高二数学上学期开学考试试题 (2)
河南省周口市郸城县郸城二高、郸城三高2024-2025学年高二上学期开学考试数学试题

河南省周口市郸城县郸城二高、郸城三高2024-2025学年高二上学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________A.a b>B.c d<C.a d+<.设正四棱锥P ABCD-的底面中心为O,以O为球心的球面与正四棱锥的所有棱均相切,若正四棱锥P ABCD-的体积为163,则球O的体积为(C .丙:平均数为8,方差为2D .丁:中位数为8,众数只有7四、解答题15.在一个不透明的袋子中装有大小、质地完全相同的1个红球和1个白球,每次从袋子中随机摸出1个球,观察其颜色后放回.甲连续摸球2次,乙连续摸球4次.用a 表示摸出红球,b 表示摸出白球.(1)分别写出甲和乙的摸球试验的样本空间及其包含样本点的个数;(2)设A =“甲恰有一次摸出红球”,B =“乙恰有两次摸出红球”,比较()P A 与()P B 的大小.16.如图,在四棱锥P ABCD -中,PAB V 为正三角形,//AD BC ,2AD BC =,E 为PD 的14.50350+【分析】作出辅助线,设BC= =,从而求出山的高度50【详解】由题意得45Ð=°PAQ过点B作BE⊥AQ于点E,则A所以1PC //平面1AB Q ,连接PQ ,因为11//AC AC ,11AC AC =,因为P 为棱AC 的中点,Q 为棱11A C 的中点,所以1//AP AQ ,1AP AQ =,所以四边形1AAQP 为平行四边形,所以1//PQ AA ,1PQ AA =,又11//AA BB ,11AA BB =,所以1//PQ BB ,1PQ BB =,所以四边形1BPQB 为平行四边形,所以1//BP B Q ,又BP Ë平面1AB Q ,1B Q Ì平面1AB Q ,所以//BP 平面1AB Q ,又1BP PC P Ç=,1,BP PC Ì平面1PBC ,所以平面1//PBC 平面1AB Q .(2)由已知1BB ^平面ABC ,,AB BC Ì平面ABC ,所以11,BB AB BB BC ^^,又AB BC ^,。
河北省保定市部分高中2024-2025学年高二上学期开学考试数学试题

河北省保定市部分高中2024-2025学年高二上学期开学考试数学试题一、单选题1.若复数z 满足1i 1i z =--+,则z =( ) A .22i + B .22i -- C .2i - D .2i2.已知ABC V 的三个顶点分别为()()()1,2,3,1,5,A B C m ,且π2ABC ∠=,则m =( ) A .2 B .3 C .4 D .53.若{},,a b c r r r 是空间的一个基底,则下列向量不共面的为( ) A .,,2a b a b +r r r r B .,,a a b a c ++r r r r rC .,,a a c c -r r r rD .,,2b c a c a b c ++++r r r r r r r 4.已知平面α的一个法向量为()1,2,2n =-r ,点M 在α外,点N 在α内,且()1,2,1MN =-u u u u r ,则点M 到平面α的距离d =( )A .1B .2C .3D 5.续航能力关乎无人机的“生命力”,太阳能供能是实现无人机长时续航的重要路径之一.某大学科研团队利用自主开发的新型静电电机,成功研制出仅重4.21克的太阳能动力微型无人机,实现纯自然光供能下的持续飞行.为激发同学们对无人机的兴趣,某校无人机兴趣社团在校内进行选拔赛,8名参赛学生的成绩依次为65,95,75,70,95,85,92,80,则这组数据的上四分位数(也叫第75百分位数)为( )A .93B .92C .91.5D .93.56.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若t a n B =则2()a c ac+=( ) A .6 B .4 C .3 D .27.某人忘记了一位同学电话号码的最后一个数字,但确定这个数字一定是奇数,随意拨号,则拨号不超过两次就拨对号码的概率为( )A .15B .25C .35D .9208.已知圆锥1AO 在正方体1111ABCD A B C D -内,2AB =,且1AC 垂直于圆锥1AO 的底面,当该圆锥的底面积最大时,圆锥的体积为( )A B C D二、多选题9.已知,m n 是两条不同的直线,α是一个平面,则下列命题为真命题的有( ) A .若m //,n α//α,则m //nB .若,m n αα⊥⊂,则m n ⊥C .若,m m n α⊥⊥,则n ⊂α或n //αD .若//m α,,m n 相交,则n //α10.已知事件,,A B C 两两互斥,若()()()135,,4812P A P A B P A C =⋃=⋃=,则( ) A .()12P B C ⋂= B .()18P B = C .()724P B C ⋃= D .()16P C = 11.已知厚度不计的容器是由半径为2m ,圆心角为π2的扇形以一条最外边的半径为轴旋转π2得到的,下列几何体中,可以放入该容器中的有( ) A .棱长为1.1m 的正方体B .底面半径和高均为1.9m 的圆锥C .棱长均为2m 的四面体D .半径为0.75m 的球三、填空题12.《九章算术》中将正四棱台称为方亭,现有一方亭111111,33ABCD A B C D AB A B -==,体积为13,则该方亭的高是.13.在空间直角坐标系Oxyz 中,()()()4,0,0,0,2,0,0,0,4,A B C D 为AB 的中点,则异面直线BC 与OD 所成角的余弦值为.14.在ABC V 中,点D 在BC 边上,2,,BC BAD CAD AB AC AD AB AC AD ∠∠==⋅=⋅+⋅,则ABC V 的外接圆的半径为.四、解答题15.某高中为了解本校高二年级学生的体育锻炼情况,随机抽取100名学生,统计他们每天体育锻炼的时间,并以此作为样本,按照[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100进行分组,得到如图所示的频率分布直方图.已知样本中体育锻炼时间在[50,60)内的学生有10人.(1)求频率分布直方图中a 和b 的值;(2)估计样本数据的中位数和平均数(求平均数时,同一组中的数据以该组区间的中点值为代表).16.在ABC V 中,角,,A B C 的对边分别是,,a b c ,已知()sin cos 1cos sin ,1C B a C B b =->.(1)证明:1cos C b=. (2)若2,a ABC =△的面积为1,求c .17.如图,在四棱锥P ABCD -中,已知底面ABCD 是边长为60,BAD PA PB PD ∠====o ,且PE ⊥平面ABCD ,垂足为E .(1)证明:⊥BC 平面PBE .(2)求直线AC 与平面PBC 所成角的正弦值. 18.在正四棱柱1111ABCD A B C D -中,已知1AB =,点,,E F G 分别在棱111,,BB CC DD 上,且,,,A E F G 四点共面,,BAE DAG ∠α∠β==.(1)若AE AG =,记平面AEFG 与底面ABCD 的交线为l ,证明:BD //l .(2)若π4αβ+=,记四边形AEFG 的面积为S ,求S 的最小值. 19.给定平面上一个图形D ,以及图形D 上的点12,,,n P P P L ,如果对于D 上任意的点P ,21n i i PP =∑u u u r 为与P 无关的定值,我们就称12,,,n P P P L 为关于图形D 的一组稳定向量基点.(1)已知()()()1231230,0,2,0,0,2,P P P PP P V 为图形D ,判断点123,,PP P 是不是关于图形D 的一组稳定向量基点;(2)若图形D 是边长为2的正方形,1234,,,P P P P 是它的4个顶点,P 为该正方形上的动点,求1223341PP P P P P PP ++-u u u u r u u u u r u u u u r u u u r 的取值范围; (3)若给定单位圆E 及其内接正2024边形122024,PP P P L 为该单位圆上的任意一点,证明122024,,,P P P L 是关于圆E 的一组稳定向量基点,并求202421i i PP =∑u u u r 的值.。
安徽省多校联考2024-2025学年高二上学期开学考试数学试题

安徽省多校联考2024-2025学年高二上学期开学考试数学试题一、单选题1.已知集合{}()14,2,5A x x B =-<<=,则()R B A ⋂=ð( ) A .(]1,2-B .()1,2-C .()[),45,∞∞-⋃+D .()[),15,-∞-+∞U2.某学校高二某班向阳学习小组8位同学在一次考试中的物理成绩如下:95,45,62,78,53,83,74,88,则该小组本次考试物理成绩的第60百分位数为( ) A .53B .74C .78D .833.已知,m n ∈R ,则是1133m n >的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知命题()0:1,p x ∞∃∈+,()()0001130x x a x ---+<为假命题,则实数a 的取值范围为( )A .(∞- B .(1∞⎤-⎦C .)∞⎡+⎣D .)1,∞⎡+⎣5.已知平面向量,a b rr 满足2,1a b ==r r ,且b r 在a r 上的投影向量为14a -r ,则a r 与b r 的夹角为( ) A .π3B .2π3C .3π4D .5π66.如图,在正三棱柱ABC DEF -中,,M N 分别为棱,DF BC 的中点,2AD DE ==,则异面直线,MC EN 所成角的余弦值为( )ABCD .9107.已知()()2log 2,1,111,133a a x x f x x ax a x ⎧-≤⎪=⎨-++->⎪⎩是R 上的减函数,则实数a 的取值范围为( ) A .1,12⎛⎫ ⎪⎝⎭B .(]2,6C .[]3,6D .(]2,38.已知456log 5,log 6,log 7a b c ===,则( ) A .c b a >>B .b a c >>C .a c b >>D .a b c >>二、多选题 9.已知复数2i1iz +=-,则( ) A .z 的虚部为12B .13i 22z =- C.z =D .12z -为纯虚数10.已知函数()πcos cos sin sin 0,0,,2f x A x A x A ωϕωϕωϕ⎛⎫=->>< ⎪⎝⎭当π12x =时,()f x 取得最大值2,且()f x 与直线π12x =最近的一个零点为π3x =,则下列结论中正确的是( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为πππ,π,212k k k ⎡⎤-+∈⎢⎥⎣⎦ZC .()f x 的图象可由函数2cos2y x =的图象向右平移π12个单位长度得到 D .若()f x θ+为奇函数,则ππ,3k k θ=+∈Z11.已知定义域为R 的函数()1f x +为奇函数,()f x 的图象关于直线2x =对称,则( )A .()f x 的图象关于点()1,0中心对称B .()f x 为奇函数C .()f x 是周期为4的函数D .()20250f =三、填空题12.已知向量,a b r r 满足,()(),1,21,3a x b x =-=+r r ,且//a b r r,则a =r .13.小耿与小吴参与某个答题游戏,此游戏共有5道题,小耿有3道题不会,小吴有1道题不会,小耿与小吴分别从这5道题中任意选取1道题进行回答,且两人选题和答题互不影响,则小耿与小吴恰有1人会答的概率为14.已知一个圆台的侧面积为,下底面半径比上底面半径大1,母线与下底面所成角的正切值为7,则该圆台的外接球(圆台的上、下底面圆周上的点均在球面上)的体积为.四、解答题15.某校为促进学生对地震知识及避震自救知识的学习,组织了《地震知识及避震自救知识》竞赛活动,对所有学生的竞赛成绩进行统计分析,制成如图所示的频率分布直方图(各区间分别为[)[)[)[)[]45,55,55,65,65,75,75,85,85,95).(1)根据频率分布直方图,估计本次竞赛的平均成绩;(每组数据用所在区间的中点值作代表) (2)按人数比例用分层随机抽样的方法从竞赛成绩在[)45,55和[]85,95内的学生中抽取5人,再从这5人中随机抽取2人,求这2人成绩都在[]85,95内的概率.16.已知ABC V 的内角,,A B C 的对边分别为,,a b c ,向()()sin ,,,sin m A b n a b B ==+r r,sin m n c C ⋅=r r.(1)求C ;(2)若c =ABC V 的面积的最大值17.已知π3π5πsin 444x x ⎛⎫-=<< ⎪⎝⎭(1)求sin cos x x +的值;(2)已知cos π2πy y =<<,求x y +的值 18.如图,在四棱锥S ABCD -中,底面ABCD 为正方形,平面ABCD ⊥平面,,,,,SAB SA AB E F G H ⊥,分别为棱,,,SC SB DA AB 的中点,2SA AB ==.(1)证明:平面//EBD 平面FGH ; (2)求二面角B SC D --的大小.19.已知()f x 是指数函数,且过点()()()1,23a f x g x f x b -⎛= +⎝是定义域为R 的奇函数(1)求,a b 的值;(2)若存在[]1,2c ∈-,使不等式()21206g c c m --+<成立,求实数m 的取值范围; (3)若函数()()()2412x x h x g g t +=++⨯恰有2个零点,求实数t 的取值范围.。
福建省泉州市部分地区2024-2025学年高二上学期开学联考试题 数学含答案

2024-2025学年福建省泉州市部分地区高二上学期开学考试数学试卷(答案在最后)【满分:150】一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.复数2023i 12iz =-在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知向量a ,b 满足3a =,5a b ⋅=- ,则()2a b a -⋅= ()A.-1B.2C.15D.193.为了迎接2025年第九届亚冬会的召开,某班组织全班学生开展有关亚冬会知识的竞赛活动.已知该班男生30人,女生20人.按照分层抽样的方法从该班共抽取10人,进行一轮答题.相关统计情况如下:男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为()A.6.8B.6.9C.7D.7.24.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法错误的是()A.若m α⊥,//n α,则m n ⊥B.若m α⊥,//m n ,则n α⊥C.若//m n ,n β⊥,m α⊥,则//αβD.若m α⊥,m n ⊥,则//n α5.为了加深师生对党史的了解,激发广大师生知史爱党,知史爱国的热情,某校举办了“学党史,育文化的党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,则下列说法错误的为()A.a 的值为0.005B.估计这组数据的众数为75分C.估计这组数据的第85百分位数为85分D.估计成绩低于60分的有250人6.在ABC △中,2AE EB = ,12AF FC =,M ,N 为线段BC 上(不包含端点)不同的两个动点.若(),AM AN AE AF λμλμ+=+∈R,则2λμ+=()A.3B.4C.6D.77.某人抛掷一枚质地均匀的骰子一次,记事件A =“出现的点数为奇数”,B =“出现的点数不大于3”,事件C =“出现点数为3的倍数”,则下列说法正确的是()A.A 与B 互为对立事件 B.()()()P A B P A P B =+ C.()23P C =D.()()P A P C =8.在正三棱柱111ABC A B C -中,2AB =,123AA =O 为BC 的中点,M ,N 分别为线段11B C ,AM 上的动点,且MN MOMO MA=,则线段MN 的长度的取值范围为()A.31513,54⎡⎤⎢⎥⎣⎦ B.)15,4⎡⎣C.115,47⎡⎢⎣⎦D.1513,54⎡⎤⎢⎥⎣⎦二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得补部分分,有选错的得0分.9.已知圆22:(1)(2)25C x y ++-=,直线()():311420l m x m y m +++--=,直线l 与圆C 交于A ,B 两点,则()A.直线l 恒过定点()1,1B.当15m =时,AB 最长C.当35m =-时,弦AB 最短D.最短弦长AB =10.已知向量(,1)x =a ,(4,2)=b ,则下列结论正确的是()A.若//a b ,则2x =B.若⊥a b ,则12x =C.若3x =,则向量a 与向量b 的夹角的余弦值为10D.若1x =-,则向量b 在向量a 上的投影向量为11.在菱形ABCD 中,1AB =,120ABC ∠=︒,将ABD △沿对角线BD 折起,使点A 至点P (P 在平面ABCD 外)的位置,则()A.在折叠过程中,总有BD PC ⊥B.存在点P ,使得2PC =C.当1PC =时,三棱锥P BCD -的外接球的表面积为3π2D.当三棱锥P BCD -的体积最大时,32PC =三、填空题:本题共3小题,每小题5分,共15分.12.在空间直角坐标系中,已知()5,2,1A ,()4,2,1B -,()0,1,0C -,()1,0,1D ,则直线AB 与CD 所成角的余弦值为______.13.已知互不相等的4个正整数从小到大排序为x ,y ,z ,6.若这4个数据的极差是中位数的2倍,则这4个数据的第75百分位数为________.14.在圆台12O O 中,圆1O 的半径是2,母线2PC =,圆2O 是ABC △的外接圆,60ACB ∠=︒,AB =则三棱锥P ABC -体积最大值为___________.四、解答题:本题共5分,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)如图,在ABC △中,25AD AB =,点E 为AC 中点,点F 为BC 上的三等分点,且靠近点C ,设CA a = CB b = .(1)用a ,b 表示EF ,CD ;(2)如果60ACB ∠=︒,2AC =,且CD EF ⊥,求||CD.16.(15分)甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.17.(15分)如图,在三棱台111ABC A B C -中,90BAC ∠=︒,4AB AC ==,1112A A A B ==,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:1BB ⊥平面1AB C ;(2)求平面BCD 与平面ABD 的夹角的余弦值.18.(17分)某校高一年级开设有羽毛球训练课,期末对学生进行羽毛球五项指标(正手发高远球、定点高远球、吊球、杀球以及半场计时往返跑)考核,满分100分.参加考核的学生有40人,考核得分的频率分布直方图如图所示.(1)由频率分布直方图,求出图中t 的值,并估计考核得分的第60百分位数:(2)为了提升同学们的羽毛球技能,校方准备招聘高水平的教练.现采用分层抽样的方法(样本量按比例分配),从得分在[)70,90内的学生中抽取5人,再从中挑出两人进行试课,求两人得分分别来自[)70,80和[)80,90的概率:(3)现已知直方图中考核得分在[)70,80内的平均数为75,方差为6.25,在[)80,90内的平均数为85,方差为0.5,求得分在[)70,90内的平均数和方差.19.(17分)在①b a =,②2sin tan b A a B =,③()sin sin()sin a c A c A B b B -++=这三个条件中任选一个,补充在下面的横线上,并加以解答.已知ABC △的内角A ,B ,C 所对的边分别是a ,b ,c ,若___________.(1)求角B ;(2)若2,3a c ==,点D 在ABC △外接圆上运动,求BD BC ⋅的最大值.答案以及解析1.答案:D解析:因为20233i i i ==-,所以()()()i 12i i 2i12i 12i 12i 5z -+--===--+,所以,复数z 在复平面内所对应的点为21,55⎛⎫- ⎪⎝⎭,所以,复数z 在复平面内所对应的点位于第四象限.故选:D.2.答案:D解析:因为3a = ,5a b ⋅=-,所以()()22292519a b a a a b -⋅=-⋅=-⨯-= .故选:D.3.答案:A解析:男生30人,女生20人,则抽取的时候分层比为3:2.则10个人中男女分别抽取了6人和4人.这10人答对题目的平均数为1(610415)1210⨯⨯+⨯=.所以这10人答对题目的方差为22641(1012)0.5(1512) 6.81010⎡⎤⎡⎤⨯+-+⨯+-=⎣⎦⎣⎦.故选:A.4.答案:D解析:对于A ,当//n α时,过n 作平面β,使l βα= ,则//n l ,因为m α⊥,l α⊂,所以m l ⊥,所以m n ⊥,故A 正确;对于B ,由线面垂直的性质知B 正确;对于C ,因为//m n ,n β⊥,所以m β⊥,又m α⊥,所以//αβ,故C 正确;对于D ,当m α⊥,m n⊥时,n 可能在平面α内,故D 错误.故选D.5.答案:C解析:根据频率分布直方图可知:10(23365)1a a a a a a +++++=,即0.005a =,故A 正确;由图易得在区间[70,80)的人最多,故可估计这组数据的众数为75,故B 正确;100.005(23)1000250⨯⨯+⨯=,故成绩低于60(分)的有250人,即D 正确;由图中前四组面积之和为:(2336)0.005100.7+++⨯⨯=,图中前五组面积之和为:(23365)0.005100.95++++⨯⨯=,故这组数据的第85百分位数在第五组数据中,设这组数据的第85百分位数为m ,则有0.750.005(80)0.85m +⨯-=,故86m =,即估计这组数据的第85百分位数为86分,故C 错误.故选:C.6.答案:C解析:因为2AE EB = ,12AF FC =,所以23AE AB = ,13AF AC = ,设()()101AM a AB a AC a =+-<< ,()()101AN bAB b AC b =+-<<,则()()11AM AN a AB a AC bAB b AC +=+-++- 3()(2)()3(2)2a b AB a b AC a b AE a b AF =++--=++--,又(),AM AN AE AF λμλμ+=+∈R ,且AE ,AF不共线,则()()3232a b a b λμ⎧+=⎪⎨⎪--=⎩,所以26λμ+=.7.答案:C解析:抛掷一枚质地均匀的骰子,出现的点数构成的样本空间为()()()()()(){}1,2,3,4,5,6,则()()(){}()()(){}()(){}1,3,5,1,2,3,6,3A B C ===,对于A,事件A ,B 可同时发生,故不是对立事件,A 错误,对于B,()()()(){}1,2,3,5A B = ,()23P A B = ,()()1P A P B +=,故B 错误,对于C,()()213P C P C =-=,C 正确,对于D,()12P A =,()13P C =,D 错误,故选:C 8.答案:D解析:取11B C 的中点Q ,连接OQ ,如图,以O 为坐标原点,OC ,OA ,OQ的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,则()0,0,0O ,(0A ,(11,0,B -,(11,0,C .因为M 是棱11B C 上一动点,设(,0,M a ,且[]1,1a ∈-,所以(,0,OM a = ,(MA a =--.因为MN MOMO MA =,所以222MO MN MA ===.令t =4t ⎤∈⎦,则2233t t t t -==-,4t ⎤∈⎦.又函数3y t t =-在4⎤⎦上为增函数,所以线段MN 的长度的取值范围为13,54⎡⎤⎢⎥⎣⎦.9.答案:AC解析:直线方程可化为()3420x y m x y +-++-=,当340120x y x x y +-=⎧⇒=⎨+-=⎩,1y =,故直线l 恒过定点()1,1P ,A 正确;易知圆心()1,2C -,半径=5r ,显然当直线l 过圆心时,AB 最长,则()()()1311124205m m m m +⨯-++⨯--=⇒=-,故B 错误;当CP l ⊥时,此时弦AB 最短,即()3112311115m m m +--⨯=-⇒=-+--,故C 正确;当35m =-时,则弦长AB ==故D 错误.故选:AC 10.答案:AC解析:若//a b ,则240x -=,解得2x =,故A 正确;若⊥a b ,则420x +=,解得12x =-,故B 错误;若3x =,则(3,1)=a .又(4,2)=b ,所以向量a 与向量b的夹角的余弦值为10⋅==a b a b ,故C 正确;若1x =-,则(1,1)=-a .又(4,2)=b ,所以向量b 在向量a上的投影向量为(1,1)||||⋅⋅=-a b a a a ,故D 错误.故选AC.11.答案:AC解析:如图所示,取PC 的中点E ,连接BE ,DE ,则BE PC ⊥,DE PC ⊥,因为BE DE E = ,BD ,DE ⊂平面BDE ,所以PC ⊥平面BDE ,又BD ⊂平面BDE ,所以BD PC ⊥,A 项正确;在菱形ABCD 中,1AB =,120ABC ∠=︒,所以AC =,当ABD △沿对角线BD 折起时,0PC <<,所以不存在点P ,使得2PC =,B 项错误;当PC =1时,将正四面体补成正方体,根据正方体的性质可知,三棱锥P BCD -的外接球就是该正方体的外接球,因为正方体的各面的对角线长为1.所以正方体的棱长为2,设外接球的半径为R ,则22234122R ⎛=+= ⎝⎭,所以三棱锥P BCD -的外接球的表面积2342S R ππ==球,C 项正确;当三棱锥P BCD -的体积最大时,取BD 的中点O ,连接PO ,OC ,易知PO ⊥平面BCD,则PO OC ⊥,又122PO OC AC ===,所以2PC ==,D 项错误.故选:AC.12.答案:5解析:因为()1,0,2AB =-- ,()1,1,1CD =,所以cos ,5AB CD AB CD AB CD⋅===-,所以直线AB 与CD 所成角的余弦值为155.13.答案:4.5/92解析:易知这4个数据的极差为6x -,中位数为2y z+,即可得622y zx +-=⨯,所以6x y z ++=;又因为正整数x ,y ,z 互不相等且16x y z ≤<<<,可得1x =,2y =,3z =;由475%3⨯=为正数,因此这4个数据的第75百分位数为第三个数和第四个数的平均数,即364.52+=,则这4个数据的第75百分位数为4.5.故答案为:4.514.答案:34解析:如图,设圆1O ,2O 的半径分别为1r ,2r ,则12r =,由正弦定理,232sin 60r =︒,解得21r =,设圆台的高为h ,则12h O O ===,在ABC △中,取AC b =,BC a =,由余弦定理,222cos 603a b ab +-︒=,即得2232a b ab ab +=+≥,即得3ab ≤,当且仅当a b ==.因三棱锥P ABC -的体积为11113sin 6033244ABC V S h ab ab =⋅=⨯=≤△,即a b ==,三棱锥P ABC -的体积的最大值为34.故答案为:3.415.答案:(1)3255CD a b =+ ,1132EF b a=-(2)635解析:(1)因为25AD AB =,所以()223232555555CD CA AD CA AB CA CB CA CA CB a b =+=+=+-=+=+ ,11113232EF CF CE CB CA b a =-=-=-;(2)因为CD EF ⊥,所以231105532CD EF b a b a ⎛⎫⎛⎫⋅=+⋅-= ⎪ ⎪⎝⎭⎝⎭ ,所以222301510b a -= ,由2a = ,可得3b = ,又60ACB ∠=︒,所以12332a b ⋅=⋅⋅= ,所以635CD === .16.答案:(1)427(2)265432解析:(1)设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=(2)设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲以积分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=17.答案:(1)见解析(2)3015解析:(1)证明:以A 为坐标原点,以AB ,AC ,1AA 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,根据题意可得()0,0,0A ,()4,0,0B ,()0,4,0C ,()12,0,2B ,()10,2,2C ,()0,3,1D ,∴()12,0,2BB =- ,()0,4,0AC = ,()12,0,2,AB =设平面1AB C 的法向量为(),,n d e f =,则140220n AC e n AB d f ⎧⋅==⎪⎨⋅=+=⎪⎩,令1d =,即1f =-,0e =,则()1,0,1n =- ,12BB n ∴=- ,1//BB n ∴,1BB ∴⊥平面1AB C .(2)由(1)知()4,4,0BC =- ,()0,1,1CD =- ,设平面BCD 的法向量为(),,m x y z =,则4400m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1y =,即1x =,1z =,即()1,1,1m = ,由(1)知,()4,0,0AB = ,()0,3,1AD = ,设平面ABD 的法向量为(),,e a b c =,则4030e AB a e AD b c ⎧⋅==⎪⎨⋅=+=⎪⎩ ,令1b =,即0a =,3c =-.即()0,1,3e =- ,设平面BCD 与平面ABD 的夹角为θ,则1330cos cos ,15310m e m e m e θ⋅-====⨯,∴平面BCD 与平面ABD 的夹角的余弦值为3015.18.答案:(1)0.030t =,85;(2)35;(3)得分在[70,90)内的平均数为81,方差为26.8.解析:(1)由题意得:10(0.010.0150.0200.025)1t ⨯++++=,解得0.03t =,设第60百分位数为x ,则0.01100.015100.02100.03(80)0.6x ⨯+⨯+⨯+⨯-=,解得85x =,第60百分位数为85.(2)由题意知,抽出的5位同学中,得分在[70,80)的有85220⨯=人,设为A 、B ,在[80,90)的有125320⨯=人,设为a 、b 、c .则样本空间为{(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)}A B A a A b A c B a B b B c a b a c b c Ω=,()10n Ω=.设事件M =“两人分别来自[70,80)和[80,90),则{(,),(,),(,),(,),(,),(,)}M A a A b A c B a B b B c =,()6n M =,因此()63()()105n M P M n ===Ω,所以两人得分分别来自[70,80)和[80,90)的概率为35.(3)由题意知,落在区间[70,80)内的数据有40100.028⨯⨯=个,落在区间[80,90)内的数据有40100.0312⨯⨯=个.记在区间[70,80)的数据分别为1x ,2x , ,8x ,平均分为x ,方差为2x s ;在区间[80,90)的数据分别为为1y ,2y , ,12y ,平均分为y ,方差为2y s ;这20个数据的平均数为z ,方差为2s .由题意,75x =,85y =,26.25xs =,20.5ys =,且8118i i x x ==∑,121112j j y y ==∑,则8128751285812020x y z +⨯+⨯===.根据方差的定义,()()()()812812222221111112020i j i j i j i j s x z y z x x x z y y y z ====⎡⎤⎡⎤=-+-=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()()()88812121222221111111()2((2(20i i j j i i i j j j x x x z x z x x y y y z x z y x ======⎡⎤=-+-+--+-+-+--⎢⎥⎣⎦∑∑∑∑∑∑由()()881212111180,120i i j j i i j y x x x x y y y y ====-=-=-=-=∑∑∑∑,可得()()8812122222211111()()20i j i i j j s x x x z y y y z ====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑2222188(1212(20x y s x z s y z ⎡⎤=+-++-⎣⎦222223(()55x y s x z s y z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦22236.25(7581)0.5(8581)26.855⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦故得分在[70,90)内的平均数为81,方差为26.8.19.答案:(1)π3(2)213⎛⎫+ ⎪ ⎪⎝⎭解析:(1)选①,由正弦定理得sin sin B A =sin 0A ≠,cos 1B B -=,即π1sin 62B ⎛⎫-= ⎪⎝⎭,0πB << ,ππ5π666B -<-<∴,ππ66B ∴-=,π3B ∴=.选②,2sin tan b A a B = ,sin 2sin cos a Bb A B=,由正弦定理可得sin 2sin sin sin cos B B A A B =⋅,sin 0A ≠,1cos 2B ∴=,(0,π)B ∈ ,π3B ∴=.选③,sin()sin(π)sin A B C C +=-=,由已知结合正弦定理可得22()a c a c b -+=,222a cb ac ∴+-=,2221cos 222a cb ac B ac ac +-∴===,(0,π)B ∈ ,π3B ∴=.(2)π2,3,3a c B ===,,,根据余弦定理2222cos 4967b a c ac B =+-=+-=,b ∴=ABC∴△外接圆的直径2sin 2bR B===过D 作DG BC ⊥,垂足为G ,而cos BC BD BC BD DBC ⋅=∠,若BC BD ⋅取到最大值,则cos BD DBC ∠ 取最大值,故可设DBC ∠为锐角,故此时BC BD BC BG ⋅=,当BG取最大值时,DG 与圆相切且G 在BC 的延长线上(如图所示),设此时切点为H ,垂足为F ,取BC 的中点E ,外接圆圆心为O ,连接OE ,OH ,则//OE FH 且OH FH ⊥,故四边形OHFE 为矩形,故3EF OH R ===,故1123BF BC R =+=+,()max21213BC BD⎛⎫∴⋅=+ ⎪ ⎪⎝⎭ .。
山东省安丘市青云学府2024-2025学年高二上学期开学考试数学试题

山东省安丘市青云学府2024-2025学年高二上学期开学考试数学试题一、单选题1.一条直线与两条平行线中的一条为异面直线,则它与另一条( ) A .相交B .异面C .相交或异面D .平行2.下列选项中,一定能得出直线m 与平面α平行的是 ( ) A .直线m 在平面α外B .直线m 与平面α内的两条直线平行C .平面α外的直线m 与平面内的一条直线平行D .直线m 与平面α内的一条直线平行3.,αβ是两个不重合的平面,,a b 是两条不同直线,在下列条件下,可判定//αβ的是( ) A .,αβ都平行于直线,a bB .α内有三个不共线点,,A BC 到β的距离相等 C .,a b 是α内两条直线,且//αβ,//b βD .,a b 是两条异面直线且//,//,//,//a b a b ααββ4.P A 垂直于以AB 为直径的圆所在的平面,C 为圆上异于A ,B 的任一点,则下列关系不.正确..的是( ) A .PA BC ⊥ B .⊥BC 平面PAC C .AC PB ⊥D .PC BC ⊥5.设不同直线l 、m ,不同平面αβ、,下列条件能得出//αβ的是( ) A .,,l m αβ⊥⊥且//l m B .,,l m αβ⊂⊂且//l m C .,,l m αα⊂⊂且//,//l m ββ D .//,//,l m αβ且//l m6.下列命题中正确的个数是( ). ①若a r与b r 共线,b r与c r 共线,则a r 与c r共线. ②向量a r ,b r,c r共面,即它们所在的直线共面.③如果三个向量a r ,b r ,c r不共面,那么对于空间任意一个向量p r ,存在有序实数组(),,x y z ,使得p xa yb zc =++r r rr .④若a r,b r 是两个不共线的向量,而c a b λμ=+r r r (,λμ∈R 且0λμ≠),则{},,a b c r r r 是空间向量的一组基底.A .0B .1C .2D .37.如图所示,在四面体A -BCD 中,点E 是CD 的中点,记AB a =u u u r r,AC b =u u u r r ,AD c =u u u r r , 则BE u u u r等于( )A .1122a b c -++r r r B .1122a b c -+r r r C .1122a b c -+r r r D .1122a b c -++r r r8.已知向量(0,1,1),(4,1,0),||a b a b λ=-=+=r r r r0λ>,则λ等于( )A .5B .4C .3D .2二、多选题9.如图所示,在正方体1111ABCD A B C D -中,O 为DB 的中点,直线1AC 交平面1C BD 于点M ,则下列结论正确的是( )A .1C ,M ,O 三点共线B .1AC ⊥平面1C BD C .直线11AC 与平面11ABC D 所成角的为6πD .直线1AC 和直线1BC 是共面直线 10.给出下列命题,其中不正确的为( )A .若AB CD =u u u r u u u r,则必有A 与C 重合,B 与D 重合,AB 与CD 为同一线段B .若0a b ⋅<r r ,则,a b r r 是钝角C .若0AB CD +=u u u r u u u r r ,则AB u u u r与CD u u u r 一定共线D .非零向量,,a b c r r r 满足a r 与b r ,b r 与c r ,c r 与a r 都是共面向量,则,,a b c rr r 必共面11.如图,在底面为等边三角形的直三棱柱111ABC A B C -中,2AC =,1BB =D ,E 分别为棱BC ,1BB 的中点,则( )A .1AB ∥平面1ADC B .1AD C D ⊥C .异面直线AC 与DED .平面1ADC 与平面ABC三、填空题12.化简:2233AB BC CD DA AC ++++=u u u r u u u r u u u r u u u r u u u r.13.设O ABC -是四面体,1G 是ABC V 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++u u u r u u u r u u u r u u u r,则242x y z ++=.14.如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是.四、解答题15.已知空间三点(2,0,2)A -、(1,1,2)B -、(3,0,4)C -,设a AB =r u u u r ,b AC =r u u ur .(1)设3c =r ,c r //BC u u u r ,求c r .(2)若ka b +r r与2ka b -r r 互相垂直,求k .16.在正方体1111ABCD A B C D -中,点E F ,分别在1,A D AC 上,1,EF A D EF AC ⊥⊥, 求证:1EF BD P .17.如图,矩形ADFE 和梯形ABCD 所在平面互相垂直,AB ∥CD ,∠ABC =∠ADB =90°,CD =1,BC =2,DF =1.(1)求证:BE ∥平面DCF ; (2)求点B 到平面DCF 的距离.18.如图甲,在直角梯形ABCD 中,AB CD ∥,AB BC ⊥,224CD AB BC ===,过A 作AE CD ⊥,垂足为E ,现将ADE ∆沿AE 折叠,使得DE EC ⊥.取AD 的中点F ,连接BF ,CF ,EF ,如图乙.(1)求证:⊥BC平面DEC;(2)求二面角C BF E--的余弦值19.如图,在三棱锥P ABC-中,AB BC⊥,2=BP,AP,AB=,BC=PB PC⊥.BC的中点分别为D,E,O,AD,点F在AC上,BF AO(1)证明://EF平面ADO;(2)证明:平面ADO⊥平面BEF;--的正弦值.(3)求二面角D AO C。
湖北省新高考联考协作体2024-2025学年高二上学期开学考试数学试题

湖北省新高考联考协作体2024-2025学年高二上学期开学考试数学试题一、单选题1.孝感市某高中有学生1200人,其中高一年级有学生400人,高二年级有学生600人,现采用分层随机抽样的方法抽取120人进行问卷调查,则被抽到的高二年级学生人数比高一年级学生人数多( )A .20B .30C .40D .502.已知复数z 满足:()i 12i 34z +=-,则复数z 的虚部为( )A .2iB .-2C .2D .2i -3.已知()()2,0,2,2a b ==r r ,则a r 在b r 上的投影向量为( )A .)B .()1,1C .()2,1D .()2,24.已知圆锥的侧面积为2π,圆锥的侧面展开图是一个圆心角为π3的扇形,则该圆锥的底面圆半径为( )AB C D 5.掷两枚质地均匀的骰子,设A =“第一枚出现小于4的点”,B =“第二枚出现大于3的点”,则A 与B 的关系为( )A .互斥B .互为对立C .相互独立D .相等6.在三棱锥S ABC -中,三个侧面与底面ABC 所成的角均相等,顶点S 在ABC V 内的射影为O ,则O 是ABC V 的( )A .垂心B .重心C .内心D .外心7.如图,一块矿石晶体的形状为四棱柱1111ABCD A B C D -,底面ABCD 是正方形,13,3CC CD ==,且1160C CB C CD ∠=∠=o ,则向量1AC u u u r 的模长为( )A B .34 C .52 D .8.已知单位向量,a b r r 满足0a b b -+⋅=r r r ,则()2ta b t +∈R r r 的最小值为( )AB C D二、多选题9.关于非零向量,a b r r ,下列命题中正确的是( )A .若a b =r r ,则a b =r r .B .若a b =-r r ,则a r ∥b r .C .若a b >r r ,则a b >r r .D .若,a b b c ==r r r r ,则a c =r r .10.如图,正方体1111ABCD A B C D -的棱长为1,点P 在线段11C D 上运动,则下列选项中正确的是( )A .APB .平面1BB P ⊥平面1111DC B A .C .若P 是11CD 的中点,则二面角11P B B C --D .若114D P =,则直线1B P 与1BD 11.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A .采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C .采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D .当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题12.已知a ∈R ,若复数()()2344i Z a a a =----为纯虚数,则复数1i Z a a =-+在复平面内对应的点位于第象限.13.三棱锥D ABC -中,DA ⊥平面,,ABC AB BC DA AB BC ⊥=外接球体积等于.14.在ABC V 中,π,432A BC BA CA CB =⋅=⋅u u u r u u u r u u u r u u u r ,则ABC V 中最小角的余弦值为.四、解答题15.如图,在直三棱柱111ABC A B C -中,15,6,,AB AC BB BC D E ====分别是1AA 和1B C 的中点.(1)求证:DE ⊥平面11BCC B ;(2)求三棱锥E BCD -的体积.16.已知2,4,a b a b ==+=r r r r (1)若()()22a kb ka b -⊥+r r r r ,求实数k 的值; (2)求a r 与36a b +r r 的夹角的余弦值.17.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,已知()12cos c a B =+.(1)若π3B =,求角C 的大小; (2)若ABC V 为锐角三角形,求b a的取值范围. 18.如图,在四棱锥P ABCD -中,PA ⊥平面,ABCD E 为PD 的中点,AD ∥,91,2,0BC BAD PA AB BC AD ∠=====o .(1)求证:CE ∥平面PAB ;(2)求证:平面PAC ⊥平面PDC ;(3)求直线EC 与平面PAC 所成角的正弦值.19.A 校和B 校是孝感市两所著名的高中,为了相互学习和交流,现随机抽取2000名A 校学生和2000名B 校学生参加一场知识问答竞赛,得到的竞赛成绩全部位于区间[)40,100中,现分别对两校学生的成绩作统计分析:对A 校学生的成绩经分析后发现,可将其分成组距为10,组数为6,作频率分布直方图,且频率分布直方图中的Y Y ⎛⎫= ⎪⎝⎭频率组距满足函数关系()10.12,130.18,46n k n Y k n n -⎧⨯≤≤⎪=⎨-≤≤⎪⎩(n 为组数序号,n ∈Z );关于B 校学生成绩的频率分布直方图如下图所示(纵轴为频率组距),假定每组组内数据都是均匀分布的.(1)求k 的值;(2)若B 校准备给前100名的学生奖励,应该奖励多少分以上的学生?(3)现在设置一个标准t 来判定某一学生是属于A 校还是B 校,将成绩小于t 的学生判为B 校,大于t 的学生判为A 校,将A 校学生误判为B 校学生的概率称为误判率A ,将B 校学生误判为A 校学生的概率称为误判率B ,误判率A 与误判率B 之和称作总误判率,记为()f t .若[)50,70t ∈,求总误判率()f t 的最小值,以及此时t 的值.。
浙江名校协作体2024年高二上学期开学考试数学试题参考答案
2024学年第一学期浙江省名校协作体联考参考答案高二年级数学学科首命题:学军中学 次命题兼审校:温岭中学 审核:春晖中学15.(Ⅰ)∵0a <,()()+20a x a x +> 所以()()20x a x ++<,解得2x a −<<− 所以{}2A x x a =−<<−.............5分 (Ⅱ){}12B x x =≤<①当0a <时,B A ⊆因为,所以2a −≥,得2a ≤−;............ 7分 ②当0a =时A =Φ不合;.............9分③当02a <≤时,{}2A x x x a =<−>−或成立,所以B A ⊆成立;.............11分 ④当2a ≥时时,{}2A x x a x =<−>−或成立,所以B A ⊆成立; 20a a ≤−>综合得或 ...............................13分16.解析:(Ⅰ)由已知,志愿者服务时间不低于18小时的概率为1(0.020.06)40.68−+⨯=. ------4分(Ⅱ)由频率分布直方图可看出最高矩形底边上的中点值为20,故众数是20;--------7分 由(0.020.060.0750.025)41a ++++⨯=,解得0.07a =, ∵(0.020.06)40.32+⨯=,且(0.020.060.075)40.62++⨯=,平均数为(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=;--------11分 (Ⅲ)又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=, ∴第75%位数位于22~26之间,设第75%位数为y , 则220.750.6226220.90.62y −−=−−,解得132223.867y =+≈.----------------15分17.(Ⅰ)解析:()2sin()6f x x π=+,----------------------------3分32,2622x k k πππ⎡⎤+∈π+π+⎢⎥⎣⎦令得42233k x k ππππ+≤≤+, ()f x 的单调减区间为4[2,2],33k k k Z π+ππ+π∈-----------------6分(Ⅱ)解析:由题意得()2sin(2)6g x x π=−,则6()2sin(2)65g παα=−=−--------8分3sin(2)65πα−=−,又因为5(,)612ππα∈−,则22(,)623πππα−∈−所以4cos(2)65πα−=------------------------------------------------11分cos 2cos(2)663cos(2)cos sin(2)sin 666610ππααππππαα=−++=−−−=----------------------15分18.(Ⅰ)解析:由题意,在三角形PAB 与三角形PAD 中用余弦定理可得:AB AD ==分取BD 中点M ,连,AM PM ,由AB AD =,PB PD =,可得BD AM ⊥,BD PM ⊥,故BD ⊥平面APM ,因为AP APM ⊂平面,所以BD PA ⊥-----------4分(Ⅱ)因为BD ⊥平面APM ,所以平面PAM ⊥平面ABCD ,故点P 在平面ABCD 上的投影在两平面的交线AM 上,所以PAM ∠为所求线面角,-----------5分在Rt PBD ∆中,有BM DM PM ===;在Rt ADM ∆中,可得AM =分故在三角形PAM中:222cos 2PA AM PM PAM PA AM +−∠==⋅sin PAM ∠=,分(Ⅲ)解析:因为平面PAM ⊥平面ABCD ,故点,,,P A M C 四点共面,所以点,,A M C 三点共线,-------------------------------------------------10分所以在PAC ∆中,cos PAC ∠=,所以2222cos 9PC PA AC PA AC PAC =+−⋅⋅∠=,即2369AC AC +=,解得AC =或AC =分若AC =,则四边形ABCD为凹四边形,矛盾. 所以AC =---------------13分 因为,所以12ABCD S AC BD =⋅=四边形分所以1sin 3P ABCD ABCD V S PA PAM −=⋅⋅⋅∠=四棱锥四边形分19.(Ⅰ)解析:是.理由如下:------------------------------------1分281616lnln16ln ln log log ln 2ln 8l 160,0,16()2l ()n n 8x x x x xf f x x x x x ∀>=⋅=⋅=>=⋅-----------------------3分 故()2816log log f x x x=⋅是“反比例对称函数”.--------------- -------4分 (Ⅱ)解析:()()(),(0,)h x f x g x x =−∈+∞设, 由(Ⅰ)知16()()f f x x =,验证知16()()g g x x= 故16()()h x h x=.--------------------------------------------------------6分 由题意函数()f x 与()g x 的图像恰有一个交点,即()h x 恰有一个零点,故由对称性零点只能为4.-----------------------------------------------7分 由(4)0h =,得203m =.----------------------------------------8分 下检验此时()h x 恰有一个零点.由对勾函数性质知,()g x 在(]0,4上单调递减,[)4,+∞上单调递增.()ln (ln16ln )ln 2ln 8x x f x −=,设ln u x =,()(ln16)ln 2ln 8u u f x −=,()f x 关于u 在(]0,ln 4上单调递增,[)ln 4,+∞上单调递减,因此()f x 在(]0,4上单调递增,[)4,+∞上单调递减. 故()h x 在(]0,4上单调递增,[)4,+∞上单调递减.故此时()h x 恰有一个零点4.----------------------------10分注:充分必要性步骤交换亦可。
河南省信阳高级中学2023-2024学年高二上学期开学考试数学试题及参考答案
河南省信阳高级中学2023-2024学年高二上期开学考试数学试题出題人:方杰 审题人:熊成兵一、单选题1.已知集合{1,1,2,4},{||11}A B x x =−=−≥∣,则R C A B =A.{1}B.{1,2}−C.{1,2}D.{1,2,4}−2.若1211i,(3i)z z z =−=+(i 为虚数单位,1z 是1z 的共轭复数),则2z = A.2 B.C. D.63.抛搃两枚质地均匀的硬币,设事件A =“第一枚正面向上"事件B =“第三枚反面向上”,则事件A 与B 的关系是A.A B ⊆B.A B =C.相互独立D.互斥 4.已知向量(2,1,3),(2,2,1)a b =−=− ,则向量a 在向量b 上的投影向量c = A.221,,333 −− B.(2,1,3)−− C.21,,133 −− D.(2,2,1)−−5.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,若从甲校和乙校报名的教师中各任选1名,则选出的2名教师性别相同的概率是 A.29 B.49 C.59 D.236.车厘子是一种富含维生素和微量元素的水果,其味道甘美,受到众人的喜爱。
根据车厘子的果径大小,可将其从小到大依次分为6个等级,其等级(1,2,3,4,5,6)x x =与其对应等级的市场销售单价y (单位:元/千克)近似满足函数关系式ar e b y +=.若花同样的钱买到的1级果比5级果多3倍,且3级果的市场销售单价为60元/千克,则6级果的市场销售单价最接近1.44≈≈≈≈)A.130元/千克B.160元/千克C.170元/千克D.180元/千克7.如图,在正四面体P ABC −中,点,E F 分别是棱,AB AC 上的点(不含端点),14AE AB =,记二面角P EF B −−的大小为θ,在点F 从点A 运动到点C 的过程中,下列结论正确的是A.θ一直增大 C.θ先增大后减小B.θ一直减小 D.θ先减小后增大8.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,且BC边上的高为,则角A 的取值范围为 A.0,2πB.,63ππC.20,3πD.2,33ππ二、多选题 9.设123,,z z z 为复数12z z ≠,下列命题中正确的是A.若1323z z z z =,则30z =C.若1212z z z z −=+,则120z z = B.若13z z =,则13z z z =∣D.若23z z =,则1213z z z z =10.已知向量2a b∣,则下列结论正确的是 A.若向量,a b同向,则32b =B.若向量,a b反向,则31,2b =−−C.若|2|||a b a −= ,则,260b a b °〈−〉=D.若|2|||a b a −= ,则,60a b °〈〉=11.数学与音乐有着紧密的关联,每一个音都是由纯音合成,纯音的数学模型是函数sin y A x ω=.像我们平时听到的乐音不只是一个音在响,而是许多个纯音的结合,称为复合音.复合音的产生是发声体在全段振动,产生的频率为f 的基音的同时,其各部分,如二分之一、三分之一部分也在振动,产生的频率恰好是全段振动频率的倍数,如$2f ,3f$等.这些音叫谐音,因为其振幅较小,我们一般不易单独听出来.如我们听到的某个声音函数11()sin sin 2sin 323f x x x x =++,对此以下说法正确的是A.函数()f x 的周期为πC.函数()f x 图象关于直线2x π=对称 B.函数()f x 图象关于点(,0)π对称 D.函数()f x 在0,6π单调递增12.如图1,在菱形$ABCD$中,2,60,AB DAB E °=∠=是AB 的中点,将ADE 沿直线DE 翻折至1A DE 的位置,得到如图2所示的四棱雉1A BCDE −.若F 是1A C 的中点,则在翻折过程中,下列说法正确的是A.点F 到平面1A EBB.当1A E EB ⊥时,过点,,F B E 的截面周长为4C.异面直线1A D 与EB 所成的角不断变小D.当1A B =时,直线1A C 与平面EBCD 三、填空题13.河北省九大高峰按照海拔(单位:米)排名依次为小五台山(2882)、驼梁山(2281)、雾灵山(2118)、长城岭(2100)、白石山(2096)、野三坡(1983)、祖山(1428)、天桂山(1270)、狼牙出(1105),则这九大高峰的海拔数据的第70百分位数为 。
山东省德州市武城县第二中学2024-2025学年高二上学期开学考试数学试题
山东省德州市武城县第二中学2024-2025学年高二上学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________四、解答题15.已知,X Y两组各有5位病人,他们服用某种药物后的康复时间(单位:天)记录如下:X 组:10,11,12,13,14,Y 组:12,13,15,14,a .假设所有病人的康复时间相互独立,从,X Y 两组随机各选1人,X 组选出的人记为甲,Y 组选出的人记为乙.(1)如果8a =,求甲的康复时间比乙的康复时间长的概率;(2)如果16a =,事件M :“甲康复时间为11天”,事件N :“甲乙康复时间之和为25天”,事件,M N 是否相互独立?16.如图,在三棱柱111ABC A B C -中,1A C ^平面,90ABC ACB Ð=°.(1)证明:平面11ACC A ^平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BBC C -的高.17.某中学高一年级举行了一次数学竞赛,从中随机抽取了一批学生的成绩,经统计,这批学生的成绩全部介于50至100之间,将数据按照[50,60),[60,70),[)70,80,[80,90),[90,100)的分组作出频率分布直方图如图所示.对于B,若m aP,a面内可以而n a^,n与a内任意一条直线对于C,如图,,m n n^对于D,如图,a∥,mb故选:B..C【分析】根据圆台的体积【详解】该圆台的体积V15.(1)825(2)不相互独立【分析】(1)列举符合条件的基本事件,答案第151页,共22页。
河南省郑州市2024-2025学年高二上学期开学考试 数学含答案
2024—2025学年郑州市高二(上)开学考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每道选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知正数a ,b ,c 满足2b ac =,则a c bb a c+++的最小值为()A.1 B.32C.2D.522.已知2319,sin ,224a b c ππ===,则()A.c b a<< B.a b c<< C.a <c <bD.c <a <b3.已知1133log (1)log (1)a b -<-,则下列说法一定成立的是()A.11a b> B.1120222021ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C.n 0()l a b -> D.若AC abAB =,则点C 在线段AB 上4.已知函数()π37π5sin 2,0,63f x x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦,若函数()()4F x f x =-的所有零点依次记为123,,,,n x x x x ,且123n x x x x <<<< ,则1231222n n x x x x x -+++++= ()A.292πB.625π2C.1001π3D.711π25.同时掷红、蓝两枚质地均匀的骰子,事件A 表示“两枚骰子的点数之和为5”,事件B 表示“红色骰子的点数是偶数”,事件C 表示“两枚骰子的点数相同”,事件D 表示“至少一枚骰子的点数是奇数”.则下列说法中正确的是()①A 与C 互斥②B 与D 对立③A 与D 相互独立④B 与C 相互独立A.①③B.①④C.②③D.②④6.已知函数()()ππcos 322f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线5π18x =对称,则函数()f x 在区间[]0,π上零点的个数为()A.1B.2C.3D.47.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2cos a cC C b+=+,则a cb +的最大值为()C.328.已知12,z z 是复数,满足124z z +=,13=z ,12z z -=12⋅=z z ()A.32B.3C. D.6二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.设12,z z 为复数,则下列命题正确的是()A.若12z z =,则12Rz z ∈B.若112z =-+,则202411i22z =-C.若12=z z ,则2212z z =D.若12z z z z -=-,且12z z ≠,则z 在复平面对应的点在一条直线上10.如图,函数()()π2tan 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC 的面积为π2,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为ππ,082k ⎛⎫-+ ⎪⎝⎭,k ∈ZC.()f x 的单调增区间是ππ5ππ,8282k k ⎛⎫++ ⎪⎝⎭,k ∈ZD.将函数()f x 的图象向右平移π4个单位长度后可以得到函数2tan y x ω=的图象11.如图:棱长为2的正方体1111ABCD A B C D -的内切球为球O ,E 、F 分别是棱AB 和棱1CC 的中点,G 在棱BC 上移动,则下列命题正确的是()①存在点G ,使OD 垂直于平面EFG ;②对于任意点G ,OA 平行于平面EFG ;③直线EF 被球O 截得的弦长为④过直线EF 的平面截球O 所得的所有截面圆中,半径最小的圆的面积为π2.A.①B.②C.③D.④三、填空题:本大题共3个小题,每小题5分,共15分.12.函数()sin cos sin2f x x x x =-+在区间π0,2⎡⎤⎢⎥⎣⎦上的值域是.13.若函数()7tan f x x =,()5sin 2g x x =,则()y f x =和()y g x =在π3π,22x ⎡⎤∈-⎢⎥⎣⎦的所有公共点的横坐标的和为.14.在正四棱台1111ABCD A B C D -中,4AB =,112A B =,1AA =为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1≤x ≤27,函数33()log (3)log 227=⋅++xf x a x b (a >0)的最大值为4,最小值为0.(1)求a 、b 的值;(2)若不等式()(3)0t g t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,求实数k 的取值范围.16.(15分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考历史的情况,随机选取了100名高一学生,将他们某次历史测试成绩(满分100分)按照[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分成5组,制成如图所示的频率分布直方图.(1)求图中a 的值并估计这100名学生本次历史测试成绩的中位数;(2)据调查,本次历史测试成绩不低于60分的学生,高考将选考历史科目;成绩低于60分的学生,高考将不选考历史科目.按分层抽样的方法从测试成绩在[)0,20,[]80,100的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考历史科目的概率.17.(15分)ABC 中,角A,B,C 所对的边分别为,,a b c .已知3,cos 2a A B A π==+.(1)求b 的值;(2)求ABC 的面积.18.(17分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//AD BC ,且2AD BC =,8PA PB AD ===,5CD =,点E ,F 分别为棱PD ,AD 的中点.(1)若平面PAB ⊥平面ABCD ,①求证:PB AD ⊥;②求三棱锥P ABE -的体积;(2)若8PC =,请作出四棱锥P ABCD -过点B ,E ,F 三点的截面,并求出截面的周长.19.(17分)已知平面向量π2sin 3cos 2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ ,πsin ,2sin 2b x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,且函数.(1)求π3f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期;(3)求函数()y f x =在π0,2⎡⎤⎢⎥⎣⎦上的最大值,并求出取得最大值时x 的值.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】因为a ,b ,c 为正数且满足2b ac =,所以2a c b +≥=,当且仅当a b c ==时等号成立,令a c t b+=,[)2,t ∈+∞,则1a cb t b ac t ++=++,令1y t t =+,[)2,t ∈+∞,又1y t t=+在[)2,+∞上单调递增,所以当2t =时,y 取得最小值为15222+=,所以a c bb a c+++的最小值为52,当且仅当a b c ==时取得.故选D.2.【答案】D 【解析】293334π2π2π2πc a ==⨯<= c a∴<3132π2a π==⨯,设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯=()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x xπ>10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a >∴c<a<b故选:D.3.【答案】B【解析】因为1133log (1)log (1)a b -<-,则101011a b a b ->⎧⎪->⎨⎪->-⎩,即1a b >>,所以11a b<,故A 错误;因为12022xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且a b >,所以1120222022ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,又1b >,所以by x =在()0,+∞单调递增,所以1120222021bb⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭,所以1120222021a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故B 正确;因为1a b >>,所以0a b ->,当01a b <-<时,()ln 0a b -<,当1a b ->时,()ln 0a b ->,故C 错误;又1a b >>,所以1ab >,由AC abAB =可得点C 在AB 延长线上,故D 错误;故选B.4.【答案】A【解析】函数()π5sin 2,6f x x ⎛⎫=- ⎪⎝⎭令()ππ2π62x k k -=+∈Z ,可得1ππ()23x k k =+∈Z ,即函数的对称轴方程为1ππ()23x k k =+∈Z ,又()f x 的周期为πT =,37π0,3x ⎡⎤∈⎢⎥⎣⎦,令1π37ππ=233k +,可得24k =,所以函数在37π0,3x ⎡⎤∈⎢⎥⎣⎦上有25条对称轴,根据正弦函数的性质可知,12231π5π71π2,2,,2366n n x x x x x x -+=⨯+=⨯+=⨯ (最后一条对称轴为函数的最大值点,应取前一条对应的对称轴),将以上各式相加得12312π5π8π71π22226666n n x x x x x -⎛⎫+++++=++++⨯ ⎪⎝⎭()2+7124π876π==292π323⨯⨯=,故选A.5.【答案】B【解析】①;因为两枚骰子的点数相同,所以两枚骰子的点数之和不能为5,所以A 与C 互斥,因此本序号说法正确;②:当红色骰子的点数是偶数,蓝色骰子的点数是奇数时,B 与D 同时发生,因此这两个事件同时发生,所以本序号说法不正确;③:()()()419341,1,369364369P A P D P AD ===-===,显然()()()P A P D P AD ≠,所以A 与D 不相互独立,所以本序号说法不正确;④:()()()1131,,263612P B P C P BC ====,显然()()()P B P C P BC =,所以B 与C 相互独立,所以本序号说法正确,故选:B.6.【答案】C【解析】函数()()ππcos 322f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线5π18x =对称,所以()5π3π18k k ϕ⨯+=∈Z ,解得()5ππ6k k ϕ=-∈Z ,又因为ππ22ϕ-<<,所以6ϕ=π,所以()πcos 36f x x ⎛⎫=+ ⎪⎝⎭,令()πcos 306f x x ⎛⎫=+= ⎪⎝⎭,则()ππ3π62x k k +=+∈Z ,解得ππ39k x =+,因为[]0,πx ∈,所以π9x =,4π9,7π9.即函数()f x 在区间[]0,π上零点的个数为3.故选C.7.【答案】B【解析】在ABC中,有2cos a cC C b++由正弦定理得sin 2sin sin sin cos A C B C B C +=+,又()sin sin sin cos cos sin A B C B C B C =+=+,所以cos sin 2sin sin B C C B C +=,因为sin 0C ≠,所以cos 2B B -=,即π2sin 26B ⎛⎫-= ⎪⎝⎭,则ππ62B -=,即2π3B =,由余弦定理得2222cos b a c ac B =+-()222a c ac a c ac=++=+-()()222324a c a c a c +⎛⎫≥+-=+ ⎪⎝⎭,则233a c +≤,当且仅当a c =时,等号成立,所以33a cb b +≤=.故选B.8.【答案】D【解析】因为21212121212()()()z z z z z z z z z z +=+⋅+=+⋅+,且124z z +=,13=z ,即221211121222212129||()16z z z z z z z z z z z z z z +=+++=+++=,得221212||7z z z z ++=;同理因为21212121212()()()z z z z z z z z z z -=-⋅-=-⋅-,且12z z -=即221211121222212129||()10z z z z z z z z z z z z z z z -=--+=+-+=,得:221212||1z z z z --=;联立可得:224z =,22z =,1212||326z z z z ⋅=⋅=⨯=.故选D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】AD【解析】对于A,设()2i ,R z m n m n =+∈,则1i z m n =-,所以2212R z z m n =+∈,故A 正确;对于B,由112z =-,得2211122z ⎛⎫=-=- ⎪ ⎪⎝⎭,所以()22421111i i 2222z z⎛⎫==-=-+ ⎪ ⎪⎝⎭,所以450220462112z z ⨯-==,故B 错误;对于C,若121,i z z ==,则12=z z ,而22121,1z z ==-,故C 错误;对于D,因为12z z ≠,设12,z z 对应的点为,A B ,若12z z z z -=-,则z 在复平面内对应点到A 和B 的距离相等,即z 在复平面内对应点在线段AB 的垂直平分线上,所以z 在复平面对应的点在一条直线上,故D 正确.故选:AD.10.【答案】ABD【解析】A:当0x =时,()π02tan 24OC f ===,因为2ABC S π= ,所以122ABCS OC AB π== ,得π2AB =,即函数()f x 的最小正周期为π2,由πT ω=得2ω=,故A 不正确;B:由选项A 可知()π2tan 24f x x ⎛⎫=+ ⎪⎝⎭,令ππ242k x +=,k ∈Z ,解得ππ48k x =-,k ∈Z ,即函数()f x 的对称中心为ππ,048k ⎛⎫- ⎪⎝⎭,k ∈Z ,故B 不正确;C:由ππ3ππ2π242k x k +<+<+,k ∈Z ,得π5ππ8282πk k x +<<+,k ∈Z ,故C 正确;D:将函数()f x 图象向右平移π4个长度单位,得函数π2tan 24y x ⎛⎫=- ⎪⎝⎭的图象,故D 不正确.故选ABD.11.【答案】ACD【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()2,2,0C 、()0,2,0D 、()10,0,2A 、()12,0,2B 、()12,2,2C 、()10,2,2D 、()1,0,0E 、()2,2,1F 、()1,1,1O ,设点()2,,0G a ,其中02a ≤≤,对于①,()1,1,1OD =-- ,()1,2,1EF = ,()1,,0EG a =,若存在点G ,使OD 垂直于平面EFG ,只需OD EF ⊥,OD EG ⊥,则1210OD EF ⋅=-+-= ,10OD EG a ⋅=-+=,解得1a =,此时,G 为BC 的中点,故当点G 为BC 的中点时,OD ⊥平面EFG ,①对;对于②,当点G 与点B 重合时,A ∈平面EFG ,②错;对于③,()0,1,1EO = ,()1,2,1EF =,则3cos 2EO EF OEF EO EF ⋅∠==⋅,因为0πOEF ≤∠≤,则π6OEF ∠=,所以,点O 到EF的距离为π12sin 622d EO === ,所以,直线EF 被球O截得的弦长为=对于④,设点O 在EF 上的射影为点M ,过直线EF 的平面为α,当直线OM 与平面α垂直时,平面α截球O 所得截面圆的半径最小,且半径的最小值为22=,因此,半径最小的圆的面积为2ππ22⎫⨯=⎪⎪⎝⎭,④对.故选:ACD.三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】51,4⎡⎤-⎢⎥⎣⎦【解析】令πsin cos )4t x x x =-=-,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,πππ,444x ⎡⎤-∈-⎢⎣⎦,所以[1,1]t ∈-,()22sin cos sin2sin cos (sin cos )11f x x x x x x x x t t =-+=---+=-+,设2()1,[1,1]g t t t t =-++∈-,显然一元二次函数2()1g t t t =-++在区间1[1,]2-上单调递增,在区间1[,1]2上单调递减,所以max min 15(,(1)124g g =-=-,所以函数()sin cos sin2f x x x x =-+的值域为5[1,4-.故答案为:5[1,]4-.13.【答案】3π【解析】因为()7tan f x x =的对称中心为π,02k ⎛⎫⎪⎝⎭,k ∈Z ,()5sin 2g x x =的对称中心为π,02k ⎛⎫⎪⎝⎭,k ∈Z ,所以两函数的交点也关于π,02k ⎛⎫⎪⎝⎭对称,k ∈Z ,又因为函数()7tan f x x =,()5sin 2g x x =的最小正周期为π,作出两函数的在π3π,22x ⎡⎤∈-⎢⎥⎣⎦的图象,如下图,由此可得两函数图象共6个交点,设这6个交点的横坐标依次为123456,,,,,x x x x x x ,且123456x x x x x x <<<<<,其中13,x x 关于()0,0对称,20x =,46,x x 关于()π,0对称,5πx =,所以1234563πx x x x x x +++++=.故答案为:3π.14.【答案】3/【解析】正四棱台1111ABCD A B C D -的对角面为11ACC A 是等腰梯形,其高为该正四棱台的高,在等腰梯形11ACC A 中,11AC A C ==,因为1AA =h =所以该棱台的体积为()221442233V =+⨯+⨯.故答案为:四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)1,2a b ==;(2)43⎛⎤-∞ ⎥⎝⎦,【解析】(1)()()()()3333log 3log 2log 1log 3227x f x a x b a x x b =⋅++=+-++()23log 142a x a b =+--+,由1≤x ≤27得[]3log 0,3t x =∈,()[]23log 10,4x -∈,又a >0,因此33()log (3)log 227=⋅++xf x a x b 的最大值为24+=b ,最小值为420a b -++=,解得1,2a b ==.(2)()()23log 1f x x =-,()()()2310t g t f kt t kt =-=--≥又1,32t ⎡⎤∈⎢⎥⎣⎦,()2112t k t t t-≤=+-,而1()2h t t t =+-在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增.由不等式()()30tg t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,得:max 12k t t ⎛⎫≤+- ⎪⎝⎭43=.因此,k 的取值范围是43⎛⎤∞ ⎥⎝⎦-,.16.(15分)【答案】(1)0.0075;1603;(2)910【解析】(1)()0.0050.010.0150.0125201a ++++⨯=,解得0.0075a =设中位数为x ,因为学生成绩在[)0,40的频率为()200.0050.010.30.5⨯+=<,在[)0,60的频率为()200.0050.010.0150.60.5⨯++=>所以中位数满足等式()0.005200.01200.015400.5x ⨯+⨯+⨯-=,解得1603x =故这100名学生本次历史测试成绩的中位数为1603.(2)成绩在[)0,20的频数为0.0052010010⨯⨯=成绩在[]80,100的频数为0.00752010015⨯⨯=按分层抽样的方法选取5人,则成绩在[)0,20的学生被抽取105225⨯=人,在[]80,100的学生被抽取155325⨯=人从这5人中任意选取2人,都不选考历史科目的概率为2225C 1C 10=,故这2人中至少有1人高考选考历史科目的概率为1911010P =-=.17.(15分)【答案】(1)2.【解析】(1)在ABC中,由题意知sin A ==又因为2B A π=+,所有sin sin(cos 23B A A π=+==,由正弦定理可得3sin sin a BAb ==.(2)由2B A π=+得cos cos sin 2()B A A π=+=-=A B C π++=,得()C A B π=-+.所以sin sin[()]sin()C A B A B π=-+=+sin cos cos sin A B A B =+(3333=-+⨯13=.因此,ABC的面积111sin 32232S ab C ==⨯⨯=.18.(17分)【答案】(1)①证明见解析.②247.(2)232 6.2+【解析】(1)①因为平面PAB ⊥平面,ABCD 平面PAB ⋂平面,ABCD AB =又因为底面ABCD 为直角梯形,其中//,AD BC 所以,AD AB ⊥又因为AD ⊂面,PAD 所以AD ⊥面.PAB 又因为PB ⊂面,PAB 所以.PB AD ⊥②由①知AD ⊥面,PAB 取PA 的中点设为,Q 连结,QE 则,QE AD //则QE ⊥面,PAB 则点E 到面PAB 的距离为14.2AD =又因为在ABCD 直角梯形ABCD 中4BC =,8PA PB AD ===,5,CD =解得3,AB =所以在等腰三角形PAB 中PAB S =△3247.4三棱锥P ABE -的体积132474247.34V =⨯⨯=(2)取线段PC 的中点H ,连接,EH HB ,因为DN BC =,且//DN BC ,所以四边形NDCB 为平行四边形,所以//DC NB ,又,E H 分别为线段,PD PC ,所以//EH DC ,所以//EH NB ,则四边形EHBN 为四棱锥P ABCD -过点,B E 及棱AD 中点的截面,则5BN CD ==,142EN PA ==,1522HE CD ==,在PBC 中,14,4,2BC HC PC ===,21cos 84PCB ∠==,所以22212cos 161624424.4BH BC HC BC HC HCB =+-⋅⋅∠=+-⨯⨯⨯=,则 6.BH =,所以截面周长为523546622BN EN HE HB +++=++=+19.(17分)【答案】(1)3π;(3)max ()2f x =,5π12x =【解析】(1)解法1:因为当π3x =时,ππ32sin 362a ⎛⎫⎫== ⎪⎪⎝⎭⎭ ,5ππ1sin ,2sin 632b ⎛⎫⎛== ⎪ ⎝⎭⎝ ,π13322f a b ⎛⎫=⋅=+ ⎪⎝⎭==.解法2:由诱导公式可得()2sin a x x = ,()cos ,2sin b x x = ,所以()2sin cos 2sin f x a b x x x x =⋅=⋅+⋅)2sin212sin x x =-sin2x x =π2sin 23x ⎛⎫=- ⎪⎝⎭,所以ππ2sin 33f ⎛⎫== ⎪⎝⎭(2)由解法2得()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,故函数()y f x =的最小正周期为π.(3)当π02x ≤≤时,ππ2π2333x -≤-≤,当ππ232x -=,即5π12x =时,函数πsin 23y x ⎛⎫=- ⎪⎝⎭取最大值1,此时max ()2f x =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红兴隆管理局第一高级中学2016-2017学年度第一学期开学考试高二数学学科试卷注:卷面分值150分; 时间:120分钟一、选择题(本大题共12小题 , 每小题5分, 共60分) 1.平行线34-90x y +=和620x my ++=的距离是( )A .58 B .2 C .511 D .572. 若m 、n 是两条不同的直线,α、β、γ是三个不同的平面,下列命题中,正确的是( ) A .若αγ⊥,βγ⊥,则//αβ B .若m α⊥,n α⊥,则//m n C .若//m α,//n α,则//m n D .若//m α,//m β,则//αβ3. 已知数列{}n a 的通项公式是478n a n =-+,{}n a 的前n 项和为n S ,则n S 达到最大值时,n 的值是( )A .17B .18C .19D .204.若0,0ab c d,则一定有( )....a b a b a b a b A B C D c dc dd cd c5.若变量y x ,满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为( )35.1...324A B C D -6. 如图,在正方体1111ABCD A B C D -中,M 、N 分别为棱BC 、1CC 的中点,则异面直线MN 与AC 所成的角为( )A .30B .45C .60D .90MC 1B 11D 1CD7.直线()1:13l ax a y +-=与()2:(1)232l a x a y -++=互相垂直,则实数a 的值为( )3.3.1.0-.1-32A B C D 或或8.在△ABC 中,2,a =A 45=,若此三角形有两解,则b 的取值范围是( ).1.(2,22).(2,).(,2).(,2)2A B C D +∞-∞9. 当3x 时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) (][)77.,3.3,.,.,22A B C D ⎡⎫⎛⎤-∞+∞+∞-∞⎪ ⎢⎥⎣⎭⎝⎦10. 数列}{n a 中,),()1(2,211*+∈++==N n n n a a a n n 则=10aA. 3.4B. 3.6C. 3.8D. 411. 若cos ,sin c a B b a C ==,则△ABC 是A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形12.若函数()2101x y a aa -=+≠且的图象经过定点(),,P m n 且过点()1Q m n -,的直线l被圆C:222270x y x y ++--=截得的弦长为32则直线l 的斜率为( )44.-1-7.-7.0.0-133A B C D 或或或或二、填空题(本大题共4小题,每小题5分,共20分)EADP13.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是______________. 14.在数列}{n a 中,112,2,n n na a a S +==为数列}{n a 的前n 项和.若S 126n =,则n =______________.15.在△ABC 中,4,5,6,a b c ===则sin 2sin CA=______________.16.若集合A ={(x ,y )|y =1+4-x 2},B ={(x ,y )|y =k (x -2)+4}.当集合A ∩B 有4 个子集时,实数k 的取值集合为_______________.三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知点A (3,3)、B (5,2)到直线的距离相等,且直线l 经过两直线1l :3x -y -1=0和2l 2x +y -3=0的交点,求直线l 的方程.18.(本小题满分12分)设△ABC 的内角A B C 、、所对的边分别为a b c 、、,且2a cosC=2b c -.(1)求角A的大小;(2)若1a =,求b c +的取值集合.19.(本小题满分12分)如图,在梯形ABCD 中,//BC AD ,AB BC ⊥,1AB BC ==,2PA AD ==,PA ⊥平面ABCD ,E 为PD 中点.(Ⅰ)求证://CE 平面PAB ;(Ⅱ)求直线CE 与平面PAD 所成角的大小.20.(本小题满分12分) 已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.21.(本小题满分12分)已知数列}{n a 的前n 项和为S ,n 且()S 43.n n a n N +=-∈(1)证明:数列}{na 为等比数列.(2)若数列{}n b 满足()1,n n n b a b n N ++=+∈且12,b =求数列{}n b 的通项公式.22.(本小题满分12分)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ ·MQ 的最小值;红兴隆管理局第一高级中学2016—2017学年度第一学期开学考试高二 数 学 答案一、选择题(本大题共12小题 , 每小题5分, 共60分)。
题号 1 2 34 5 6 7 8 9 10 11 12 答案BBCDBCDADCBA二、填空题(共4小题,每小题5分,共20分)13.(x -2)2+(y +1)2=252. 14. 6 15. 1 16.{k |512<k ≤34}三、解答题(共6小题,共70分)17.(本小题满分10分)已知点A (3,3)、B (5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程.解:解方程组⎩⎪⎨⎪⎧3x -y -1=0,x +y -3=0,得交点P (1,2).(1)若点A 、B 在直线l 的同侧,则l ∥AB . 而k AB =3-23-5=-12,由点斜式得直线l 的方程为y -2=-12(x -1),即x +2y -5=0;(2)若点A 、B 分别在直线l 的异侧,则直线l 经过线段AB 的中点(4,52),由两点式得直线l 的方程为y -2x -1=52-24-1,即x -6y +11=0.综上所述,直线l 的方程为x +2y -5=0或x -6y +11=0.18.设△ABC 的内角A B C 、、所对的边分别为a b c 、、,且2a c osC=2b c -. (1)(6分)求角A的大小;60(2)(6分)若1a =,求b c +的取值集合.(]601,2CDCD19.(本小题满分12分)如图,在梯形ABCD 中,//BC AD ,AB BC ⊥,1AB BC ==,2PA AD ==,PA ⊥平面ABCD ,E 为PD 中点.(Ⅰ)求证://CE 平面PAB ;(Ⅱ)求直线CE 与平面PAD 所成角的大小..19. 解:(1)证明:取PA 的中点为F ,连接EF 、BF , 因为E 为PD 中点, 所以//EF AD ,12EF AD =, 又因为//BC AD ,12BC AD =,所以//BC EF =, 所以四边形BCEF 为平行四边形,所以//CE BF , 又因为CE ⊄平面PAB ,BF ⊂平面PAB ,所以//CE 平面PAB . ………………6分 (2)取AD 的中点为M ,连接CM 、EM .则//BC AM =,所以四边形ABCM 是平行四边形,//AB CM ,CM AD ⊥,又因为PA ⊥平面ABCD ,CM ⊂平面ABCD ,所以PA CM ⊥, 又因为AMPA A =,CM ⊥平面PAB ,CM EM ⊥,又因为2PA =,E 、M 分别为PD 、AD 的中点, 所以1CM EM ==,所以45ECM ∠=,. 所以直线CE 与平面PAD 所成角为45 ………………12分20.(本小题满分12分)已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为22时, 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.20.(1)1=a ;(2)045125=+-y x 或3=xxyf x () = x + 3–1–2–3–412345–1–2–3–4123456O(1)依题意可得圆心2),2,(=r a C 半径,则圆心到直线:30l x y -+=的距离21)1(13222+=-++-=a a d ,由勾股定理可知222)222(r d =+,代入化简得21=+a ,解得31-==a a 或,又0>a ,所以1=a ;-------5分(2)由(1)知圆4)2()1(:22=-+-y x C , 又)5,3(在圆外,∴①当切线方程的斜率存在时,设方程为)3(5-=-x k y ,由圆心到切线的距离2==r d 可解得125=k ,∴切线方程为045125=+-y x ……9分,②当过)5,3(斜率不存在,易知直线3=x 与圆相切,综合①②可知切线方程为045125=+-y x 或3=x .--------12分 21.已知数列}{n a 的前n 项和为S ,n 且()S 43.n n a n N +=-∈(1)证明:数列}{na 为等比数列.---------6分(2)若数列{}n b 满足()1,n n n b a b n N ++=+∈且12,b =求数列{}n b 的通项公式.24413n n b -⎛⎫=⨯- ⎪⎝⎭------------12分22.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ ·MQ 的最小值;解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0.则圆C 的方程为x 2+y 2=r 2. 将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.-----6分 (2)设Q (x ,y ),则x 2+y 2=2,且PQ ·MQ =(x -1,y -1)(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 所以PQ ·MQ 的最小值为-4(可由线性规划或三角代换求得).-------12分。