethane CH362.5063.2163.2861.1663.6663.0863.22 n-pentane CH314.0814.2913.2814.2514.3714.39CH2(2)22.3822.9821.7022.7223.0823.38CH2(3)34.1634.8333.4834.4534.8935.302-propanol CH325.1425.6725.4325.1825.5525.2724.38 CH64.5063.8564.9264.2364.3064.7164.88 pyridine CH(2)149.90150.67149.58150.27150.76150.07149.18 CH(3)123.75124.57123.84123.58127.76125.53125.12CH(4)135.96136.56136.05135.28136.89138.35138.27 silicone grease CH3 1.04 1.40 1.38 2.10 tetrahydrofuran CH225.6226.1525.1425.7226.2726.4825.67 CH2O67.9768.0767.0367.8068.3368.8368.68 toluene CH321.4621.4620.9921.1021.5021.50C(i)137.89138.48137.35137.91138.90138.85CH(o)129.07129.76128.88129.33129.94129.91CH(m)128.26129.03128.18128.56129.23129.20CH(p)125.33126.12125.29125.68126.28126.29triethylamine CH311.6112.4911.7412.3512.3811.099.07 CH246.2547.0745.7446.7747.1046.9647.19 a See footnotes for Table1.b2J PC)3Hz.c Reference material;see text.。

费托合成钌基催化剂研究进展

费托合成钌基催化剂研究进展

第46卷第2期 2021年4月天然气化工一C1化学与化工NATURAL GAS CHEMICAL INDUSTRYVol.46 No.2Apr. 2021•综述与专论•费托合成钌基催化剂研究进展娄舒洁,刘克峰,肖海成,王林,贺业亨(中国石油天然气股份有限公司石油化工研究院,北京102206)摘要:非常规天然气和生物质资源的开发推动了应用于小型费托合成装置的钌基催化剂的研发,而控制选择性和改善 稳定性是催化剂设计的核心问题。

本文综述了钌基费托合成催化剂研究进展,讨论了影响催化剂性能的关键因素。

分析发现,钌的粒径对活性和选择性均有显著影响,载体的性质决定了活性相的分散度、反应物和产物扩散行为以及二次反应;引入碱金 属、卤素、过渡金属可以改变活性中心的局域环境,起到电子或结构助剂的作用;h2/c o比和反应介质是影响选择性和稳定性的 重要的工艺条件,失活主要源于反应过程中的积炭和载体结构改变。

关键词:费托合成;钌;金属-载体相互作用;助剂;反应条件中图分类号:TQ203.2;O643 文献标志码:A 文章编号:1001-9219(2021 )02-01-09Review of Ru-based Fischer-Tropsch synthesis catalystLOU Shu-jie,LIU Ke-feng,XIAO Hai-cheng,WANG Lin, HE Ye-heng(Petrochemical Research Insitute of Petrochina, China National Petroleum Corporation, Beijing 102206, China)Abstract: Exploitation of unconventional gas and biomas s drives the development of Ru-based catalyst for small scale Fischer Tropsch synthesis industrial plants, and the selectivity control and stability improvement are two core issues of the catalyst design. This review introduced the current research progress of Ru-based catalyst for Fischer-Tropsch synthesis, and discussed the key catalytic factors affecting the catalyst performance. It is found that the particle size has significant effects on both activity and selectivity. The properties of the supports decide the dispersity of the active metals, the diffusion behaviors of reactants and products, and the secondary reactions on the catalyst. The introduction of alkali metals, halogens and transition metals can change the local environment of the active centers, and play the role of electronic or structural promoters. The H2/CO ratio and reaction medium are important operating parameters affecting the selectivity and stability of the catalyst, and the deactivation mainly results from the carbon deposition and the change of support structure during the reaction process.Keywords: Fischer-Tropsch synthesis; Ru; metal-support interaction; promoter; reaction condition合成气(c o+氏)制取烃类的费托合成过程是石 油路线之外获取燃料和化学品的重要平台反应,煤 炭、生物质、城市垃圾、石油焦、天然气等皆可作为 原料。

Hitachi HyperScale-Out Platform (HSP) OpenStack Sw

Hitachi HyperScale-Out Platform (HSP) OpenStack Sw

Hitachi Hyper Scale-Out Platform(HSP) OpenStack Swift Installation and Configuration GuideMK-95HSP018-0030August2016©2016Hitachi,Ltd.All rights reserved.No part of this publication may be reproduced or transmitted in any form or by any means,electronic or mechanical,including photocopying and recording,or stored in a database or retrieval system for commercial purposes without the express written permission of Hitachi,Ltd.,or Hitachi Data Systems Corporation(collectively,“Hitachi”).Licensee may make copies of the Materials provided that any such copy is:(i)created as an essential step in utilization of the Software as licensed and is used in no other manner;or(ii)used for archival purposes.Licensee may not make any other copies of the Materials. "Materials"mean text,data,photographs,graphics,audio,video and documents.Hitachi reserves the right to make changes to this Material at any time without notice and assumes no responsibility for its use.The Materials contain the most current information available at the time of publication.Some of the features described in the Materials might not be currently available.Refer to the most recent product announcement for information about feature and product availability,or contact Hitachi Data Systems Corporation at https:///en_us/contact-us.html.Notice:Hitachi products and services can be ordered only under the terms and conditions of the applicable Hitachi agreements.The use of Hitachi products is governed by the terms of your agreements with Hitachi Data Systems Corporation.By using this software,you agree that you are responsible for:1)Acquiring the relevant consents as may be required under local privacy laws or otherwise from authorized employees and other individuals to access relevant data;and2)Verifying that data continues to be held,retrieved,deleted,or otherwise processed in accordance with relevant laws.Notice on Export Controls.The technical data and technology inherent in this Document may be subject to U.S.export control laws,including the U.S.Export Administration Act and its associated regulations,and may be subject to export or import regulations in other countries.Reader agrees to comply strictly with all such regulations and acknowledges that Reader has the responsibility to obtain licenses to export,re-export,or import the Document and any Compliant Products.Hitachi is a registered trademark of Hitachi,Ltd.,in the United States and other countries.AIX,AS/400e,DB2,Domino,DS6000,DS8000,Enterprise Storage Server,eServer,FICON,FlashCopy, IBM,Lotus,MVS,OS/390,PowerPC,RS6000,S/390,System z9,System z10,Tivoli,z/OS,z9,z10,z13,z/VM,and z/VSE are registered trademarks or trademarks of International Business Machines Corporation.Active Directory,ActiveX,Bing,Excel,Hyper-V,Internet Explorer,the Internet Explorer logo,Microsoft, the Microsoft Corporate Logo,MS-DOS,Outlook,PowerPoint,SharePoint,Silverlight,SmartScreen,SQL Server,Visual Basic,Visual C++,Visual Studio,Windows,the Windows logo,Windows Azure,Windows PowerShell,Windows Server,the Windows start button,and Windows Vista are registered trademarks or trademarks of Microsoft Corporation.Microsoft product screen shots are reprinted with permission from Microsoft Corporation.All other trademarks,service marks,and company names in this document or web site are properties of their respective owners.ContentsPreface v Intended audience vi Product version vi Release notes vi Document revision level vi Document conventions vii Accessing product documentation vii Getting help viii Comments viiiKeystone server and OpenStack Swift1 Keystone server workflow with OpenStack Swift2Configure and initialize the system3 Before you begin4 Configure the Keystone server5 Procedure5 Configure HSP with the Keystone details5 Procedure5 Initialize Swift on HSP7 Procedure7Swift Client9 Use the Swift client10 Sample Swift commands10 Stat the Swift cluster10Upload a file to container c1,create c1if it does not exist10Contents iiiList a container10Download files from a containerLogs11 iv ContentsPrefaceThis document describes and provides instructions for installing and configuring OpenStack Swift on Hitachi Hyper Scale-Out Platform(HSP).Please read this document carefully to understand how to use this product, and maintain a copy for reference purposes.❒Intended audience❒Product version❒Document revision level❒Document conventions❒Accessing product documentation❒Getting help❒CommentsPreface vIntended audienceIntended audienceThis document is intended for system administrators,Hitachi Data Systemsrepresentatives,and authorized service providers who want to install andconfigure OpenStack Swift on an HSP cluster.Readers of this document should be familiar with the following:•Swift administration•Keystone server administration•Linux operating system and working in a restricted shell environment•Site specific network informationProduct versionThis document applies to Hyper Scale-Out Platform release1.2or later. Release notesThe release notes for this product are available on Hitachi Data SystemsSupport Connect:https:///en_us/contact-us.html.Read the release notes before installing and using this product.They maycontain requirements or restrictions that are not fully described in thisdocument or updates or corrections to this document.Document revision levelvi PrefaceDocument conventions Document conventionsThis document uses the following typographic conventions:This document uses the following icons to draw attention to information:Accessing product documentationProduct documentation is available on Hitachi Data Systems SupportConnect:https:///Documents.Check this site for themost current documentation,including important updates that may havebeen made after the release of the product.Preface viiGetting helpGetting helpHitachi Data Systems Support Portal is the destination for technicalsupport of products and solutions sold by Hitachi Data Systems.To contacttechnical support,log on to Hitachi Data Systems Support Connect forcontact information:https:///en_us/contact-us.html.Hitachi Data Systems Community is a global online community for HDScustomers,partners,independent software vendors,employees,andprospects.It is the destination to get answers,discover insights,and makeconnections.Join the conversation today!Go to ,register,and complete your profile.CommentsPlease send us your comments on this document:**********************************Include the document title and part number,including the revision(forexample,-01),and refer to specific sections and paragraphs wheneverpossible.All comments become the property of Hitachi Data Systems.Thank you!viii Preface1 Keystone server and OpenStack SwiftThis chapter gives an overview of Keystone workflow with OpenStack Swift.❒Keystone server workflow with OpenStack SwiftKeystone server and OpenStack Swift1Keystone server workflow with OpenStack SwiftKeystone server workflow with OpenStack SwiftWhen a client interacts with Swift it initially uses the Keystone server IPaddress.The Keystone server then provides the client with the IP address ofthe Swift server and allows transparent communication with the Swiftdiagram.server.This workflow can be seen in the following Array 2Keystone server and OpenStack Swift2 Configure and initialize the systemThis chapter describes the procedure for configuring Keystone server,OpenStack Swift server,and initializing Swift.❒Before you begin❒Configure the Keystone server❒Configure HSP with the Keystone details❒Initialize Swift on HSPConfigure and initialize the system3Before you beginBefore you beginVerify that you have:•An initialized HSP cluster running HSP version1.2or later•Swift clients available in Ubuntu14.04and Ubuntu16.06are supported•A Keystone server meeting the following requirements(most of these are default requirements compatible with all other OpenStack services):¡Keystone Mitaka(tested and recommended),Keystone Version2is also supported¡A tenant called“service”must exist¡A user called“swift”who belongs to the service tenant must exist¡A role called“admin”with admin privileges must exist¡The user called“swift”'must have an“'admin”role in the servicetenant¡A user called“escale”with the password“escale”must exist¡The user called“escale”must have an“admin”role in the servicetenant¡The admin port for Keystone should be35357(default for keystone)¡Keystone must have endpoints configured pointing at the HSPcluster Virtual IP address.See Configure the Keystone server fordetails.4Configure and initialize the systemConfigure the Keystone server Configure the Keystone serverProcedure1.Add three endpoints to Keystone for the HSP cluster.Using root access run the following command on the keystone server.Where,for example:•SWIFT_MASTER=196.3.123.456(any front end IP address of the HSP cluster,use the HSP cluster Virtual IP address initially)•KEYSTONE_REGION=RegionOneopenstack endpoint create--region RegionOne object-store publichttp://196.3.123.456:8080/v1/AUTH_%\(tenant_id\)sopenstack endpoint create--region RegionOne object-store internalhttp://196.3.123.456:8080/v1/AUTH_%\(tenant_id\)sopenstack endpoint create--region RegionOne object-store adminhttp://196.3.123.456:8080/v12.Copy the Keystone admin_token from the Keystone server.This token will be used when configuring HSP.The Keystone admin_token is in the keystone.conf file located here:/etc/keystone/keystone.confConfigure HSP with the Keystone detailsProcedure1.Tell HSP about the Keystone server and the Keystone admin_token.a.Check the current information held by HSP.Login as the cluster admin and run the following command on one ofthe HSP nodes.hspadm openstack-config listConfigure and initialize the system5This should display nothing in the Keystone Auth Server URLand Admin Token columns to show that nothing configured asshown in the example result below:Example Result:b.Configure the Keystone server IP address and Keystoneadmin_tokenCaution:The Keystone admin_token entered in the following command mustexactly match the token copied from the Keystone server.If the tokens do not match Swift will not work and will need to be reinstalled and the system may need to be reinstalled.Using admin access run the following command on one of the HSPnodes.hspadm openstack-config edit --auth-url http:/<keystoneIP:5000>/v3--admin-token <keystonetoken>Note:If you are using version 2of the Keystone server substitutehttp:/<keystoneIP:5000/v2.0/in the command above.This should display the correct Keystone Auth Server URL and Keystone Admin Token similar to the example result shown below.Example Result:6Configure and initialize the systemConfigure HSP with the Keystone detailsInitialize Swift on HSPThis procedure links the Swift VMs with the Keystone server,brings theSwift VMs up,and configures IP forwarding.Procedure1.Initialize Swift on HSP.Using cluster admin access run the following command on one of theHSPnodes.Note:The following command only needs to be run on a single HSP node.swift_init;echo$?2.Swift will now be initialized on the HSP cluster.Configure and initialize the system7Initialize Swift on HSP8Configure and initialize the system3Swift ClientThis chapter describes the Swift client and details some sample commands for the Swift client.❒Use the Swift clientSwift Client9Use the Swift clientThe Swift clients packaged in Ubuntu14.04and Ubuntu16.06aresupported.If you have a Swift client setup,create the file(below)on thatserver.Note:The following sample Swift commands assume you have sourced a file withthe following contents.#!/bin/bashexport OS_PROJECT_DOMAIN_NAME=defaultexport OS_USER_DOMAIN_NAME=defaultexport OS_PROJECT_NAME=adminexport OS_USERNAME=adminexport OS_PASSWORD=<password for admin user in keystone>export OS_AUTH_URL=http://<keystoneIP>:35357/v3export OS_IDENTITY_API_VERSION=3export OS_IMAGE_API_VERSION=2Sample Swift commandsStat the Swift clusterswift–v statUpload a file to container c1,create c1if it does not existswift upload c1<filename>List a containerswift–v list c1Download files from a containerswift–v download c110Swift ClientUse the Swift clientUse the Swift client LogsKeystone stores its logs on the keystone server at:/var/log/keystone/keystone.logSwift will report any problems with Keystone on the node in its own logs at:/var/log/syslogSwift Client1112Swift ClientOpenStack Swift Installation and Configuration GuideHitachi Data SystemsCorporate Headquarters2845Lafayette StreetSanta Clara,California95050-2627 U.S.A.Regional Contact InformationAmericas+14089701000************Europe,Middle East,and Africa +44(0)1753618000*****************Asia Pacific+852**********************************MK-95HSP018-00。

hss-p-5.75.09 - hyaluronic acid derivatives说明书

hss-p-5.75.09 - hyaluronic acid derivatives说明书

5.75.09Section:Prescription DrugsEffective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject:Hyaluronic Acid DerivativesPage:1 of 7Last Review Date:March 13, 2020Hyaluronic Acid DerivativesDescriptionDurolane, Euflexxa, GelSyn-3, GenVisc 850, Hyalgan , SodiumHyaluronate, Supartz , Synojoynt*, Triluron, TriVisc, Visco-3 (sodium hyaluronate)Gel-ONE , Hymovis, Monovisc, Orthovisc (hyaluronan)Synvisc, Synvisc-One (hylan G-F 20)Bolded medications are the preferred products*These medications are included in this policy but are not available in the market as of yetBackgroundOsteoarthritis of the knee is a disease in which the elastoviscous property of the synovial fluid in the knee joint becomes diminished, resulting in less protection and shock absorption. Durolane, Euflexxa, Gel-One, GelSyn-3, GenVisc 850, Hyalgan, Hymovis, Monovisc, Orthovisc, Sodium Hyaluronate, Synvisc, Synvisc-One, Supartz, Synojoynt, Triluron, TriVisc, Visco-3 are hyaluronan derivatives that are injected into the knee joints to increase the elastoviscous properties of arthritic joint fluid and slow its outflow from the joint . The goal of therapy is torestore the viscoelasticity in the affected joints, thereby decreasing pain, improving mobility, and restoring the natural protective functions (1).The American College of Rheumatology (ACR) updated its guidelines for the treatment of osteoarthritis (OA) of the knee in 2012. In mild symptomatic OA, treatment may be limited toFederal Employee Program® 1310 G Street, N.W.Washington, D.C. 20005 202.942.1000Fax 202.942.1125Section: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 2 of 7patient education, physical and occupational therapy and other non-pharmacologic modalities. Nonpharmacologic modalities strongly recommended for the management of knee OA were aerobic, aquatic, and/or resistance exercises as well as weight loss for overweight patients. Nonpharmacologic modalities conditionally recommended for knee OA included medial wedge insoles for valgus knee OA, subtalar strapped lateral insoles for varus knee OA, medially directed patellar taping, manual therapy, walking aids, thermal agents, tai chi, self-management programs, and psychosocial interventions. Pharmacologic modalities conditionally recommended for the initial management of patients with knee OA included acetaminophen, oral and topical NSAIDs, tramadol, and intraarticular corticosteroid injections (1).Regulatory StatusFDA-approved indication: Hyaluronic acid derivatives are indicated for the treatment of pain in osteoarthritis (OA) of the knee in patients who have failed to respond adequately to conservative non-pharmacologic therapy, simple analgesics (e.g., acetaminophen), NSAIDs, tramadol, or intra-articular steroid injections (2-18).The hyaluronic acid derivatives are contraindicated for use in patients with known hypersensitivity to hyaluronan (sodium hyaluronate) preparations. Orthovisc lists hypersensitivity to gram positive bacterial proteins as an additional contraindication (4). Caution should be exercised when Gel-One, Hyalgan, Visco-3, Synvisc, Synvisc-One, Supartz, and Triluron are administered to patients with allergies to avian proteins, feathers, and egg products (3-8, 18).Hyaluronic acid derivatives are contraindicated to treat patients with knee joint infections, infections or skin diseases in the area of the injection site (2-17).A treatment cycle for most of the hyaluronan derivatives typically involves multiple weekly injections. Euflexxa, GelSyn-3, Sodium Hyaluronate, Synvisc, Triluron, TriVisc, and Visco-3 are given for a total of three injections. Orthovisc is given for three or four injections. GenVisc 850, Supartz and Hyalgan are given for a total of three or five injections. Durolane, Gel-One, Synojoynt, and Synvisc-One differ from the other hyaluronan derivatives in that it only requires one injection. Repeat courses of hyaluronan derivatives may be administered if symptoms return (2-18).Upon the basis of high quality supporting evidence, the American Academy of Orthopedic Surgeons cannot recommend using hyaluronic acid for patients with symptomatic osteoarthritis of the knee (19).Related policiesSection: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 3 of 7Hyaluronate PowderPolicyThis policy statement applies to clinical review performed for pre-service (Prior Approval, Precertification, Advanced Benefit Determination, etc.) and/or post-service claims.Hyaluronic acid derivatives may be considered medically necessary for the treatment of osteoarthritis of the knee and if the conditions indicated below are met.Hyaluronic acid derivatives may be considered investigational for all other indications.Prior-Approval RequirementsAge18 years or older (22 or older for Synvisc, Synvisc-One, and TriVisc)DiagnosisPatient must have the following:Osteoarthritis of the kneeAND ALL of the following:1. Inadequate response to TWO or more of the following conservative non-pharmacologic therapy:a. Cardiovascular (aerobic) activity, such as: walking, biking, stationarybike, aquatic exerciseb. Resistance exercisec. Weight reduction (for persons who are overweight)d. Participation in self-management programse. Wear of medially directed patellar tapingf. Wear of wedged insolesg. Thermal agentsh. Walking aidsi. Physical therapyj. Occupational therapy2. Inadequate response, intolerance, or contraindication to TWO or more of thefollowing:Section: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 4 of 7a. Acetaminophenb. Oral NSAIDsc. Topical NSAIDs3. Inadequate response, intolerance, or contraindication to intra-articularsteroid injections in which efficacy lasted less than 8 weeks4. Radiologic confirmation of Kellgren-Lawrence Scale score of grade 2 orgreater5. NO dual therapy with another hyaluronic acid injectable6. Non-preferred medications only: Patient MUST have tried at least TWO ofthe preferred products unless the patient has a valid medical exception (e.g.inadequate treatment response, intolerance, contraindication)Prior – Approval Renewal RequirementsAge18 years or older (22 or older for Synvisc, Synvisc-One, and TriVisc)DiagnosisPatient must have the following:Osteoarthritis of the kneeAND ALL of the following:1. Documentation of improvement in pain with previous course of treatment2. At least 12 months has elapsed since last injection of the prior treatmentcycle3. Documentation of reduction of dosing of NSAIDs or other analgesicsduring the 12 month period following the last injection of the prior treatmentcycle4. NO dual therapy with another hyaluronic acid injectable5. Non-preferred medications only: Patient MUST have tried at least TWOof the preferred products unless the patient has a valid medical exception(e.g. inadequate treatment response, intolerance, contraindication) Policy GuidelinesPre - PA AllowanceNoneSection: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 5 of 7Prior - Approval LimitsDuration12 monthsQuantity One course of therapy for each kneePrior – Approval Renewal LimitsSame as aboveRationaleSummaryOsteoarthritis of the knee is a disease in which the elastoviscous property of the synovial fluid in the knee joint becomes diminished, resulting in less protection and shock absorption. Durolane, Euflexxa, Gel-One, GelSyn-3, GenVisc 850, Hyalgan, Hymovis, Monovisc, Orthovisc, Sodium Hyaluronate, Synvisc, Synvisc-One, Supartz, Synojoynt, Triluron, TriVisc, Visco-3 are hyaluronan derivatives that are injected into the knee joints to increase the elastoviscous properties of arthritic joint fluid and slow its outflow from the joint. The goal of therapy is to restore the viscoelasticity in the affected joints, thereby decreasing pain, improving mobility, and restoring the natural protective functions (1-18).Prior approval is required to ensure the safe, clinically appropriate and cost effective use of the hyaluronic acid derivatives while maintaining optimal therapeutic outcomes.References1. American College of Rheumatology, Subcommittee on Osteoarthritis Guidelines.Recommendations for the medical management of osteoarthritis of the hip and knee:2012 update. Arthritis Care & Research 2012; 64(4):465-474.2. Euflexxa [package insert]. Parsippany, NJ: Ferring Pharmaceuticals Inc.; July 2016.3. Hyalgan [package insert]. Parsippany, NJ: Fidia Pharma USA Inc.; May 2014.4. Orthovisc [package insert]. Woburn, MA: Anika Therapeutics; June 2005.5. Supartz [package insert]. Durham, NC: Bioventus LLC; April 2015.6. Synvisc [package insert]. Ridgefield, NJ: Genzyme Corp.; December 2014.7. Synvisc-One [package insert]. Ridgefield, NJ: Genzyme Corp.; September 2014;8. Gel-One [package insert]. Warsaw, IN: Zimmer Inc.; May 2011.9. Monovisc [package insert]. Bedford, MA: Anika Therapeutics; December 2013.10. Hymovis [package insert]. Parsippany, NJ: O Fidia Pharma USA Inc.; October 2015.Section: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 6 of 711. GenVisc 850 [package insert]. Doylestown, PA: OrthogenRx Inc.; January 2015.12. GelSyn-3 [package insert]. Durham, NC: Bioventus LLC; January 2016.13. Durolane [package insert]. Durham, NC: Bioventus LLC; November 2017.14. Visco-3 [package insert]. Warsaw, IN: Zimmer, Inc.; May 2017.15. Sodium Hyaluronate [package insert]. North Wales, PA: Teva Pharmaceuticals USA,Inc.; March 2019.16. Synojoynt [package insert]. North Wales, PA: Teva Pharmaceuticals USA, Inc.;September 2019.17. TriVisc [package insert]. Doylestown, PA: OrthogenRx, Inc.; September 2018.18. Triluron [package insert]. Florham Park, NJ: Fidia Pharma USA Inc.; March 2019.19. American Academy of Orthopaedic Surgeons. Treatment of osteoarthritis of the knee.Evidence-based guideline 2nd edition. May 2013.Policy HistoryDate Action ReasonJanuary 2012 Added minimum age - only approved for adultsDecember 2012 Annual editorial review and reference updateDecember 2013 Annual editorial review and reference updateMarch 2014 Annual editorial reviewAddition of examples of non-pharmacological agents and agents of priorfailure medications.April 2014 Line-Addition of Monovisc to PAMarch 2015 Annual criteria review and reference updateMarch 2016 Change from one tried and failed to two tried and failed non-pharmacologic and pharmacologic therapies and addition of the tried and failed of intra-articular steroid and radiologic confirmation of Kellgren-Lawrence Scalescore of grade 2 or greaterAddition of HymovisPolicy # change from 5.11.04 to 5.75.09May 2016 Addition of GelSyn-3 and GenVisc 850December 2016 Annual editorial review and reference updateAdded: no dual therapy with another hyaluronic acid injectableMarch 2017 Bolded preferred products in the title pageJuly 2017 GelSyn-3 has been changed to preferredSeptember 2017 Annual reviewDecember 2017 Addition of Durolane and Visco-3March 2018 Annual editorial reviewRemoval of Tramadol from the T/F listSeptember 2019 Annual review and reference update. Addition of Sodium Hyaluronate,Synojoynt, and TriViscSection: Prescription Drugs Effective Date: April 1, 2020 Subsection: Neuromuscular Drugs Original Policy Date: June 9, 2011 Subject: Hyaluronic Acid Derivatives Page: 7 of 7December 2019 Annual review. Addition of requirement to trial preferred products January 2020 Addition of TriluronMarch 2020 Annual reviewKeywordsThis policy was approved by the FEP® Pharmacy and Medical Policy Committee on March 13, 2020 and is effective on April 1, 2020.。

CryoStor CS2、CS5 和 CS10 冷冻保存剂说明书

CryoStor CS2、CS5 和 CS10 冷冻保存剂说明书

CryoStor®CS2, CS5, and CS10 CryopreservationMediaCatalog Numbers C3124, C2999, and C2874Storage Temperature 2–8 °CTECHNICAL BULLETINProduct DescriptionThe CryoStor®CS2, CS5, and CS10 family of preservation solutions represents the next generation of cryopreservation media. Designed to prepare and preserve cells in ultra low temperature environments (–80 to –196 °C), CryoStor media provide a safe, protective environment for cells and tissues during the freezing, storage, and thawing process. Through modulating the cellular biochemical response to the cryopreservation process, these media provide enhanced cell viability and functionality, while eliminating the need to include serum, proteins, or high levels of cytotoxic agents.CryoStor CS2, CS5, and CS10 are a series of cell-specific, optimized preservation media, uniquely formulated to address the molecular biological aspects of cells during the cryopreservation process; thereby, directly reducing the level of Cryopreservation-Induced Delayed-Onset Cell Death and improving post-thaw cell viability and function.These media are recommended for the preservation of stem cells, hepatocytes, tissue samples, and other extremely sensitive cell types.ReagentsCryoStor CS2 (Catalog Number C3124), CS5 (Catalog Number C2999), and CS10 (Catalog Number C2874) are uniquely formulated cryopreservation media containing 2%, 5%, and 10% DMSO, respectively. Precautions and DisclaimerThis product is for R&D use only, not for drug, household, or other uses.Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices. Preparation InstructionsThe CryoStor media are ready-to-use and complete with no additives required.Wipe down the outside of container with a 70% ethanol solution before opening as the contents are sterile. If the tamper evident seal has been broken, do not use. Storage/StabilityStore the CryoStor media at 2–8 °C and protected from light until ready to use.ProcedureCryopreservation with CryoStor Media1.Suspend cells to be cryopreserved usingmechanical or enzymatic dissociation.2.Centrifuge cells to obtain cell pellet.3.Remove supernatant.Note: Remove as much culture medium as possible to reduce dilution of the CryoStor medium.4.Isolation -Add cold (2–8 °C) CryoStor medium toa cell concentration range of 0.5–10 ×106cells/mlfor standard cell culture protocols. A higher cellconcentration is possible with testing.Note: CryoStor media contain DMSO, no additives are necessary.5.Pre-freeze -Incubate cell suspension at 2–8 °C for∼10 minutes.6.Nucleation –Lower sample temperature to –80 °C.e a controlled rate freezer (–1 °C/minute) orsimilar procedure for most mammalian cellsystems.b.The freezer should be pre-cooled to 2–8 °C.c.Ice nucleation within the sample (seeding)should be initiated at approximately –5 °C usinga liquid nitrogen burst program setting on thecontrolled rate freezer or mechanical agitation(flick or tap) of the cryovial/sample containerafter 15–20 minutes at –80 °C.Alternative Nucleation Procedures –cells can befrozen using stepwise freezing procedures.Stepwise freezing procedures include:a. 2 hours at –20 °C followed by 2 hoursat –80 °C.orb.3–4 hours at –80 °C in an isopropanol freezingcontainer. The isopropanol container should bepre-cooled to 2–8 °CIce nucleation -mechanical agitation (flick or tap) of the cryovial/sample container after 15–20 minutesat –80 °C.7.Storage –Store the samples at liquid nitrogentemperatures (below –130 °C).Note: Sample storage at –80 °C is onlyrecommended for short-term storage (weeks tomonths).8.Thawing -Thaw samples quickly in a 37 °C waterbath. Sample should be thawed with gentle swirling of the sample until all visible ice has melted. Thaw time for a 1 ml sample in a cryovial is ∼3 minutes.Note: DO NOT allow sample to warm above chilled temperatures (0–10 °C). Cryovials should be coolto the touch when removed from the water bath.Passive thaw is not recommended.9.Dilute cell/CryoStor mixture immediately withappropriate culture medium. This can be performed in a single step. The dilution medium should bebetween 20–37 °C. A dilution ratio of 1:10(sample:medium) or greater is recommended.10.Plate cells appropriately.11.Culture the cells or use immediately.ResultsViability assessment 24-hours post-thaw -Live/Dead fluorescent assays or metabolic assays (MTT or resazurin) are recommended for more accurate viability assessment. Visual inspection of adherent cells and cells “floating” in the medium is also recommended. Notes: Sample assessment immediately post-thaw with membrane integrity indicators, such as trypan blue for comparative analysis of sample cell yield and viability often results in significant overestimates of cell survival. To obtain an accurate measure of cell viability following cryopreservation, assessment should be performed24 hours post-thaw and compared to non-frozen controls.CryoStor is a registered trademark of BioLife Solutions, Inc.DF,JF,MAM 11/10-1Sigma brand products are sold through Sigma-Aldrich, Inc.Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side ofthe invoice or packing slip.。

内容Chp拉压概念轴力轴力图应力要求

内容Chp拉压概念轴力轴力图应力要求


cos sin


2
sin 2
k

F
α pα
α
k
可见,斜截面上既有正应力,也有切应力。
讨论



sin 2
cos
2
2

ⅰ α = 0 , σαmax= σ , τα = 0 ⅱ α =45° ,σα = σ/2 , ταmax = σ/2
ⅲ α = 90° , σα = 0 ,
F α
F 斜截面面积
F
k k pα
α

Aα =A/cosα 内力 Pα = F,
k k
F
α pα
αk
全应力为
p

P A

F
A/ cos
cos
将斜截面k-k上的全应力分解为正应力σ α 和切应力τα ,
则 p cos cos2


p
sin
上节回顾
材料力学的任务
等直杆的 强度条件 刚度条件 稳定性条件
上节回顾
材料力学的基本概念
1.内力—— 指某个截面内分布内力
的三个主矢分量和三个主矩分量: 轴力FN ,剪力FQ (Fy ,Fz) 扭矩T ,弯矩M (My ,Mz)
2.应力——正应力σ,切应力τ 3.应变——线应变ε,切应变γ
上节回顾

cos sin


2
sin 2
k

F
α pα
α
k
可见,斜截面上既有正应力,也有切应力。
讨论
cos2



2
sin 2

Vitrek V7X Series Hipot测试器说明书

V7X Series Hipot TestersPOWER fliiIIJ; V74 A.CJDCflRfGB Hlpot SafetTuterCAUTION �£ TEST ING '-.•,'I PASSHIPOTIIR 5KVacmax. 6KVdcma;r Electrical safety testing will never be the same. With color touch LCD and high speed DSP techno l ogy, the compact and rugged V7X sets the standard for price/performance ratio. Made in the USA to meet tough UL, CSA. TUV and IEC Hipot requirements-the V7X provides unbeatable speed, accuracy, user safety and reliability. Choose from six low cost models offering AC and DC Hipot to 5KV. l eakage current measurement to 100 nano-amps, Insulation Resistance to 450GQ, Ground Bond to 30 amps and built-in switching. Combine all that with USS, RS232 and Digital 1/0 interfaces, plus a two year warranty. The V7X is simply unbeatable. Test Equipment Depot - 800.517.8431 - 99 Washington Street Melrose, MA 02176Vitrek V7X Series Performance Specifications (continued)ShutdownBreakdown : within 150usHV Safety: within 1 m sUser Stop or Interlock opened : within 2ms Resistance/Current Limit : within 1 00ms BreakdownFor Hi po t tests, automatically checks for sudden uncontrolled increases of load current throughout test, no min/max leakage required.Arc DetectFor Hi po t tests, settable to none or adjustable level between 1 and 30mApk,5MHz bandwidth.Pause StepA timed pause of defined length between0.1 s and 999.9s.Hold StepA user continued hold step with a two line message to be displayed to the user while the step is executing.Switch StepProvides control of built-in 24 relay switching for hipot/lR and continuity (V76 only). For all other V7X models, provides control of up to 4 Vitrek 964 switch units, each switch step allows complete control over the states of all switches.Test MemoryUp to 999 total test steps may be defined in up to 60 different sequences. General SpecificationsDSP Measurement40,000 samples per second for output controland parameter measurementDisplay4.3' 480 x 272 Color touch LCD user interfaceInterfacesUSB 2.0, Scanner Control port (N/A on V75),RS232 and Contact Closure Digital 1/0 withSafety InterlockFactory WarrantyTwo year parts and laborStandard AccessoriesAlligator test leads for hipot and continuityunits (TL-209), 4-wire alligator test leads forGB units (K-2R), operator's manual CD, QTPro V utility software, evaluation version QTPro test automation software and power cordOrdering InformationV70 AC Hipot TesterV71 AC/DC Hipot TesterV73 AC/DC/IR Hipot TesterV74 AC/DC/IR/GB Hi po t TesterCalibrationTwo year accuracy specifications andrecommended calibration interval, ANSI/NCSL 2540 NIST Traceable cal cert with dataincluded at no additional charge.SafetyCE mark certified to EN61010Power115 or 230VAC ± 10% factory set, 50-60Hz,200VAmaxDimensions5.25" (133mm) H x 9.5' (240mm) W x 11'(280mm) DWeight12 lbs, 5.5kg net (V70-73 and V75), 16 lbs,7.3kg net (V74 and V79)Country of OriginMade in the USAV76 AC/DC/IR Hipot Tester with Built-in ScannerV79 Ground Bond TesterV7X-230V Factory Set for 230V LineQT Pro 7 Quick T est SoftwareTL-115-1 115V Receptacle Hipot Test AdaptorTL-115-2 115V Receptacle Hi p ot & GB Test AdaptorTL-209 Additional HV/Continuity Test Lead setK-2R Additional Ground Bond Lead SetHVW-7 High Voltage Warning LightRSS-7 Remote Start SwitchRSF-7 Remote Start FootswitchTL-TP1 High Voltage Test PistolHC-V7X Hard Carrying Case with Die Cut FoamTest Equipment Depot - 800.517.8431 - 99 Washington Street Melrose, MA 02176。

蔡司 Axiovert 5 智能倒置细胞培养显微镜说明书

质臻至简蔡司Axiovert 5用于细胞培养和研究的智能显微镜/axiovert20 µm HeLa Kyoto细胞,物镜:LD Plan-Neofluar 63×。

双通道荧光成像:细胞核为蓝色,微管蛋白为红色。

正在为您的实验室寻找一款功能强大的显微镜?想要一款成像时间短、图像质量优的显微镜?这很有必要!拥有一款高质易用的显微镜,对于需要在实验室进行长时间工作的您来说显得十分重要。

智能的倒置细胞培养显微镜蔡司Axiovert 5是您明智的选择:您仅需专注于样品和工作流,按下拍照按钮,即可获得用于数据记录的清晰图像。

该设备将透射光配备的各种观察方式与多通道荧光相结合,用于研究您的细胞或组织培养。

不仅如此,当实验室空间紧张时,您甚至可以将该智能显微镜作为单机使用,将图像保存在U盘上,而无需使用额外的计算机或软件。

用于细胞培养和研究的智能显微镜› 简介› 优势› 应用› 系统› 技术参数›售后服务更简单、更智能、更高度集成使用智能显微技术,让工作更智能蔡司Axiovert 5显微镜十分智能,且成像快速、结果出众。

您只需专注于样品,按下按钮,即可保存细胞或组织培养的清晰图像。

这款智能显微镜还会自动为您调整透射光以及多通道荧光图像的设置及参数。

自动叠加的多通道荧光图像包含标尺信息,该信息将自动保存在图像文件的元数据中。

轻松自如,享受您的日常工作Axiovert 5让您不用再时时刻刻焦急地等待实验结果。

其设计符合人体工程学,功能巧妙,可为您全天候的工作提供支持。

您只需专注于样品本身,使用单手便能完成包括拍照、移动载物台、调焦和控制亮度在内的各种主要操作。

光强管理功能可在所有放大倍率下提供统一的亮度,让您无需在更换物镜时手动调节灯泡亮度。

为了进一步提高细胞分析流程的速度和数据可靠性,您可以选择使用Labscope 中的AI 细胞融合度和AI 细胞计数分析功能,实时获得可重复的结果。

放眼未来,选择一款立足前沿的活细胞 显微镜从常规细胞培养到研究,Axiovert 5可无缝融入您的实验室和工作流。

SiO2_

第43卷第1期2024年1月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.1January,2024SiO 2/KH560改性玄武岩纤维混凝土力学性能研究杨㊀鑫1,于㊀奎1,吉冯春2,聂堂哲1,李㊀科3,白㊀天3(1.黑龙江大学水利电力学院,哈尔滨㊀150800;2.国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073;3.南阳师范学院土木工程学院,冲击与结构安全重点实验室,南阳㊀473061)摘要:为了研究硅烷偶联剂(KH560)和纳米SiO 2协同KH560改性玄武岩纤维(BF)对混凝土力学性能的影响,本文采用KH560对BF 进行表面改性,制得KH560-BF,并采用纳米SiO 2和KH560改性BF 制得SiO 2-KH560-BF㊂通过正交试验筛选出高强度改性纤维,研究了纳米SiO 2分散液㊁润滑剂和KH560三者的质量分数对SiO 2-KH560-BF的丝束强度影响㊂采用SEM 和EDS 对改性混凝土的7和28d 的力学性能进行评估,并对混凝土的微观结构进行表征㊂结果表明,SiO 2-KH560-BF 的最佳上浆剂成分为纳米SiO 2分散液1.6%㊁润滑剂0.4%和KH5600.5%,且三个因素的影响程度从大到小依次为纳米二氧化硅分散液㊁KH560㊁润滑剂㊂与KH560-BF 相比,SiO 2-KH560-BF 纤维丝束强度提高了8.62%,拉伸强度提高了4.41%,Si 含量提升了24.9%,并且从SEM 照片中可以看出SiO 2-KH560-BF 团状堆积比KH560-BF 少㊂掺入适量SiO 2-KH560-BF 的混凝土7和28d 抗压㊁劈裂抗拉和轴心抗压强度提升效果均高于掺入KH560-BF 的混凝土㊂关键词:纳米二氧化硅;玄武岩纤维;纤维混凝土;硅烷偶联剂;正交试验;力学性能中图分类号:TU528㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)01-0102-11收稿日期:2023-09-25;修订日期:2023-11-25基金项目:河南省高校人文社会科学研究一般项目(2021-ZDJH-0257);大学生实践教学创新项目(SPCP2023355,SPCP2023323)作者简介:杨㊀鑫(1997 ),男,硕士研究生㊂主要从事水利水电工程和高性能混凝土的研究㊂E-mail:yxyangxin16@通信作者:于㊀奎,副教授㊂E-mail:1995075@Mechanical Properties of SiO 2/KH560Modified Basalt Fiber Reinforced ConcreteYANG Xin 1,YU Kui 1,JI Fengchun 2,NIE Tangzhe 1,LI Ke 3,BAI Tian 3(1.College of Water Resources and Electric Power,Heilongjiang University,Harbin 150800,China;2.Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;3.Key Laboratory of Impact and Structural Safety,College of Civil Engineering,Nanyang NormalUniversity,Nanyang 473061,China)Abstract :To study the effect of silane coupling agent (KH560)and nano-SiO 2synergistically KH560modified basalt fiber (BF)on the mechanical properties of concrete,KH560was used to surface modify for BF to produce KH560-BF,and nano-SiO 2and KH560were used to modify BF to produce SiO 2-KH560-BF.Orthogonal tests were used to screene high-strength modified fibers,and the effects of mass fractions of nano-SiO 2dispersion,lubricant and KH560on the filament bundle strength of SiO 2-KH560-BF were investigated.The mechanical properties of modified concrete at 7and 28d were evaluated and the microstructure of the concrete was characterized by SEM and EDS.The results show that the optimal upper agent composition for SiO 2-KH560-BF is nano-SiO 2dispersion 1.6%,lubricant 0.4%,and KH5600.5%,and the degree of influence of the three factors is nano-SiO 2dispersion >KH560>pared with KH560-BF,the fiber tow strength of SiO 2-KH560-BF increases by 8.62%,tensile strength increases by 4.41%,Si content increases by 24.9%,and there were fewer agglomerated buildups in the SEM images of SiO 2-KH560-BF than those of KH560-BF.The 7and 28d compressive,split tensile,and axial compressive strength enhancement effects of the concrete with a moderate amount of SiO 2-KH560-BF are higher than those of the concrete with KH560-BF.第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究103㊀Key words:nano-silica;basalt fiber;fiber reinforced concrete;silane coupling agent;orthogonal test;mechanical property0㊀引㊀言玄武岩纤维混凝土(basalt fiber reinforced concrete,BFRC)是一种建筑材料,其中的玄武岩纤维(basalt fiber,BF)能改善混凝土骨料的连通性和微观结构,从而影响力学性能[1-3]㊂纤维力学性能的改善与纤维的生产工艺密切相关[4],Iyer等[5]通过控制BF的体积分数和伸长系数,研究了压缩和弯曲条件下混凝土力学性能的影响,并指出适量的BF可以提高混凝土的力学性能㊂王新忠等[6]将12和24mm的BF掺入混凝土柱体构件,提高了混凝土长柱的大㊁小偏心受压性能㊂Ayub等[7]在含有高岭石的混凝土中掺入体积分数为1%~3%的BF,从而提高了混凝土的密实度㊂赵燕茹等[8]指出将BF掺入混凝土可以提高混凝土的单轴受压性能并改善其微观结构㊂High等[9]采用BF作为水泥基体的外加料,改善了水泥基体的耐久性㊂此外,表面改性的BF因其优异的力学性能以及能够在混凝土中改善骨料黏结性的突出表现,成为学者们的重点研究对象[10-11]㊂Li等[12]采用硅烷偶联剂KH550改性BF,研究纤维在沥青混凝土路面上的行为,并指出改性后的纤维影响了沥青路面的流动性和力学性能㊂李根群[13]将硅烷偶联剂KH550改性后的BF 掺入混凝土,提高了其抗压㊁劈裂抗拉和抗折强度㊂Iorio等[14]使用氨基硅烷对BF表面进行改性,并使用X射线衍射和傅里叶变换红外光谱对纤维丝进行了表征,得到了增强型的BF㊂王林等[15]采用三种不同的硅烷偶联剂改性BF,并将改性后的BF掺入混凝土,提高了混凝土的力学性能㊂Lin等[16]使用静压涂料在碳化硅纤维表面涂覆四种聚合物乳液,提升了碳化硅纤维的力学性能㊂Cie'slak等[17]用纳米TiO2处理BF,发现处理后的纤维可以提高水泥基体的界面结合力㊂根据上述的研究成果,对纤维材料进行改性可以提高纤维的强度,而且能够增加纤维与混凝土的界面结合力,从而改善混凝土的力学性能,改性混凝土的制作如图1所示㊂但是,研究学者普遍是通过对比的方式挑选改性纤维材料,并将纤维掺入混凝土,这种方式是单因素的,并不一定是较为合适的溶液量㊂为了获得各物质改性BF更为精确的溶液量,采用了正交试验挑选改性BF,并将较高强度的改性纤维掺入混凝土,在一定程度上避免了过多的混凝土试验组而造成资源浪费㊂目前将纳米SiO2结合硅烷偶联剂KH560改性BF 掺入混凝土的研究较少,具有很大的研究空间㊂基于此,本文采用KH560改性BF㊁纳米SiO2结合KH560改性BF和两种改性纤维掺入混凝土,对其力学性能进行研究,分析两种改性纤维对混凝土的影响机制㊂图1㊀改性混凝土的制作Fig.1㊀Modified concrete fabrication104㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷1㊀实㊀验1.1㊀试验材料试验材料包括:普通硅酸盐水泥P㊃O42.5㊁中砂㊁玄武岩纤维㊁二级粉煤灰㊁最大粒径为37mm的碎石㊁聚羟酸系高效减水剂(减水率不小于25%)㊁浓度为30%(质量分数)的纳米SiO2分散液㊁硅烷偶剂KH560㊁润滑剂(双油酸三聚甘油酯)㊁冰乙酸㊁环氧乳液㊁成助膜剂㊁娃哈哈纯净水㊂玄武岩纤维物理力学性能如表1所示㊂表1㊀玄武岩纤维物理力学性能Table1㊀Physical and mechanical properties of BFLength/mm Monofilament diameter/μm Density/(g㊃cm-3)Elastic modulus/GPa Tensile strength/MPa Elongation at break/% 1213 2.65~2.7095~1153300~4500 2.4~3.0 1.2㊀纤维混凝土试验方法将水泥㊁砂石骨料和粉煤灰先称取适量倒入混凝土单轴搅拌机中,搅拌3min㊂紧接着加入KH560-BF 搅拌5min,加入聚羟酸系高效减水剂后称取适量水倒入搅拌机中搅拌2min,制得掺KH560-BF的混凝土(A-K)㊂仿照以上步骤,将KH560-BF改为SiO2-KH560-BF,制得掺SiO2-KH560-BF的混凝土(B-K)㊂对立方体试件进行了抗压(100mmˑ100mmˑ100mm)㊁劈裂抗拉(100mmˑ100mmˑ100mm)和轴心抗压(100mmˑ100mmˑ300mm)强度试验,并记录了相应的结果㊂改性混凝土的配合比见表2,试件分组加载,每组3个,并记录7和28d时的测量值㊂表2㊀改性混凝土配合比Table2㊀Mix ratios of modified concreteGroup m co/(kg㊃m-3)βf/%βc/%Water-cement ratioβs/%l f/mmρf/% CO42012.50.650.538120A-K142012.50.650.538120.05 A-K242012.50.650.538120.1 A-K342012.50.650.538120.15 A-K442012.50.650.538120.2 A-K542012.50.650.538120.3 B-K142012.50.650.538120.05 B-K242012.50.650.538120.1 B-K342012.50.650.538120.15 B-K442012.50.650.538120.2 B-K542012.50.650.538120.3㊀㊀注:m co为水泥用量,βf为二级粉煤灰,βc为减水剂,βf和βc为水泥质量占比,βs为砂率,l f为纤维长度,ρf为纤维体积掺量,CO为混凝土基准块㊂1.3㊀改性BF制作BF上浆剂采用四川拓新玄武岩工业有限公司的纤维表面改性生产工艺制成㊂BF上浆剂主要含有0.5%(质量分数,下同)KH560㊁0.5%冰乙酸㊁0.3%成膜助剂和6.0%环氧乳液,以此剂量制备对照组纤维KH560-BF㊂1.4㊀纳米SiO2-KH560改性BF制作由于BF表面光滑,在BF上浆剂中加入纳米SiO2分散液来增强BF,并设计了如表3所示的纳米二氧化硅-二氧化硅改性玄武岩纤维正交因子水平测试表,进一步检验纳米SiO2分散液㊁润滑液及KH560在BF的作用效果㊂正交试验为三个因素,每个因素分为三个水平,所以选用了正交试验表L9(33)㊂表3㊀纳米二氧化硅-二氧化硅改性玄武岩纤维正交因子水平测试表Table3㊀Level test table of orthogonal factors of nano-SiO2-silica-modified basalt fiberStandards FactorNano-silica dispersion A content/%Lubricant B content/%KH560C content/% 10002 1.50.40.53511㊀㊀注:纳米二氧化硅分散液㊁润滑剂和KH560掺量均为质量分数㊂第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究105㊀1.5㊀试验设备和方法根据‘玄武岩纤维无捻粗纱“(GB/T25045 2010)和‘玻璃纤维无捻粗纱浸胶纱试样的制作和拉伸强度的测定“(GB/T20310 2006),使用万能材料试验机(WDW-200)测试KH560-BF和SiO2-KH560-BF的纤维束强度㊂使用SEM对两种不同改性纤维的微观表面形貌进行了表征,并使用EDS能谱对Si含量进行了分析㊂采用微机控制自动压力试验机(YAW-300B)对改性混凝土的力学强度进行测试㊂为了更好地分辨混凝土强度的提升率,引入了混凝土强度提升率公式,如式(1)所示㊂P=[(P SCC-P CO)/P CO]ˑ100%(1)式中:P为强度提升率,%;P SCC为改性混凝土实际强度,MPa;P CO为素混凝土强度,MPa㊂2㊀结果与讨论2.1㊀改性纤维分析2.1.1㊀SiO2-KH560-BF丝束强度分析通过正交试验得出SiO2-KH560-BF纤维丝束强度试验结果,汇总见表4,为进一步分析丝束强度和纳米SiO2分散液㊁KH560和润滑剂质量分数之间的关系,将表4中的试验结果绘制成图2所示的曲面图㊂由图2可知:当润滑剂和KH560质量分数一定时,纤维丝束强度随着纳米SiO2分散液质量分数的增加先增大后减小;当润滑剂一定时,纤维丝束强度随着KH560质量分数的增大而增大㊂从表4的试验结果可知,上述影响纤维束强度的因素由高到低依次为纳米SiO2分散液㊁KH560㊁润滑剂㊂根据正交试验所得的结果和成本效益分析,选择A2B2C2剂量组,以此剂量制备改性纤维SiO2-KH560-BF,并和对照组KH560-BF进行比较,以评估丝束强度和拉伸性能㊂经SiO2和KH560改性的纤维束强度和拉伸强度分别为0.63N㊃Tex-1和2843.2MPa,而经KH560改性的纤维束强度和拉伸强度分别为0.58N㊃Tex-1和2723.1MPa,SiO2-KH560-BF 纤维丝束强度和拉伸强度分别提高了8.62%和4.41%㊂表4㊀SiO2-KH560-BF丝束强度正交试验结果Table4㊀Orthogonal test results of tow strength of SiO2-KH560-BFTest number FactorA B C Q/(N㊃Tex-1)11110.4921220.5831330.5942120.6252230.6462310.6073130.5783210.5893320.61k10.55330.560.5567k20.62000.600.6033k30.58670.600.6000R j0.06670.040.0467㊀㊀注:R j=k max-k min,R j为极差,k max为水平取值的最高值,k min为水平取值的最小值;Q为SiO2-KH560-BF的纤维束强度㊂2.1.2㊀SiO2-KH560-BF㊁KH560-BF表面微观分析Zhang等[18]指出对BF表面进行改性可显著增强纤维生物膜的吸附力㊂Mi'skiewicz等[19]利用磁控溅射技术对BF的外观进行改性㊂图3为改性纤维SEM照片和EDS谱㊂图3(a)为对照KH560改性的BF,图3(b)为经过优选正交试验后的SiO2-KH560-BF㊂两种表面改性方法都会在纤维表面产生团聚沉积物,这是成膜后上浆剂分布不均匀造成的㊂图3(b)中的团聚沉积物比图3(a)中的少,这是因为纳米SiO2的引入增加了BF的表面张力,从而引导上浆剂快速均匀的涂覆,形成质地均匀的保护层㊂图3(c)为对照KH560-BF相对应的EDS谱,图3(d)为优选SiO2-KH560-BF相对应的EDS谱㊂SiO2-KH560-BF的Si含量相较于KH560-BF增加了24.9%,Si含量的增加和表面均匀涂覆的颗粒表明SiO2涂覆在了BF表面㊂106㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图2㊀纳米SiO2分散液㊁KH560和润滑剂对SiO2-KH560-BF丝束强度的影响Fig.2㊀Effects of nano-silica dispersion,KH560and lubricant on tow strength of SiO2-KH560-BF图3㊀改性纤维的SEM照片和EDS谱Fig.3㊀SEM images and EDS spectra of modified fibers第1期杨㊀鑫等:SiO 2/KH560改性玄武岩纤维混凝土力学性能研究107㊀2.2㊀混凝土塌落度变化图4㊀混凝土塌落度Fig.4㊀Concrete collapse 混凝土塌落度的变化见图4,素混凝土CO 的塌落度为154mm,A-K 型混凝土的塌落度为132~59mm,B-K 型混凝土的塌落度为129~58mm㊂在混凝土中掺入改性BF 会降低和易性和流动性,其原因是添加的改性纤维及其纤维表面附着的纳米材料与水泥骨料嵌合,抑制了骨料的流动或纤维在混凝土内部形成不规则网状结构,从而抑制了骨料的相互作用㊂2.3㊀混凝土破坏模式Chen 等[20]的研究表明,在混凝土试件中加入纤维可显著提高韧性,而且试件在破坏后仍能保持完整性㊂基准块CO㊁A-K 和B-K 的抗压破坏见图5,基准块CO 破坏时,混凝土裂缝贯通,表面大片水泥块脱落,混凝土无法维持试块完整性㊂而加入了改性BF 的A-K 和B-K 可改善这一现象,混凝土破坏后其表面仅有少量水泥脱落或者无脱落,并且有数条裂纹产生,混凝土能够较好地维持其完整性㊂图5㊀混凝土抗压破坏Fig.5㊀Compressive damage of concrete 基准块CO㊁A-K 和B-K 的劈裂抗拉破坏见图6㊂与基准块CO 相比,A-K 和B-K 在加载初期,主要由混凝土主体承担应力,随着荷载的继续增加,混凝土内部应力增大,主裂缝沿中心部位由底端开始向上扩展,此时改性BF 承担由混凝土传递的拉应力,裂缝间的应力重新分布,内部应力集中的现象得到缓解,直至试件破坏㊂在增加荷载过程中,能够明显感觉到添加改性BF 的混凝土试块延缓了混凝土裂缝的扩展㊂图6㊀混凝土劈裂抗拉破坏Fig.6㊀Splitting tensile damage of concrete 基准块CO㊁A-K 和B-K 的轴心抗压破坏见图7㊂基准块CO 在加压时,试件内部纵向裂缝在荷载的作用108㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图7㊀混凝土轴心抗压破坏Fig.7㊀Axial compressive damage of concrete 下不断延伸开裂,最终在混凝土表面形成一条主裂缝,伴随水泥脱落,并且由于混凝土内部应力的传递,在主裂缝周围产生了许多细小裂缝分支㊂而添加改性BF的A-K 和B-K 混凝土表面仅有数条裂缝产生,能够较好地维持其整体性㊂这主要是因为混凝土中均匀分散的改性BF 起到了 箍筋 的作用,约束了试件的横向变形,并分担了混凝土内部应力㊂2.4㊀混凝土力学性能2.4.1㊀混凝土抗压性能Kaswala 等[21]指出,混凝土中掺入纤维可以提高水泥基体的力学性能㊂改性混凝土的7㊁28d 抗压强度和强度提升率结果如图8所示㊂A-K 的7d 抗压强度提升范围为-28.65%~5.31%,其最佳纤维掺量为0.15%;28d 抗压强度提升范围为-5.05%~10.11%,最佳纤维掺量为0.15%㊂B-K 的7d 抗压强度提升范围为-3.18%~6.1%,其最佳纤维掺量为0.05%;28d 抗压强度提升范围为-6.19%~11.65%,其最佳纤维掺量为0.1%㊂B-K 的7和28d 抗压强度提升率均高于A-K㊂混凝土抗压强度的提高是因为适量的改性纤维提高了混凝土的密实度,改性后的纤维增加了混凝土的界面结合力,并且纤维强度的提升进一步提高了混凝土的抗压性能[13]㊂图8㊀改性混凝土的抗压强度和抗压强度提升率Fig.8㊀Compressive strength and compressive strength effectiveness of modified concrete 为进一步判定改性混凝土的抗压强度增长趋势,对A-K 和B-K 的28d 抗压强度进行非线性拟合回归分析,如式(2)和(3)所示,混凝土抗压强度的拟合度良好㊂从拟合曲线中可以看出,A-K 和B-K 随着纤维含量的不断增加,混凝土抗压强度均呈先增大后减小的变化,这与戴勇[22]和谢金东等[23]的研究结果一致㊂F cu,a =42.270+2ˑ2.043π0.1674(ρf -0.078)2+0.1672㊀R 2=0.834(2)F cu,b =42.862+2ˑ1.303π0.8044(ρf -0.127)2+0.8042㊀R 2=0.934(3)式中:F cu,a 为A-K 混凝土抗压强度,MPa;F cu,b 为B-K 混凝土抗压强度,MPa;ρf 为纤维掺入量,%㊂2.4.2㊀混凝土劈裂抗拉强度图9为改性混凝土的劈裂抗拉强度和劈裂抗拉强度提升率㊂A-K 的7d 劈裂抗拉强度提升范围为-5%~9.84%,其最佳纤维掺量为0.15%;28d 劈裂抗拉强度提升范围为2.56%~17.95%,其最佳纤维掺量为0.3%㊂B-K 的7d 劈裂抗拉强度提升范围为3.91%~21.27%,其最佳纤维掺量为0.3%,28d 劈裂抗拉强度提升范围为7.69%~20.51%,其最佳纤维掺量为0.15%㊂B-K 的7和28d 劈裂抗拉强度的提升效果均高于A-K㊂劈裂抗拉强度的提高是因为均匀分布的纤维对混凝土的骨料起到了 桥连 作用[24];纤维强第1期杨㊀鑫等:SiO 2/KH560改性玄武岩纤维混凝土力学性能研究109㊀度的提高增强了混凝土试块抵抗劈裂变形的能力㊂图9㊀改性混凝土的劈裂抗拉强度和劈裂抗拉强度提升率Fig.9㊀Split tensile strength and split tensile strength effectiveness of modified concrete 为进一步分辨改性混凝土的劈裂抗拉强度增长趋势,对A-K 和B-K 的28d 劈裂抗拉强度进行非线性拟合回归,如式(4)和(5)所示,混凝土劈裂抗拉拟合度良好㊂从拟合曲线中可以看出,随着纤维掺量的不断增加,混凝土的劈裂抗拉强度不断增大(见图9(a));随着纤维掺量的不断增加,混凝土的劈裂强度先增大后减小(见图9(b))㊂同样的劈裂抗拉强度变化趋势也分别出现在李根群[13]采用KH550改性的BF 混凝土和任莉莉[25]的研究结果中㊂F t,a =-15.963+2ˑ103.157π 3.1974(ρf -0.292)2+3.1972㊀R 2=0.851(4)F t,b =-5.100+2ˑ19.712π 1.2844(ρf -0.188)2+1.2842㊀R 2=0.939(5)式中:F t,a 为A-K 混凝土劈裂抗拉强度,MPa;F t,b 为B-K 混凝土劈裂抗拉强度,MPa;ρf 为纤维掺入量,%㊂2.4.3㊀混凝土轴心抗压强度混凝土的轴心抗压强度是设计混凝土建筑时必须考虑的一个因素,轴心抗压会影响混凝土的耐久性和承压能力[26-28]㊂图10为改性混凝土轴心抗压强度和轴心抗压强度提升率,A-K 的7d 轴心抗压提升率范围为-37.58%~12.67%,其最佳纤维掺量为0.2%;28d 轴心抗压强度提升率范围为-8.23%~4.11%,其最佳纤维掺量为0.2%㊂B-K 的7d 轴心抗压强度提升率范围为-14.03%~18.61%,其最佳纤维掺量为0.2%;28d 轴心抗压强度提升率范围为-5.14%~5.14%,其最佳纤维掺量为0.1%㊂B-K 的7和28d 轴心抗压强度提升效果均高于A-K,在混凝土中添加适量改性纤维有助于提升混凝土的7和28d 轴心抗压强度㊂其原因是:1)均匀分布的改性BF 分散了混凝土内部的应力,减轻了外界荷载对混凝土的影响;2)B-K 所用改性BF 的丝束强度高于A-K,从而进一步提升了混凝土轴心抗压强度㊂混凝土的强度比为28d 混凝土的轴心抗压强度与抗压强度的比值[29],从图10(c)可知,A-K 的强度比为0.81,B-K 的强度比为0.83;一般而言,对于低于C50的混凝土,混凝土的强度比取0.76;A-K 和B-K 的强度比均高于0.76,这更加表明在混凝土中添加改性纤维能提升混凝土的轴心抗压性能㊂2.5㊀改性混凝土微观表征图11为28d 的混凝土经过加压测试破碎后的SEM 照片㊂图11(a)为CO 的SEM 照片,混凝土破碎后有着明显裂缝,这主要是混凝土在受到外加荷载后,内部薄弱区域由于应力集中而产生,并且随着外加荷载的增大,裂缝逐渐扩大㊂图11(b)为A-K 经测试仪器压碎后SEM 照片,KH560-BF 与混凝土骨料之间存在界面过渡区(interfacial transition zone,ITZ),这主要是纤维与混凝土骨料之间的界面黏结所致㊂此外,A-K 中的裂缝弱于基准块CO 所形成的裂缝,这使得A-K 在达到承载力极限后,能够较好地维持混凝土试块的整体性㊂图11(c)为B-K 混凝土试块经测试压碎后的SEM 照片,B-K 仅有少量的裂缝,水泥的胶结性较好,可能是因为适量的改性BF 提高了混凝土的密实度,优化了基体结构,这与Zheng 等[30]研究结果一致,适量的纤110㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷维可以提高混凝土的密实度,可以有效防止裂缝发展㊂图10㊀改性混凝土轴心抗压强度㊁轴心抗压强度提升率和28d强度比Fig.10㊀Axial compressive strength,axial compressive strength effectiveness and28d strength ratio of modified concrete图11㊀改性混凝土的SEM照片Fig.11㊀SEM images of modified concrete3㊀结㊀论1)纳米SiO2㊁硅烷偶联剂KH560和润滑剂的协同作用可提高BF的丝束强度和拉伸强度,其中SiO2-KH560-BF丝束强度和拉伸强度均高于KH560-BF㊂通过正交试验结果分析,纳米二氧化硅㊁硅烷偶联剂KH560和润滑剂的最佳质量分数分别为1.5%㊁0.5%和0.4%㊂2)与KH560-BF相比,SiO2-KH560-BF的表面在SEM照片下沉积的颗粒较少,上浆更为均匀,EDS能谱下的Si含量增加了24.9%㊂第1期杨㊀鑫等:SiO2/KH560改性玄武岩纤维混凝土力学性能研究111㊀3)添加改性纤维会影响混凝土的塌落度,随着纤维数量的增加,塌落度逐渐变小㊂两种改性混凝土的破坏模式相似,添加改性纤维有助于维持混凝土的整体性㊂掺入适量的改性纤维有助于提高混凝土7和28d的力学性能,并且掺SiO2-KH560-BF的混凝土7和28d抗压㊁劈裂抗拉和轴心抗压强度均高于掺KH560-BF的混凝土㊂4)掺KH560-BF的混凝土型混凝土28d的抗压强度拟合度为0.834,劈裂抗拉强度拟合度为0.934;掺SiO2-KH560-BF型28d混凝土的抗压强度拟合度为0.851,劈裂抗拉拟合度为0.939,轴心抗压强度与混凝土抗压强度之间没有显著关系,但改性混凝土的轴心抗压强度比均高于0.76㊂参考文献[1]㊀LI W,XU J.Strengthening and toughening in basalt fiber-reinforced concrete[J].Journal of the Chinese Ceramic Society,2008,36(4):476-481+486.[2]㊀SHI J W,ZHU H,WU Z S,et al.Bond behavior between basalt fiber-reinforced polymer sheet and concrete substrate under the coupled effectsof freeze-thaw cycling and sustained load[J].Journal of Composites for Construction,2013,17(4):530-542.[3]㊀YOO D Y,PARK J J,KIM S W,et al.Early age setting,shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete[J].Construction and Building Materials,2013,41:427-438.[4]㊀GUR EV V V,NEPROSHIN E I,MOSTOVOI G E.The effect of basalt fiber production technology on mechanical properties of fiber[J].Glassand Ceramics,2001,58(1):62-65.[5]㊀IYER P,KENNO S Y,DAS S.Mechanical properties of fiber-reinforced concrete made with basalt filament fibers[J].Journal of Materials inCivil Engineering,2015,27(11):04015015.[6]㊀王新忠,李传习.玄武岩纤维混凝土长柱偏心受压承载能力试验研究[J].硅酸盐通报,2016,35(10):3242-3246.WANG X Z,LI C X.Experimental study on load-carrying capacity of basalt fiber reinforced concrete long columns under eccentric compression[J].Bulletin of the Chinese Ceramic Society,2016,35(10):3242-3246(in Chinese).[7]㊀AYUB T,SHAFIQ N,NURUDDIN M F.Mechanical properties of high-performance concrete reinforced with basalt fibers[J].ProcediaEngineering,2014,77:131-139.[8]㊀赵燕茹,郭子麟,范晓奇,等.玄武岩纤维混凝土应力应变关系及孔结构分析[J].硅酸盐通报,2017,36(12):4142-4150.ZHAO Y R,GUO Z L,FAN X Q,et al.Basalt fiber reinforced concrete stress-strain relationship and pore structure analysis[J].Bulletin of the Chinese Ceramic Society,2017,36(12):4142-4150(in Chinese).[9]㊀HIGH C,SELIEM H M,EL-SAFTY A,et e of basalt fibers for concrete structures[J].Construction and Building Materials,2015,96:37-46.[10]㊀GOTS V,BERDNYK O,MAYSTRENKO A,et al.Study of the fracture surface of concretes reinforced with basalt fiber coated with titanium andzirconium dioxides.Fiber-reinforced concrete composites[J].IOP Conference Series:Materials Science and Engineering,2021, 1164(1):012011.[11]㊀TICHÁP,DOMONKOS M,DEMO P.Fiber reinforced concrete:residual flexure strength enhancement using surface modified fibers[C]//Special Concrete and Composites2020:17th International Conference,AIP Conference Proceedings.Skalsk'y Dvuʎr,Czech Republic.AIP Publishing,2021.[12]㊀LI L,ZHAO H L,YU X,et al.Mechanism and road performance of basalt fiber modified by silane coupling agent[J].Jianzhu Cailiao Xuebao/Journal of Building Materials,2017.[13]㊀李根群.改性玄武岩纤维分散性及其对混凝土力学性能的影响研究[D].沈阳:沈阳理工大学,2022.LI G Q.Study on dispersion of modified basalt fiber and its influence on mechanical properties of concrete[D].Shenyang:Shenyang Ligong University,2022(in Chinese).[14]㊀IORIO M,SANTARELLI M L,GONZÁLEZ G G,et al.Surface modification and characterization of basalt fibers as potential reinforcement ofconcretes[J].Applied Surface Science,2018,427:1248-1256.[15]㊀王㊀林,王梦尧,王佩勋,等.偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J].材料导报,2019,33(增刊2):273-277.WANG L,WANG M Y,WANG P X,et al.Mechanic properties of cement matrix composites reinforced with basalt fiber modified with silane coupling agent[J].Materials Reports,2019,33(supplement2):273-277(in Chinese).[16]㊀LIN D,WANG C J,DONG F B,et al.Surface modification of carbon fiber by polymer emulsions and mechanical property of modified carbonreinforced concrete[J].Advanced Materials Research,2011,233/234/235:2002-2005.[17]㊀CIE'SLAK M,CELICHOWSKI G,GIESZ P,et al.Formation of nanostructured TiO2-anatase films on the basalt fiber surface[J].Surface andCoatings Technology,2015,276:686-695.[18]㊀ZHANG X Y,RONG X S,XU J C,et al.Effect of surface modification of basalt fiber on biofilm attachment[J].Journal of Materials112㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷Engineering,2019.[19]㊀MI'SKIEWICZ P,FRYDRYCH I,PAWLAK W.The influence of basalt fabrics modifications on their resistance to contact heat and comfortproperties[J].International Journal of Clothing Science and Technology,2019,31(6):874-886.[20]㊀CHEN F B,XU B,JIAO H Z,et al.Triaxial mechanical properties and microstructure visualization of BFRC[J].Construction and BuildingMaterials,2021,278:122275.[21]㊀KASWALA T H,RAMANI S D.Experimental investigation on mechanical properties of basalt fiber concrete[J].International Journal forScientific Research&Development,2015,3(3):1117-1119.[22]㊀戴㊀勇.玄武岩纤维对混凝土抗压和劈裂抗拉强度的影响[J].合成纤维,2023,52(10):75-78.DAI Y.Analysis of the influence of basalt fibers on the compressive strength and splitting tensile strength of concrete[J].Synthetic Fiber in China,2023,52(10):75-78(in Chinese).[23]㊀谢金东,武㊀亮,刘志洪,等.短切玄武岩纤维混凝土力学性能试验研究[J].贵州大学学报(自然科学版),2022,39(4):105-109+117.XIE J D,WU L,LIU Z H,et al.Experimental research on mechanical properties of chopped basalt fiber reinforced concrete[J].Journal of Guizhou University(Natural Sciences),2022,39(4):105-109+117(in Chinese).[24]㊀GUO R J,BI Z,WANG F.Influence of different mixing methods on the axial compressive strength of basalt fiber recycled concrete[C]//20163rd International Conference on Informative and Cybernetics for Computational Social Systems(ICCSS).August26-29,2016,Jinzhou,China.IEEE,2016:368-371.[25]㊀任莉莉.玄武岩纤维纳米SiO2增强混凝土力学性能试验研究[J].复合材料科学与工程,2021(8):85-90.REN L L.Experimental study on mechanical properties of basalt fiber SiO2reinforced concrete[J].Composites Science and Engineering,2021(8):85-90(in Chinese).[26]㊀ZHANG X G,GAO X,WANG X G,et al.Axial compression performance of basalt-fiber-reinforcedrecycled-concrete-filled square steel tubularstub column[J].Advances in Concrete Construction,2020(6):10.[27]㊀DONG C H,MA X W.Experimental research on mechanical properties of basalt fiber reinforced reactive powder concrete[J].AdvancedMaterials Research,2014,893:610-613.[28]㊀QINGYUAN W.Experimental research of mechanical properties of basalt fiber aggregate concrete and its short columns under axial compression[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power,2013.[29]㊀王㊀钧,马㊀跃,张㊀野,等.短切玄武岩纤维混凝土力学性能试验与分析[J].工程力学,2014,31(增刊1):99-102+114.WANG J,MA Y,ZHANG Y,et al.Experimental research and analysis on mechanical properties of chopped basalt fiber reinforced concrete[J].Engineering Mechanics,2014,31(supplement1):99-102+114(in Chinese).[30]㊀ZHENG Y X,ZHUO J B,ZHANG Y M,et al.Mechanical properties and microstructure of nano-SiO2and basalt-fiber-reinforced recycledaggregate concrete[J].Nanotechnology Reviews,2022,11(1):2169-2189.。

MDM Incorporated 4200PRM15、6000PRM17、7200PRO23水泵说明

Sequence Self PrimerOut-of-pond construction - NOT Submersible!Ports are 2" FNPT suction and 2" FNPT discharge.Units are pre-wired with an 8' cord and molded 115V plug.Housing is molded of high strength, glass filled polypropyleneQuiet operation.250 cubic inch integrated strainer basketDry run resistant mechanical seals.Stainless steel hardware is standard.The motors are TEFC, for excellent protection.Rebuildable, industrial grade motors.Three year limited warranty!MODEL4200PRM156000PRM177200PRSIZE1/4 H.P.1/3 H.P.1/2 HHEAD15' MAX HEAD17' MAX HEAD23' MAXFLOW1500-3500 USgph' 1500-5400 USgph'1500-6600DRAW242 WATTS376 WATTS539 WAPerformance ChartCopyright © 2003 MDM IncorporatedLow Voltage (115V)Line A (White)Line B (Black)Together 1, 342, JHigh Voltage (230V)Line A (White)Line B (Black)TogetherTape142, 3JCopyright © 2003 MDM IncorporatedPart Number Description9000.070Volute9000.111Drain Plug & O-ring9000.053#3 Impeller (used in 4200PRM15) 9000.056#6 Impeller (used in 6000PRM17) 9000.059#9 Impeller (used in 7200PRM23) 9000.120Diffuser9000.121Diffuser O-ring1000.010V Slinger9000.779Lid9000.778Basket1000.0414Saltwater Seal1000.0415Standard Dry Run Brass Seal 9000.777Lid O-ring9000.061Large O-ring9000.030Bracket9000.901Saltwater Shaft Sleeve Kit With Instructions 1000.010V Slinger9000.751Base9000.502Hardware KitPump End Assembly1. Clean and inspect all pump parts (O-ring, seal seats, motor shaft, etc.).2. Apply sealant in bracket bore hole and possibly around seal case according to sealant instructions. Note: For SS seal, chamfer the edge of the bracket bore hole.3. Press carbon graphite seal into bracket while taking care not to damage carbon graphite face.4. Place slinger (rubber washer) over motor shaft and mount bracket to motor.5. Carefully lubricate boot or O-ring around ceramic piece and press into impeller.Note: Use glycerin for seal insertion.6. Sparingly lubricate sealing surfaces. Water, glycerin, or a light-weight machine oil may be used. Do not use silicon lubricants or grease!7. Thread impeller onto shaft and install O-ring and screw. If required, remove motor end-cap and use a screwdriver on the back of motor shaft to prevent shaft rotation while tightening. Replace motor end cap.8. Place diffuser over impeller and tighten allen bolts used to hold diffuser in place. Note: be sure diffuser is in an upright position. (The words "top" appears on the diffuser as an indicator)9. Seat O-ring on lip of diffuser.10. Seat O-ring, in bracket grove and assemble volute to bracket.11. Install drain plugs with O-rings in volute drain holes.D isassembly1. Shut off power to motor before disconnecting any electrical wiring from the back of the motor.2. Disassemble the bracket-motor assembly from the volute, by removing the 8 bolts. (The volute may be left in-line if you wish.)3. Remove the two allen bolts and the diffuser.4. Remove cap covering shaft at back of motor and with a large screwdriver, prevent shaft rotation. Remove the screw and O-ring from the front side of impeller and unscrewthe impeller.5. Remove ceramic piece from impeller.6. Detach bracket from motor.7. Remove carbon-graphite seal from bracket by pressing out from the back. Do not digout from the front!M aintenanceLubricationMotor - Permanently Lubricated ball bearings - no service required.Rotary Seal - Requires no lubrication after assembly.The pump must be drained before servicing or if stored below freezing temperatures.Periodic replacement of seals may be required due to normal carbon wear.Copyright © 2003 MDM Incorporated。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

State of Stress
τ α α τ τ n x
types of failure
Ductile
Brittle
Strength Condition
τ max ≤ [τ ]
τ max
TR T = = ≤ [τ ] I p Wp
1. Check the shear stress strength; 2. Design a reasonable size of cross section; 3. Determine the maximum loads.
Use the proportional triangle
τρ ρ = τ max R
EXAMPLE 4 The diameters of shaft AB and BC are D1 and D2 separately. Known D1=2D2 , determine the maximum shear stressτmax.
dA=2πρdρ
Tubular shaft
π D 4 (1 α 4 )
32
Ip =
d α= D Wp =
π D 3 (1 α 4 )
16
EXAMPLE 3 The solid shaft of diameter D=10cm is subjected to torque T=19kNm. Determine the shear stress at point K (ρ=4cm) and the maximum shear stress of the area.
T—internal torque,IP— polar second moment, GIP —stiffness of torsion .
τρ is linearly increase with respect to the distance ρ
from the axis of the shaft. IP/R=WP 抗扭截面系数,then the maximum shear stress
T T1 T2 D=2d
d DLeabharlann 1 T1 = T 16 15 T2 = T 16
Isolated volume element 单元体
Complementary property of shear stress(切应力互 等定律): On any adjacent perpendicular faces, the shear stresses are the same, which point to (or depart from) the intersecting line of the two faces.
T O
ρK
D
SOLUTION (1)The shear stress of point K
T ρ 19 × 103 × 4 × 102 τK = = = 77.4 MPa 4 8 Ip π × 10 × 10 32
(2)The maximum shear stress
τ max
T 19 × 103 = = = 96.9 MPa 6 3 W p π × 10 × 10 16
Me
R x L
γ L =φ R
Shear strain is defined as the change of the right angle.
γ dx = d φ R
5.2 The Torsion Formula
Internal torque (扭矩 T) :Cutting section method
τ = τ
Not only does the internal torque T develop a linear distribution of shear stress along each radial line in the plane of cross sectional area, but also an associated shear-stress distribution is developed along an axial plane.
The shear stress in the thin-walled circular tube Approximately calculating shear stress: T= Me= ∫A τ dAR0
Me
τ = Me /( 2πR0t R0)
A0=πR02
τ = Me / (2A0t)
d T 180o ) max × =( ≤ [θ ] dx GI p π
unit: radians , degree
Strain Energy of Torsion
1 1 dW = (τ dydz )( γ dx ) = τγ ( dxdydz ) 2 2
Shape
Solid Shaft
Tubular Shaft
Thin-Walled Tube
EXAMPLE 5 The revolution of the shaft is n=100rpm. Transmission power is P=10kw. The allowable shear stress is [τ]=80MPa. Design the diameter of a solid shaft and tubular shaft. Providedα=d/D=0.5, compare the weight of two shafts in the case of equal length.
Chapter 5 Torsion
A long straight member with circular cross section is subjected to twisting. Torsional deformation: Circles remain circles, and the length of the shaft remains unchanged.
τ max
4. Sign of shear stress
TR T = = I p Wp
τ + τ
Polar Second Moment The diameter of a circular cross section is D. IP and WP is calculated as following:
∑Mx=0
T=Me
Sign convention:right-hand rule (右手螺旋定则 )
Torque diagram
EXAMPLE 1 Refer to figure with MA=70Nm, MC=130Nm, MB=200Nm . Plot the torque diagram of this member.
SOLUTION
Torsional Stress on solid circular shaft
Deformable assumption Only shear stress on the cross section τ
dx
dφ γ =R dx
dφ γρ = ρ dx
Hooke’s law in shear stress
Statics
∫ ρτ ρ dA = T
A
dφ τ ρ = Gρ dx
dφ T = dx GI p
Tρ τρ = Ip
I p = ∫ ρ dA
2 A
is noted the polar moment of inertia or polar moment (极惯性矩 )
1. 2. 3.
note
Tρ τρ = Ip
SOLUTION For segment AB
2M n 4M n τ AB max = = 3 3 π (2 D2 ) π D2 16 For segment BC
τ BC max =
Mn
π D2
16
3
16 M n = 3 π D2

τ max = τ BC
Question
Can you tell me the fraction of T that is resisted by the shaded area.
TL T and stiffness are constant along L, gives = GI p
Quantities are constant in each segment. For this case
Ti Li =∑ Gi I pi
Stiffness Condition:the unit angle of twist is smaller than the allowable one.
SOLUTION
P
5.4 Angle of Twist
Angle of twist per unit length Angle of twist of one end of shaft with respect to the other end
T d = dx GI p
T ( x) =∫ dx GI p L
MA
MB
MC
SOLUTION (1)Internal Torque
(2) Torque Diagram
EXAMPLE 2 Draw the torque diagram of the following shaft.
SOLUTION T(x)= - mnx Tmax= - mnL
EXERCISE The torque shown in the figure are Μn=920kNm,mn=160kNm/m. Plot the internal torque diagram.(L=1m)
Substitute
相关文档
最新文档